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PREFACE

THE purpose of this text is to describe in detail numerical techniques used in small and
large strain finite element analysis of elastic and inelastic solids. Attention is focused

on the derivation and description of various constitutive models – based on phenomenolog-
ical hyperelasticity, elastoplasticity and elasto-viscoplasticity – together with the relevant
numerical procedures and the practical issues arising in their computer implementation
within a quasi-static finite element scheme. Many of the techniques discussed in the text are
incorporated in the FORTRAN program, named HYPLAS, which accompanies this book and
can be found at www.wiley.com/go/desouzaneto. This computer program has been specially
written to illustrate the practical implementation of such techniques. We make no pretence
that the text provides a complete account of the topics considered but rather, we see it as an
attempt to present a reasonable balance of theory and numerical procedures used in the finite
element simulation of the nonlinear mechanical behaviour of solids.

When we embarked on the project of writing this text, our initial idea was to produce
a rather concise book – based primarily on our own research experience – whose bulk
would consist of the description of numerical algorithms required for the finite element
implementation of small and large strain plasticity models. As the manuscript began to take
shape, it soon became clear that a book designed as such would be most appropriate to those
already involved in research on computational plasticity or closely related areas, being of
little use to those willing to learn computational methods in plasticity from a fundamental
level. A substantial amount of background reading from other sources would be required for
readers unfamiliar with topics such as basic elastoplasticity theory, tensor analysis, nonlinear
continuum mechanics – particularly nonlinear kinematics – finite hyperelasticity and general
dissipative constitutive theory of solids. Our initial plan was then gradually abandoned as
we chose to make the text more self-contained by incorporating a considerable amount of
basic theory. Also, while writing the manuscript, we decided to add more advanced (and very
exciting) topics such as damage mechanics, anisotropic plasticity and the treatment of finite
strain single crystal plasticity. Following this route, our task took at least three times as long
to complete and the book grew to about twice the size as originally planned. There remains
plenty of interesting material we would like to have included but cannot due to constraints
of time and space. We are certainly far more satisfied with the text now than with its early
versions, but we do not believe our final product to be optimal in any sense. We merely offer
it to fill a gap in the existing literature, hoping that the reader will benefit from it in some way.

The text is arranged in three main parts. Part One presents some basic material of relevance
to the subject matter of the book. It includes an overview of elementary tensor analysis,
continuum mechanics and thermodynamics, the finite element method in quasi-static non-
linear solid mechanics and a brief description of the computer program HYPLAS. Part Two
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deals with small strain problems. It introduces the mathematical theory of infinitesimal
plasticity as well as the relevant numerical procedures for the implementation of plasticity
models within a finite element environment. Both rate-independent (elastoplastic) and rate-
dependent (elasto-viscoplastic) theories are addressed and some advanced models, including
anisotropic plasticity and ductile damage are also covered. Finally, in Part Three we focus
on large strain problems. The theory of finite hyperelasticity is reviewed first together with
details of its finite element implementation. This is followed by an introduction to large strain
plasticity. Hyperelastic-based theories with multiplicative elastoplastic kinematics as well as
hypoelastic-based models are discussed, together with relevant numerical procedures for their
treatment. The discussion on finite plasticity and its finite element implementation culminates
with a description of techniques for single crystal plasticity. Finite element techniques for
large-strain near-incompressibility are also addressed.

We are indebted to many people for their direct or indirect contribution to this text.
This preface would not be complete without the due acknowledgement of this fact and a
record of our sincere gratitude to the following: to J.M.P. Macedo for the numerous valuable
suggestions during the design of the program HYPLAS at the very early stages of this project;
to R. Billardon for the many enlightening discussions on damage modelling; to R.A. Feijóo
and E. Taroco for the fruitful discussions held on many occasions over a long period of time;
to M. Dutko for producing some of the numerical results reported; to Y.T. Feng for helpful
discussions on the arc-length method; to F.M. Andade Pires for his key contribution to the
development of F-bar-Patch elements, for producing the related figures presented and for
thoroughly reviewing early versions of the manuscript; to P.H. Saksono for his involvement
in the production of isoerror maps; to A. Orlando for literally ‘scanning’ through key parts
of the text to find inconsistencies of any kind; to L. Driemeier, W. Dettmer, M. Vaz Jr,
M.C. Lobão, M. Partovi, D.C.D. Speirs, D.D. Somer, E. Saavedra, A.J.C. Molina, S. Giusti
and P.J. Blanco for carefully reviewing various parts of the manuscript, spotting hard-to-find
mistakes and making several important suggestions for improvement. Last, but not least, to
our late colleague and friend Mike Crisfield, for the numerous illuminating and passionate
discussions (often held on the beach or late in the bar) on many topics addressed in the book.

EA de Souza Neto
D Perić

DRJ Owen

Swansea
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1 INTRODUCTION

OVER the last four decades, the use of computational techniques based on the Finite
Element Method has become a firmly established practice in the numerical solution of

nonlinear solid mechanics problems both in academia and industry.
In their early days, these techniques were largely limited to infinitesimal deformation and

strain problems with the main complexity arising from the nonlinear constitutive characteriza-
tion of the underlying material by means of basic elastoplastic or elasto-viscoplastic theories.
Applications were mostly confined to the modelling of the behaviour of solids in conventional
areas of engineering and analyses were carried out on crude, user-unfriendly software that
typically required highly specialized users. Since those days, this area of solid mechanics
– generally known as computational plasticity – has experienced dramatic developments.
Fuelled by the steady increase in computing power at decreasing costs together with the
continuous industrial demand for accurate models of solids, the evolution of computational
plasticity techniques have made possible the development of refined software packages
with a considerable degree of automation that are today routinely employed by an ever-
increasing number of engineers and scientists. The variety of practical problems of interest
to which such techniques are currently applied with acceptable levels of predictive capability
is very wide. They range from traditional engineering applications, such as stress analysis
in structures, soil and rock mechanics, to the simulation of manufacturing processes such as
metal forming. Also included are much less conventional applications, such as the simulation
of food processing, mining operations and biological tissue behaviour. Many such problems
are characterised by extremely large straining and material behaviour often described by
means of rather complex constitutive equations.

1.1. Aims and scope

The main objective of this text is to describe in detail numerical techniques used in the
small and large strain analysis of elastic and inelastic solids by the Finite Element Method.
Particular emphasis is placed on the derivation and description of various constitutive models
– based on phenomenological hyperelasticity, elastoplasticity and elasto-viscoplasticity –
as well as on the relevant numerical procedures and the practical issues arising in their
computer implementation. The range covered goes from basic infinitesimal isotropic to
more sophisticated finite strain theories, including anisotropy. Many of the techniques
discussed in the text are implemented in the FORTRAN computer program, named HYPLAS,
which accompanies this book. Parts of its source code are included in the text and should
help readers correlate the relevant numerical methods with their computer implementation
in practice. Another important aspect to emphasise is that the performance of many of

Computational Methods for Plasticity: Theory and Applications EA de Souza Neto, D Perić and DRJ Owen
c© 2008 John Wiley & Sons, Ltd
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the models/techniques described in the text is documented in numerical examples. These
should be of particular relevance to those involved in software research and development in
computational plasticity.

In order to make the book more self-contained, we have chosen to incorporate a consider-
able amount of basic theory within the text. This includes some material on elementary tensor
analysis, an introduction to the nonlinear mechanics and thermodynamics of continuous
media and an overview of small and large strain elastoplasticity and viscoplasticity theory,
finite hyperelasticity and finite element techniques in nonlinear solid mechanics. Having a
sound knowledge of such topics is essential, we believe, to the clear understanding of the
very problems the numerical techniques discussed in this book are meant to simulate.

We reiterate, however, that our main focus here is computational. Thus, the volume of
theory and the depth at which it is presented is kept to the minimum necessary for the
above task. For example, in the presentation of tensor analysis and continuum mechanics and
thermodynamics, we omit most proofs for standard relations. In plasticity, viscoplasticity and
hyperelasticity, we limit ourselves mainly to presenting the constitutive models together with
their most relevant properties and the essential relations needed in their formulation. Issues
such as material stability and the existence and uniqueness of solutions to initial boundary
value problems are generally not addressed.

1.1.1. READERSHIP

This book is intended for graduate students, research engineers and scientists working in the
field of computational continuum mechanics. The text requires a basic knowledge of solid
mechanics – especially the theory of linear elasticity – as well as the Finite Element Method
and numerical procedures for the approximate solution of ordinary differential equations.
An elementary understanding of vector and tensor calculus is also very helpful. Readers
wishing to follow the computer implementation of the procedures described in the text should,
in addition, be familiar at a fairly basic level with the FORTRAN computer programming
language. It is worth remarking here that the choice of the FORTRAN language is motivated
mainly by the following:

(a) its widespread acceptance in engineering computing in general and, in particular,
within the finite element community;

(b) the suitability of procedural languages for codes with relatively low level of complexity,
such as HYPLAS. In the present case, the use of more advanced programming concepts
(e.g. object-oriented programming) could add a further difficulty in the learning of the
essential concepts the HYPLAS code is meant to convey;

(c) its relative clarity in the coding of short algorithmic procedures such as those arising
typically in the implementation of elastic and inelastic material models – the main
subject of this book.

1.2. Layout

In line with the above aims, the book has been divided into three parts as follows.
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• Part One: Basic concepts. In this part we introduce concepts of fundamental relevance
to the applications presented in Parts Two and Three. The following material is covered:

– elementary tensor analysis;

– introductory continuum mechanics and thermodynamics;

– finite elements in quasi-static nonlinear solid mechanics;

– a concise description of the computer program HYPLAS.

• Part Two: Small strains. Here, the theory of infinitesimal plasticity is introduced
together with the relevant numerical procedures used for its implementation into a finite
element environment. A relatively wide range of models is presented, including both
rate-independent (elastoplastic) and rate-dependent (elasto-viscoplastic) theories. The
following main topics are considered:

– the theory of infinitesimal plasticity;

– finite elements in infinitesimal plasticity;

– advanced plasticity models, including anisotropy;

– viscoplasticity;

– elastoplasticity with damage.

• Part Three: Large strains. This part focuses on finite strain hyperelasticity and
elastoplasticity problems. The models discussed here, as well as their computational
implementation, are obviously more complex than those of Part Two. Their complexity
stems partly from the finite strain kinematics. Thus, to follow Part Three, a sound
knowledge of the kinematics of finite deformations discussed in Chapter 3 (in Part One)
is essential. The following topics are addressed:

– large strain isotropic hyperelasticity;

– large strain plasticity;

– finite element techniques for large strain incompressibility;

– single crystal (anisotropic) finite plasticity.

The material has been organised into sixteen chapters and four appendices. These will now
be briefly described. The remainder of Chapter 1 discusses the general scheme of notation
adopted in the book.

Chapter 2 contains an introduction to elementary tensor analysis. In particular, the material
is presented mainly in intrinsic (or compact) tensor notation – which is heavily relied upon
thoughout the book.

Chapter 3 provides an introdution to the mechanics and thermodynamics of continuous
media. The material presented here covers the kinematics of deformation, balance laws and
constitutive theory. These topics are essential for an in-depth understanding of the theories
discussed in later chapters.

Chapter 4 shows the application of the Finite Element Method to the solution of problems
in quasi-static nonlinear solid mechanics. A generic dissipative constitutive model, initially
presented in Chapter 3, is used as the underlying material model.
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Chapter 5 describes the general structure of the program HYPLAS, where many of the
techniques discussed in the book are implemented. We remark that the program description
is rather concise. Further familiarisation with the program will require the reader to follow
the comments in the FORTRAN source code together with the cross-referencing of the main
procedures with their description in the book. This is probably more relevant to those wishing
to use the HYPLAS program for research and development purposes.

Chapter 6 is devoted to the mathematical theory of infinitesimal plasticity. The main
concepts associated with phenomenological time-independent plasticity are introduced here.
The basic yield criteria of Tresca, von Mises, Mohr–Coulomb and Drucker–Prager are
reviewed, together with the most popular plastic flow rules and hardening laws.

In Chapter 7, we introduce the essential numerical methods required in the finite element
solution of initial boundary value problems with elastoplastic underlying material models.
Applications of the von Mises model with both isotropic and mixed isotropic/kinematic
hardening are described in detail. The most relevant subroutines of the program HYPLAS are
also listed and explained in detail.

Chapter 8 focuses on the detailed description of the implementation of the basic plasticity
models based on the Tresca, Mohr–Coulomb and Drucker–Prager yield criteria. Again, the
relevant subroutines of HYPLAS are listed and explained in some detail.

In Chapter 9 we describe the numerical treatment of plasticity models under plane stress
conditions. Different options are considered and their relative merits and limitations are
discussed. Parts of source code are also included to illustrate some of the most important
programming aspects. The application of the concepts introduced here to other stress-
constrained states is briefly outlined at the end of the chapter.

In Chapter 10 advanced elastoplasticity models are considered. Here we describe the
computational implementation of a modified Cam-Clay model for soils, a capped Drucker–
Prager model for geomaterials and the Hill, Hoffman and Barlat–Lian anisotropic models for
metals. The numerical techniques required for the implementation of such models are mere
specialisations of the procedures already discussed in Chapters 7 and 8. However, due to
the inherent complexity of the models treated in this chapter, their actual implementation is
generally more intricate than those of the basic models.

Chapter 11 begins with an introduction to elasto-viscoplasticity theory within the con-
stitutive framework for dissipative materials described in Chapter 3. The (rate-independent)
plasticity theory is then obtained as a limiting case of viscoplasticity. The numerical methods
for a generic viscoplastic model are described, following closely the procedures applied
earlier in elastoplasticity. Application of the methodology to von Mises criterion-based
viscoplastic models is described in detail.

In Chapter 12 we discuss continuum damage mechanics – the branch of Continuum Solid
Mechanics devoted to the modelling of the progressive material deterioration that precedes
the onset of macroscopic fracturing. Some elastoplastic damage models are reviewed and
their implementation, with the relevant computational issues, is addressed in detail.

Chapter 13 introduces finite strain hyperelasticity. The basic theory is reviewed and some
of the most popular isotropic models are presented. The finite element implementation of the
Odgen model is discussed in detail with relevant excerpts of HYPLAS source code included. In
addition, the modelling of the so-called Mullins dissipative effect by means of a hyperelastic-
damage theory is addressed at the end of the chapter. This concept is closely related to those
already discussed in Chapter 12 for ductile elastoplastic damage.
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In Chapter 14 we introduce finite strain elastoplasticity together with the numerical
procedures relevant to the finite element implementation of finite plasticity models. The
main discussion is focused on hyperelastic-based finite plasticity theories with multiplicative
kinematics. The finite plasticity models actually implemented in the program HYPLAS belong
to this class of theories. However, for completeness, a discussion on the so-called hypoelastic-
based theories is also included. The material presented is confined mostly to isotropic
elastoplasticity, with anisotropy in the form of kinematic hardening added only at the end
of the chapter.

Chapter 15 is concerned with the treatment of large strain incompressibility within the
Finite Element Method. This issue becomes crucial in large-scale finite strain simulations
where the use of low-order elements (which, without any added specific techniques, are
generally inappropriate near the incompressible limit) is highly desirable. Three different
approaches to tackle the problem are considered: the so-called F -bar method (including its
more recent F -bar-Patch variant for simplex elements); the Enhanced Assumed Strain (EAS)
technique, and the mixed u/p formulation.

Finally, in Chapter 16 we describe a general model of large-strain single-crystal plas-
ticity together with the relevant numerical procedures for its use within a finite element
environment. The implementation of a specialisation of the general model based on a planar
double-slip system is described in detail. This implementation is incorporated in the program
HYPLAS.

In addition to the above, four appendices are included. Appendix A is concerned with
isotropic scalar- and tensor-valued functions of a symmetric tensor that are widely exploited
throughout the text. It presents some important basic properties as well as formulae that
can be used in practice for the computation of function values and function derivatives.
Appendix B addresses the tensor exponential function. The tensor exponential is of relevance
for the treatment of finite plasticity presented in Chapters 14 and 16. In Appendix C we derive
the linearisation of the virtual work equation both under small and large deformations. The
expressions derived here provide the basic formulae for the tangent operators required in the
assembly of the tangent stiffness matrix in the finite element context. Finally, in Appendix D
we describe the handling – including array storage and product operations – of second and
fourth-order tensors in finite element computer programs.

1.2.1. THE USE OF BOXES

Extensive use of boxes has been made to summarise constitutive models and numerical
algorithms in general (refer, for example, to pages 146 and 199). Boxes should be of particular
use to readers interested mostly in computer implementation aspects and who wish to skip the
details of derivation of the models and numerical procedures. Numerical algorithms listed in
boxes are presented in the so-called pseudo-code format – a format that resembles the actual
computer code of the procedure. For boxes describing key procedures implemented in the
program HYPLAS, the name of the corresponding FORTRAN subprogram is often indicated
at the top of the box (see page 221, for instance).

1.3. General scheme of notation

Throughout the text, an attempt has been made to maintain the notation as uniform as possible
by assigning specific letter styles to the representation of each type of mathematical entity.
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At the same time, we have tried to keep the notation in line with what is generally adopted
in the present subject areas. Unfortunately, these two goals often conflict so that, in many
cases, we choose to adopt the notation that is more widely accepted instead of adhering to
the use of specific fonts for specific mathematical entities. Whenever such exceptions occur,
their meaning should either be clear from the context or will be explicitly mentioned the first
time they appear.

1.3.1. CHARACTER FONTS. GENERAL CONVENTION

The mathematical meaning associated with specific font styles is given below. Some
important exceptions are also highlighted. We emphasise, however, that other exceptions,
not mentioned here, may occur in the text.

• Italic light-face letters A, a, . . .: scalars and scalar-valued functions.

• Italic bold-face majuscules B, C, . . .: second-order tensors or tensor-valued functions.
Light-face with indices Bij , Bαβ, . . .: components of the corresponding tensors.
Important exceptions: A (set of thermodynamical forces), H (generalised elastoplastic
hardening modulus), J (generalised viscoplastic hardening constitutive function).

• Italic bold-face minuscules p, v, . . .: points, vectors and vector-valued functions.
Light-face with indices pi, pα, . . .: coordinates (components) of the corresponding
points (vectors).
Important exception: s (stress tensor deviator).

• Sans-serif (upright) bold-face letters A, a, . . .: fourth-order tensors. Light-face with
indices Aijkl, Aαβγδ, . . .: the corresponding Cartesian components.

• Greek light-face letters α, β, . . ., Φ, Ψ, . . .: scalars and scalar-valued functions.
Important exception: Ω (region of Euclidean space occupied by a generic body).

• Greek bold-face minuscules β, σ, τ, . . .: second-order tensors. Light-face with indices
σij , σαβ , . . .: the corresponding components.
Important exceptions: α (generic set of internal state variables), ϕ (deformation map)
and η (when meaning virtual displacement fields).

• Upright bold-face majuscules, minuscules and greek letters A, a, σ, . . .: finite element
arrays (vectors and matrices) representing second or fourth-order tensors and general
finite element operators.

• Script majuscules A, B, . . .: spaces, sets, groups, bodies.

• German majuscules F, G, . . .: constitutive response functionals.

• Calligraphic majuscules X, Y, . . .: generic mathematical entity (scalar, vector, tensor,
field, etc.)

• Typewriter style letters HYPLAS, SUVM, . . .: used exclusively to denote FORTRAN
procedures and variable names, instructions, etc.
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1.3.2. SOME IMPORTANT CHARACTERS

The specific meaning of some important characters is listed below. We remark that some of
these symbols may occasionally be used with a different connotation (which should be clear
from the context).

A Generic set of thermodynamical forces

A Finite element assembly operator (note the large font)

A First elasticity tensor

a Spatial elasticity tensor

B Left Cauchy–Green strain tensor

Be Elastic left Cauchy–Green strain tensor

B Discrete (finite element) symmetric gradient operator
(strain-displacement matrix)

B Generic body

b Body force

b̄ Reference body force

C Right Cauchy–Green strain tensor

c Cohesion

D Damage internal variable

D Stretching tensor

De Elastic stretching

Dp Plastic stretching

D Infinitesimal consistent tangent operator

De Infinitesimal elasticity tensor

Dep Infinitesimal elastoplastic consistent tangent operator

D Consistent tangent matrix (array representation of D)

De Elasticity matrix (array representation of De)

Dep Elastoplastic consistent tangent matrix (array representation
of Dep)

E Young’s modulus

Ei Eigenprojection of a symmetric tensor associated with the ith

eigenvalue

E Three-dimensional Euclidean space; elastic domain

Ē Set of plastically admissible stresses

ei Generic base vector; unit eigenvector of a symmetric tensor
associated with the ith eigenvalue
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F Deformation gradient

F e Elastic deformation gradient

F p Plastic deformation gradient

fext Global (finite element) external force vector

fext(e) External force vector of element e

f int Global (finite element) internal force vector

f int(e) Internal force vector of element e

G Virtual work functional; shear modulus

G Discrete (finite element) full gradient operator

H Hardening modulus

H Generalised hardening modulus

I1, I2, I3 Principal invariants of a tensor

I Fourth-order identity tensor: Iijkl = δikδjl

IS Fourth-order symmetric identity tensor: Iijkl = 1
2 (δikδjl + δilδjk)

Id Deviatoric projection tensor: Id ≡ IS − 1
3I ⊗ I

I Second-order identity tensor

IS Array representation of IS

i Array representation of I

J Jacobian of the deformation map: J ≡ det F

J2, J3 Stress deviator invariants

J Generalised viscoplastic hardening constitutive function

K Bulk modulus

KT Global tangent stiffness matrix

K(e)T Tangent stiffness matrix of element e

K Set of kinematically admissible displacements

L Velocity gradient

Le Elastic velocity gradient

Lp Plastic velocity gradient

mα Unit vector normal to the slip plane α of a single crystal

N Plastic flow vector

N̄ Unit plastic flow vector: N̄ ≡ N/‖N‖
O The orthogonal group

O+ The rotation (proper orthogonal) group
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0 Zero tensor; zero array; zero generic entity

o Zero vector

P First Piola–Kirchhoff stress tensor

p Generic material point

p Cauchy or Kirchhoff hydrostatic pressure

Q Generic orthogonal or rotation (proper orthogonal) tensor

q von Mises (Cauchy or Kirchhoff) effective stress

R Rotation tensor obtained from the polar decomposition of F

Re Elastic rotation tensor

R Real set

r Global finite element residual (out-of-balance) force vector

s Entropy

s Cauchy or Kirchhoff stress tensor deviator

sα Unit vector in the slip direction of slip system α of a single crystal

t Surface traction

t̄ Reference surface traction

U Right stretch tensor

U e Elastic right stretch tensor

U p Plastic right stretch tensor

U Space of vectors in E

u Generic displacement vector field

u Global finite element nodal displacement vector

V Left stretch tensor

V e Elastic left stretch tensor

V p Plastic left stretch tensor

V Space of virtual displacements

v Generic velocity field

W Spin tensor

W e Elastic spin tensor

W p Plastic spin tensor

x Generic point in space

αp Ogden hyperelastic constants (p = 1, . . . , N) for a model
with N terms in the Ogden strain-energy function series

α Generic set of internal state variables
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β Back-stress tensor

γ̇ Plastic multiplier

δij Krönecker delta

ε Strain tensor; also Eulerian logarithmic strain when
under large strains

εe Elastic strain tensor; also elastic Eulerian logarithmic
strain when under large strains

εp Plastic strain tensor

ε, εe, εp Array representation of ε, εe and εp, respectively

ε, εe, εp Axial total, elastic and plastic strain in one-dimensional
models

ε̄p Effective (or accumulated) plastic strain

η Virtual displacement field; relative stress tensor in kinematic
hardening plasticity models

κ Isotropic hardening thermodynamical force

λ One of the Lamé constants of linear elasticity; axial stretch;
load factor in proportional loading

λe, λp Elastic and plastic axial stretch

λi, λe
i , λp

i Total, elastic and plastic principal stretches

µ One of the Lamé constants of linear elasticity

µp Ogden hyperelastic constants (p = 1, . . . , N) for a model
with N terms in the Ogden strain-energy function series

ν Poisson ratio

Ξ Dissipation potential

ξ Isoparametric coordinates of a finite element

ρ Mass density

ρ̄ Reference mass density

σ Cauchy stress tensor

σ Axial stress in one-dimensional models

σi Principal Cauchy stress

σy Yield stress (uniaxial yield stress for the conventional
von Mises and Tresca models)

σy0 Initial yield stress

σ Array representation of σ

τ Kirchhoff stress tensor

τi Principal Kirchhoff stress
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τα Resolved Schmid shear stress on slip system α

τ Array representation of τ

Φ Yield function; damage function

ϕ Deformation map; motion

Ψ Plastic flow potential

ψ Helmholtz free-energy per unit mass; strain-energy per unit
mass

Ω Domain of a body in the reference configuration

Ω(e) Domain of finite element e in the reference configuration

1.3.3. INDICIAL NOTATION, SUBSCRIPTS AND SUPERSCRIPTS

When indicial notation is used, the following convention is adopted for subscripts:

• Italic subscripts i, j, k, l, . . ., as in the Cartesian components

ui, Bij , aijkl ,

or for the basis vectors
ei,

normally range over 1, 2 and 3. In a more general context (in an n-dimensional space),
their range may be 1, 2, . . . , n.

• Greek subscripts α, β, γ, δ, . . .: range over 1 and 2.

• When an index appears twice in the same product, summation over the repeated index
(Einstein notation) is implied unless otherwise stated. For example,

uiei =
3∑

i=1

uiei.

We remark that subscripts are not employed exclusively in connection with indicial notation.
Different connotations are assigned to subscripts throughout the text and the actual meaning
of a particular subscript should be clear from the context. For example, in the context of
incremental numerical procedures, subscripts may indicate the relevant increment number. In
the expression

∆ε = εn+1 − εn,

the subscripts n and n + 1 refer to the values of ε, respectively, at the end of increments n
and n + 1.

Superscripts

Superscripts are also used extensively throughout the text. The meaning of a particular
superscript will be stated the first time it appears in the text and should be clear from the
context thereafter.
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1.3.4. OTHER IMPORTANT SYMBOLS AND OPERATIONS

The meanings of other important symbols and operations are listed below.

det(·) Determinant of (·)
dev(·) Deviator of (·)
divp(·) Material divergence of (·)
divx(·) Spatial divergence of (·)
exp(·) Exponential (including tensor exponential) of (·)
ln(·) Natural logarithm (including tensor logarithm) of (·)
o(·) A term that vanishes faster than (·)
sign(·) The signum function: sign(·) ≡ (·)/|(·)|
skew(·) Skew-symmetric part of (·)
sym(·) Symmetric part of (·)
tr(·) Trace of (·)
∆(·) Increment of (·). Typically, ∆(·) = (·)n+1 − (·)n

δ(·) Iterative increment of (·)
∇(·) Gradient of (·)
∇p(·) Material gradient of (·)
∇x(·) Spatial gradient of (·)
∇s, ∇s

p ,
∇s

x (·)
Corresponding symmetric gradients of (·)

∂(·) Boundary of the domain (·)
∂a(·) Subdifferential of (·) with respect to a

∂

∂a
(·) Derivative of (·) with respect to a

˙(·) Material time derivative of (·)
(·)T The transpose of (·)
a ≡ b Means a is defined as b. The symbol ≡ is often used to emphasise that

the expression in question is a definition.

a := b,
a := a + b

Assignment operation. The value of the right-hand side of the expression
is assigned to its left-hand side. The symbol := is often used to
emphasise that a given expression is an assignment operation performed
by a computational algorithm.

S : T, S : T,
S : T

Double contraction of tensors (internal product of second-order tensors)
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u · v, T · u,
S · T

Single contraction of vectors and tensors. The single contraction symbol
(the single dot) is usually omitted in single contractions between a tensor
and a vector or between tensors; that is, T · u and S · T are normally
represented simply as Tu and ST.

u × v Vector product

S ⊗ T,
u ⊗ v

Tensor product of tensors or vectors

X ∗ Y The appropriate product between two generic entities, X and Y, in a
given context.

|(·)| Norm (absolute value) of the scalar (·)
||T ||, ||v|| Euclidean norm of tensors and vectors:

||T || ≡
√

T : T, ||v|| ≡ √
v · v

→ A Used in the description of arguments of FORTRAN subprograms listed
in the text. An arrow pointing to the right followed by an argument name
A means that the value of A at entry is used by the relevant subprogram
and is not changed during its execution.

← A Analogously to → above, an arrow pointing to the left followed by an
argument name A means that the value of A is calculated and returned by
the relevant subprogram and its value at entry is ignored.

↔ A Analogously to → and ← above, a double arrow followed by an
argument name A means that the value of A at entry is used by the relevant
subprogram and is changed during its execution.





2 ELEMENTS OF TENSOR
ANALYSIS

THIS chapter introduces the notation and reviews some fundamentals of vector and
tensor calculus which are extensively employed in this book. Throughout this text,

preference is given to the use of intrinsic (or compact) tensor notation where no indices
are used to represent mathematical entities. However, in many of the definitions introduced
in this chapter, indicial notation is also used. This will allow readers not yet familiar with
compact notation to associate compactly written entities and operations with their indicial
forms, which will be expressed exclusively in terms of Cartesian coordinate systems. We
note that the use of Cartesian, rather than curvilinear, coordinates for indicial representation
is sufficiently general for the applications considered in this book. In the subsequent chapters,
the use of indicial notation will be much less frequent. Readers who are familiar with tensor
analysis and, in particular, the use of compact notation, may comfortably skip this chapter.

We remark that no proofs are given to most relations presented in this chapter. Readers
interested in such proofs and a more in-depth treatment of the subject are referred to other
textbooks such as Gurtin (1981).

2.1. Vectors

Let E be an n-dimensional Euclidean space and let U be the space of n-dimensional vectors
associated with E. Points of E and vectors U satisfy the basic rules of vector algebra, with
which we assume the reader to be familiar.

2.1.1. INNER PRODUCT, NORM AND ORTHOGONALITY

Let
u · v

denote the inner product (or scalar product) between two arbitrary vectors of U. The
Euclidean norm (or, simply, norm) of a vector u is defined as

‖u‖ =
√

u · u, (2.1)

and u is said to be a unit vector if
‖u‖ = 1. (2.2)

The zero vector, here denoted o, is the element of U that satisfies

‖o‖ = 0. (2.3)

Computational Methods for Plasticity: Theory and Applications EA de Souza Neto, D Perić and DRJ Owen
c© 2008 John Wiley & Sons, Ltd
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A vector u is said to be orthogonal (or perpendicular) to a vector v if

u · v = 0. (2.4)

2.1.2. ORTHOGONAL BASES AND CARTESIAN COORDINATE FRAMES

A set {ei} ≡ {e1, e2, . . . , en} of n mutually orthogonal vectors satisfying

ei · ej = δij , (2.5)

where

δij =

{
1 if i = j

0 if i 
= j
(2.6)

is the Krönecker delta, defines an orthonormal basis for U .
Any vector u ∈ U can be represented as

u = u1 e1 + u2 e2 + · · · + un en = ui ei, (2.7)

where
ui = u · ei, i = 1, 2, . . . , n (2.8)

are the Cartesian components of u relative to the basis {ei}. Any vector of U is uniquely
defined by its components relative to a given basis. This allows us to represent any vector u
as a single column matrix, denoted [u], of components

[u] =




u1
u2
...

un


. (2.9)

An orthonormal basis, {ei}, together with an origin point, x0 ∈ E, defines a Cartesian
coordinate frame. Analogously to the representation of vectors, any point x of E can be
represented by an array

[x] =




x1
x2
...

xn


, (2.10)

of Cartesian coordinates of x. The Cartesian coordinates {xi} of x are the Cartesian
components of the position vector

r = x − x0, (2.11)

of x relative to the origin x0. That is,

xi = (x − x0) · ei. (2.12)
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2.2. Second-order tensors

Second-order tensors are linear transformations from U into U, i.e. a second-order tensor

T : U → U

maps each vector u into a vector
v = T u. (2.13)

Any linear vector-valued function of a vector is a tensor. The operations of sum and scalar
multiplication of tensors are defined by

(S + T )u = S u + T u

(α S)u = α (S u), (2.14)

where α ∈ R. In addition, the zero tensor, 0, and the identity tensor, I, are, respectively, the
tensors that satisfy

0u = o

I u = u
(2.15)

∀ u ∈ U.
The product of two tensors S and T is the tensor ST defined by

ST u = S (T u). (2.16)

In general,
ST 
= TS. (2.17)

If ST = TS, then S and T are said to commute.

2.2.1. THE TRANSPOSE. SYMMETRIC AND SKEW TENSORS

The transpose, T T , of a tensor T is the unique tensor that satisfies

T u · v = u · T T v, ∀ u, v ∈ U. (2.18)

If
T = T T , (2.19)

then T is said to be symmetric. If
T = −T T , (2.20)

then T is said to be skew symmetric (or, simply, skew).
Any tensor T can be decomposed as the sum

T = sym(T ) + skew(T ) (2.21)

of its symmetric part
sym(T ) ≡ 1

2 (T + T T ) (2.22)

and its skew part
skew(T ) ≡ 1

2 (T − T T ). (2.23)
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Basic properties

The following basic properties involving the transpose, skew and symmetric parts of a tensor
hold:

(i) (S + T )T = ST + T T .

(ii) (S T )T = T T ST .

(iii) (T T )
T

= T.

(iv) If T is symmetric, then

skew(T ) = 0, sym(T ) = T.

(v) If T is skew, then

skew(T ) = T, sym(T ) = 0.

2.2.2. TENSOR PRODUCTS

The tensor product of two vectors u and v, denoted

u ⊗ v,

is the tensor that maps each vector w into the vector (v · w)u:

(u ⊗ v) w = (v · w) u. (2.24)

The tensor product is sometimes referred to as the dyadic product.

Some properties of the tensor product

The following relations hold for any vectors s, t, u, v, w and tensor S :

(i) u ⊗ (v + w) = u ⊗ v + u ⊗ w.

(ii) (u ⊗ v)T = v ⊗ u.

(iii) (u ⊗ v)(s ⊗ t) = (v · s)u ⊗ t.

(iv) ei ⊗ ei = I.

(v) S (u ⊗ v) = (S u) ⊗ v.

(vi) (u ⊗ v)S = (u ⊗ ST v).
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2.2.3. CARTESIAN COMPONENTS AND MATRIX REPRESENTATION

Any second-order tensor T can be represented as

T = T11 e1 ⊗ e1 + T12 e1 ⊗ e2 + · · · + Tnn en ⊗ en = Tij ei ⊗ ej (2.25)

where
Tij = ei · T ej (2.26)

are the Cartesian components of T. Note that in (2.25) no summation is implied over the
index n.

Any second tensor is uniquely defined by its Cartesian components. Thus, by arranging
the components Tij in a matrix, we may have the following matrix representation for T :

[T ] =




T11 T12 · · · T1n

T21 T22 · · · T2n

...
...

. . .
...

Tn1 Tn2 · · · Tnn


. (2.27)

For instance, the Cartesian components of the identity tensor, I, read

Iij = δij , (2.28)

so that its matrix representation is given by

[I ] =




1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


. (2.29)

The Cartesian components of the vector v = T u are given by

vi = [Tjk(ej ⊗ ek) ulel] · ei = Tij uj. (2.30)

Thus, the array [v] of Cartesian components of v is obtained from the matrix-vector product

[v ] ≡




v1

v2

...

vn


=




T11 T12 · · · T1n

T21 T22 · · · T2n

...
...

. . .
...

Tn1 Tn2 · · · Tnn







u1

u2

...

un


. (2.31)

It can be easily proved that the Cartesian components T T
ij of the transpose T T of a tensor

T are given by
T T

ij = Tji. (2.32)
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Thus, T T has the following Cartesian matrix representation

[T T ] =




T11 T21 · · · Tn1

T12 T22 · · · Tn2

...
...

. . .
...

T1n T2n · · · Tnn


. (2.33)

2.2.4. TRACE, INNER PRODUCT AND EUCLIDEAN NORM

For any u, v ∈ U, the trace of the tensor (u ⊗ v) is the linear map defined as

tr(u ⊗ v) = u · v. (2.34)

For a generic tensor, T = Tij ei ⊗ ej , it then follows that

tr T = Tij tr(ei ⊗ ej) = Tij δij = Tii, (2.35)

that is, the trace of T is the sum of the diagonal terms of the Cartesian matrix representa-
tion [T ].

The inner product, S : T, between two tensors S and T is defined as

S : T = tr(ST T ), (2.36)

or, in Cartesian component form,
S : T = Sij Tij . (2.37)

The Euclidean norm (or simply norm) of a tensor T is defined as

‖T ‖ ≡
√

T : T =
√

T 211 + T 212 + · · · + T 2nn. (2.38)

Basic properties

The following basic properties involving the internal product of tensors hold for any tensors
R, S, T and vectors s, t, u, v:

(i) I : T = tr T.

(ii) R : (S T ) = (ST R) : T = (R T T ) : S.

(iii) u · S v = S : (u ⊗ v).

(iv) (s ⊗ t) : (u ⊗ v) = (s · u)(t · v).

(v) Tij = T : (ei ⊗ ej).

(vi) (u ⊗ v)ij = (u ⊗ v) : (ei ⊗ ej) = ui vj .

(vii) If S is symmetric, then S : T = S : T T = S : sym(T ).

(viii) If S is skew, then S : T = −S : T T = S : skew(T ).

(ix) If S is symmetric and T is skew, then S : T = 0.



ELEMENTS OF TENSOR ANALYSIS 23

2.2.5. INVERSE TENSOR. DETERMINANT

A tensor T is said to be invertible if its inverse, denoted T −1, satisfying

T −1T = T T −1 = I (2.39)

exists.
The determinant of a tensor T, denoted

det T,

is the determinant of the matrix [T ]. A tensor T is invertible if and only if

det T 
= 0. (2.40)

A tensor T is said to be positive definite if

T u · u > 0, ∀ u 
= o. (2.41)

Any positive definite tensor is invertible.

Basic relations involving the determinant and the inverse tensor

Relation (i) below holds for any tensors S and T and relations (ii)–(iv) hold for any invertible
tensors S and T :

(i) det(ST ) = det S det T.

(ii) det T −1 = (det T )−1.

(iii) (ST )−1 = T −1S−1.

(iv) (T −1)
T

= (T T )
−1

.

2.2.6. ORTHOGONAL TENSORS. ROTATIONS

A tensor Q is said to be orthogonal if

QT = Q−1. (2.42)

The set of all orthogonal tensors will be denoted O. The determinant of any orthogonal tensor
equals either +1 or −1. An orthogonal tensor Q with

det Q = 1 (2.43)

is called a proper orthogonal tensor (or a rotation). The set of all proper orthogonal (or
rotation) tensors is the proper orthogonal group. It will be denoted O+. The product

Q1Q2

of any two orthogonal tensors Q1 and Q2 is an orthogonal tensor. If Q1 and Q2 are rotations,
then the product Q1Q2 is also a rotation. For all vectors u and v, an orthogonal tensor Q
satisfies

Qu · Qv = u · v. (2.44)
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Rotations and changes of basis

Let {ei} and {e∗
i } be two orthonormal bases of U. Such bases are related by

e∗
i = R ei, for i = 1, 2, . . . , n, (2.45)

where R is a rotation. Let T and u be, respectively, a tensor and a vector with matrix
representations [T ] and [u] with respect to the basis {ei}. The matrix representations [T ∗]
and [u∗] of T and u relative to the basis {e∗

i } are given by the following products of matrices:

[T ∗] = [R]T [T ] [R ]; [u ∗] = [R]T [u ]. (2.46)

Equivalently, in component form, we have

T ∗
ij = Rki Tkl Rlj , u∗

i = Rji uj . (2.47)

The matrix [R] is given by

[R] =




e1 · e∗
1 e1 · e∗

2 · · · e1 · e∗
n

e2 · e∗
1 e2 · e∗

2 · · · e2 · e∗
n

...
...

. . .
...

en · e∗
1 en · e∗

2 · · · en · e∗
n


, (2.48)

or, in component form,
Rij = ei · e∗

j . (2.49)

Example. A rotation in two dimensions

In two-dimensional space, the rotation tensor has a simple Cartesian representation. Let the
tensor R be a transformation that rotates all vectors of the two-dimensional space by an
(anti-clockwise positive) angle θ. The matrix representation of R reads

[R] =

[
cos θ −sin θ

sin θ cos θ

]
. (2.50)

2.2.7. CROSS PRODUCT

Let us now restrict ourselves to the three-dimensional vector space. In this space, we define
the cross product (or vector product) between two vectors u and v as the vector

w = u × v, (2.51)

whose components are given by
wi = εijk uj vk, (2.52)

where εijk denotes the alternating tensor

εijk =




+1 if {i, j, k} is an even permutation of {1, 2, 3}
−1 if {i, j, k} is an odd permutation of {1, 2, 3}

0 if at least two indices coincide.

(2.53)
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Basic relations with the cross product

Some useful relations involving the cross product are listed in the following:

(i) u × v = −v × u.

(ii) (u × v) · w = (v × w) · u = (w × u) · v.

(iii) u × u = o.

(iv) For any tensor T and a set {u, v, w} of linearly independent vectors,

det T =
(T u × T v) · T w

(u × v) · w . (2.54)

(v) For any skew tensor W , there is a unique vector w, called the axial vector of W ,
such that

W u = w × u. (2.55)

In terms of the Cartesian components of W , the axial vector is expressed as

w = W32 e1 + W13 e2 + W21 e3. (2.56)

The matrix representation of W , reads

[W ] =




0 −w3 w2

w3 0 −w1

−w2 w1 0


, (2.57)

where {wi} are the components of w.

2.2.8. SPECTRAL DECOMPOSITION

Given a tensor T, a non-zero vector u is said to be an eigenvector of T associated with the
eigenvalue (or principal value) ω if

T u = ω u. (2.58)

The space of all vectors u satisfying the above equation is called the characteristic space of
T corresponding to ω. The following properties hold:

(i) The eigenvalues of a positive definite tensor are strictly positive.

(ii) The characteristic spaces of a symmetric tensor are mutually orthogonal.
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Spectral theorem

Let S be a symmetric tensor. Then S admits the representation

S =
n∑

i=1

si ei ⊗ ei, (2.59)

where {ei} is an orthonormal basis for U consisting exclusively of eigenvectors of S and
{si} are the corresponding eigenvalues.† The above representation is called the spectral
decomposition of S. Relative to the basis {ei}, S has the following diagonal matrix
representation

[S ] =



s1 0 · · · 0

0 s2 · · · 0
...

...
. . .

...

0 0 · · · sn


. (2.60)

The direction of an eigenvector ei is called a principal axis or principal direction of S.

Eigenprojections

Alternatively, with p ≤ n defined as the number of distinct eigenvalues of S, we may write

S =
p∑

i=1

si Ei, (2.61)

where the symmetric tensors {Ei} are called the eigenprojections of S. Each eigenprojection
Ei is the orthogonal projection operator on the characteristic space of S associated with si.
The eigenprojections have the property

I =
p∑

i=1

Ei, (2.62)

and, if p = n (no repeated eigenvalues), then

Ei = ei ⊗ ei (2.63)

for i = 1, . . . , n, with no summation implied on i. Also, the eigenprojections satisfy

Ei : Ej = δij , i, j = 1, . . . , p. (2.64)

In closed form, Ei are given by the expression

Ei =




p∏
j=1
j �=i

1
si − sj

(S − sj I) if p > 1

I if p = 1.

(2.65)

†Note that, in the present context, si denotes the eigenvalue of tensor S associated with the unit eigenvector ei.
We remark that this notation is often employed throughout this book and, whenever it is used, si should not be
confused with the Cartesian component of a vector.
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Characteristic equation. Principal invariants

Every eigenvalue si of a tensor S (symmetric or non-symmetric) satisfies the characteristic
equation

det(S − si I ) = 0. (2.66)

Two-dimensional space

In the two-dimensional space, det(S − α I ) can be expressed as

det(S − α I ) = α2 − α I1 + I2, (2.67)

for any α ∈ R, where I1 and I2 are the principal invariants of S, defined as

I1(S) ≡ tr S = Sii

I2(S) ≡ det S = S11S22 − S12S21.
(2.68)

In this case, the characteristic equation reads

s2i − si I1 + I2 = 0. (2.69)

The eigenvalues si are the solutions to this quadratic equation. If S is symmetric, then its
principal invariants can be expressed in terms of its eigenvalues as

I1 = s1 + s2

I2 = s1s2.
(2.70)

Three-dimensional space

In the three-dimensional space, det(S − α I ) has the representation

det(S − α I ) = −α3 + α2 I1 − α I2 + I3, (2.71)

where I1, I2 and I3 are the principal invariants of S, which are now defined by

I1(S) ≡ tr S = Sii

I2(S) ≡ 1
2 [(tr S)2 − tr(S2)] = 1

2 (SiiSjj − SijSji)

I3(S) ≡ det S = 1
6εijkεpqrSipSjqSkr.

(2.72)

The characteristic equation (now a cubic equation), whose solution is the set of eigenvalues
of S, reads

−s3i + s2i I1 − si I2 + I3 = 0. (2.73)

If S is symmetric, then we have

I1 = s1 + s2 + s3

I2 = s1s2 + s2s3 + s1s3

I3 = s1s2s3.

(2.74)
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2.2.9. POLAR DECOMPOSITION

Let F be a positive definite tensor. Then there exist symmetric positive definite tensors U
and V and a rotation R such that

F = R U = V R. (2.75)

The decompositions R U and V R are unique and are called, respectively, the right and left
polar decompositions of F . The symmetric tensors U and V are given by

U =
√

F T F , V =
√

F F T , (2.76)

where
√

(·) denotes the tensor square root of (·). The square root of a symmetric tensor S is
the unique tensor T that satisfies

T 2 ≡ T T = S. (2.77)

With {si} and {ei} denoting, respectively, the eigenvalues and the basis of eigenvectors of
S, the spectral decomposition of its square root, T, reads

T =
∑

i

√
si ei ⊗ ei. (2.78)

Assertions (2.75)–(2.76) are commonly referred to as the Polar Decomposition Theorem.
Note that the rotation R associated with an arbitrary F can be expressed as

R = F U −1 = V −1F . (2.79)

2.3. Higher-order tensors

So far we have seen operations involving scalars, that can be considered as zero-order tensors,
vectors, which can be classed as first-order tensors, and second-order tensors, which are linear
operators on vectors. Linear operators of higher order, or higher-order tensors, are frequently
employed in continuum mechanics. In this section we introduce some basic definitions and
operations involving higher-order tensors.

In fact, in the definition of the cross product in Section 2.2.7, we have already made use
of a higher-order tensor: the third-order alternating tensor whose components are defined
in expression (2.53). The alternating tensor is a linear operator that maps vectors into skew
symmetric tensors. It can be represented as

ε = εijk ei ⊗ ej ⊗ ek, (2.80)

where the tensor product (now the tensor product of three vectors) is defined as the operator
that satisfies

(a ⊗ b ⊗ c) d = (c · d)(a ⊗ b), (2.81)

for arbitrary vectors a, b, c and d. The multiplication of the alternating tensor by a vector v
yields the second-order tensor

ε v = εijkvk ei ⊗ ej . (2.82)

Note that, with the above definitions, expression (2.52) can be equivalently written in compact
form as

w = (ε v) u. (2.83)
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2.3.1. FOURTH-ORDER TENSORS

Fourth-order tensors are of particular relevance in continuum mechanics. A general fourth-
order tensor‡ T can be represented as

T = Tijkl ei ⊗ ej ⊗ ek ⊗ el. (2.84)

Fourth-order tensors map second-order tensors into second-order tensors. They also map
vectors into third-order tensors and third-order tensors into vectors.

As a direct extension of equation (2.81) we define

(a ⊗ b ⊗ c ⊗ d)e = (e · d)(a ⊗ b ⊗ c), (2.85)

and the double contractions

(a ⊗ b ⊗ c ⊗ d) : (e ⊗ f) = (c · e)(d · f)(a ⊗ b),

(a ⊗ b ⊗ c ⊗ d) : (e ⊗ f ⊗ g ⊗ h) = (c · e)(d · f)(a ⊗ b ⊗ g ⊗ h),
(2.86)

for arbitrary vectors a, b, c, d, e and f. With the above definitions, the following relations
are valid:

(i) Tijkl = (ei ⊗ ej) : T : (ek ⊗ el).

(ii) T u = Tijkl ul ei ⊗ ej ⊗ ek.

(iii) T : S = Tijkl Skl ei ⊗ ej .

(vi) S : T = Tklij Skl ei ⊗ ej .

(v) T : S = Tijmn Smnkl ei ⊗ ej ⊗ ek ⊗ el.

Symmetry

We shall call symmetric any fourth-order tensor that satisfies

S : T : U = (T : S) : U , (2.87)

for any second-order tensors S and U . This definition is analogous to that of symmetric
second-order tensors. The Cartesian components of symmetric fourth-order tensors satisfy
the major symmetries

Tijkl = Tklij . (2.88)

It should be noted that other symmetries are possible in fourth-order tensors. If symmetry
occurs in the last two indices, i.e. if

Tijkl = Tijlk, (2.89)

the tensor has the properties

T : S = T : ST , S : T = (S : T)T , (2.90)

for any S. If it is symmetric in the first two indices,

Tijkl = Tjikl, (2.91)

then,
T : S = (T : S)T , S : T = ST : T. (2.92)

‡Fourth-order tensors are represented in this text by bold face upright sans serif fonts.
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Change of basis transformation

Again, let us consider the orthonormal basis {e∗
i } defined as

e∗
i = Rei, (2.93)

with R a rotation. The components T∗
ijkl of a tensor T relative to the basis defined by {e∗

i }
are given by

T∗
ijkl = RmiRnjRpkRql Tmnpq, (2.94)

where Tmnpq are the components relative to {ei}.

2.3.2. GENERIC-ORDER TENSORS

Generic tensors of order m are defined as

T = Ti1i2···im (ei1 ⊗ ei2 ⊗ · · · ⊗ eim), (2.95)

where, extending the previous definitions of the tensor product, we have

(ei1 ⊗ ei2 ⊗ · · · ⊗ eim)u = (u · eim)(ei1 ⊗ ei2 ⊗ · · · ⊗ eim−1), (2.96)

for all u ∈ U. The definition of contraction operations is completely analogous to that seen
above for fourth-order tensors.

2.4. Isotropic tensors

A tensor is said to be isotropic if its components are invariant under any change of basis.

2.4.1. ISOTROPIC SECOND-ORDER TENSORS

A second-order tensor, T, is isotropic if

[T ] = [R][T ][R]T (2.97)

for any rotation R. Spherical tensors, i.e. tensors represented as

αI,

with scalar α, are the only second-order isotropic tensors.

2.4.2. ISOTROPIC FOURTH-ORDER TENSORS

A fourth-order tensor, T, is isotropic if

Tijkl = RmiRnjRpkRqlTmnpq, (2.98)

for any rotation R.
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Any isotropic fourth-order tensor, U, can be represented as a linear combination of three
basic isotropic tensors: I, IT and (I ⊗ I ), i.e.

U = α I + β IT + γ (I ⊗ I ), (2.99)

where α, β and γ are scalars. The tensor I is called the fourth-order identity, given in
component form as

Iijkl = δikδjl. (2.100)

For any second-order tensor T, the fourth-order identity satisfies

I : T = T : I = T, (2.101)

and, for any fourth-order tensor, T, we have

I : T = T : I = T. (2.102)

The tensor IT is the transposition tensor. It maps any second-order tensor onto its trans-
pose, i.e.

IT : S = S : IT = ST , (2.103)

for any S. The components of IT are

(IT )ijkl = δilδjk. (2.104)

Finally, the tensor (I ⊗ I ) has components

(I ⊗ I)ijkl = δijδkl. (2.105)

When multiplying any tensor T it gives

(I ⊗ I ) : T = (tr T ) I. (2.106)

Another important isotropic tensor that frequently appears in continuum mechanics is the
tensor defined as

IS = 1
2 ( I + IT ). (2.107)

This tensor maps any second-order tensor into its symmetric part, i.e.

IS : T = T : IS = sym(T ). (2.108)

Obviously, for any symmetric S,
IS : S = S. (2.109)

We shall refer to this tensor as the symmetric projection or symmetric identity. Its Cartesian
components are

(IS)ijkl = 1
2 (δikδjl + δilδjk). (2.110)
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2.5. Differentiation

2.5.1. THE DERIVATIVE MAP. DIRECTIONAL DERIVATIVE

Let X and Y be finite-dimensional normed vector spaces and let a function Y be defined as
Y : D ⊂ X → Y, where the domain D of Y is an open subset of X.

The function Y is said to be differentiable at an argument X0 ∈ D if there exists a linear
transformation DY(X0) : X → Y such that as U ∈ X approaches zero (the zero element
of X ),

Y(X0 + U) = Y(X0) + DY(X0) [U ] + o(U), (2.111)

where
DY(X0) [U ]

denotes a linear transformation on U , represented in abstract notation, and

o(U)

is a term that approaches zero faster than U , i.e.

lim
U→0

‖o(U)‖
‖U‖ = 0. (2.112)

If the linear map DY(X0) exists, it is unique and is called the derivative of Y at X0. The
derivative satisfies

DY(X0) [U ] = lim
ε→0
ε∈R

1
ε
[Y(X0 + ε U) − Y(X0)] =

d
dε

Y(X0 + ε U)
∣∣∣∣
ε=0

, (2.113)

for each U ∈ X. For a given U , the term DY(X0) [U ] is called the directional derivative of
Y (at X0) in the direction of U .

2.5.2. LINEARISATION OF A NONLINEAR FUNCTION

The function L : D ⊂ X → Y, defined as

L(U) ≡ Y(X0) + DY(X0) [U ] (2.114)

is the called the linearisation of Y about X0, that is, it is the linear approximation to Y
at X0. Note by observing (2.111) that the function defined in (2.114) corresponds indeed to
the approximation to Y that ignores all higher-order (nonlinear) terms in U .

2.5.3. THE GRADIENT

Since the derivative is a linear transformation between finite-dimensional spaces, it can be
represented as

DY(X0) [U ] = ∇Y(X0) ∗ U , (2.115)

where ∇Y(X0) is the gradient of Y at X0 and the symbol ‘∗’ denotes an appropriate product
operation.
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We remark that throughout this text we shall use the term derivative also as a synonym for
gradient. We will also use the notation

dY
dX

to denote the gradient and when Y is a function of two or more arguments, we may use the
notation

∂Y
∂X

to emphasise that the derivative is taken with respect to X having the other function arguments
as parameters.

Example. A scalar function

The above concepts are probably better understood by applying them to the trivial case of a
scalar function of a scalar argument. Let us consider the function (Figure 2.1)

y(x) ≡ x2. (2.116)

In the present case, (2.111) reads

y(x0 + u) = y(x0) + Dy(x0) [u] + o(u)

= x20 + 2x0u + u2. (2.117)

We can then identify
o(u) = u2. (2.118)

Note that, indeed, this term vanishes faster than u, i.e.

lim
u→0

|o(u)|
|u| = lim

u→0
u2

|u| = 0. (2.119)

In addition, we have
Dy(x0) [u] = 2x0u. (2.120)

Thus, by comparing the above expression with (2.115), the gradient of y can be promptly
identified as

∇y(x0) = 2x0, (2.121)

and the product ‘∗’ is identified with the standard product between scalars. With the above
and (2.114), we find that the linearisation of y about x0 in the present case reads

l(u) ≡ y(x0) + ∇y(x0)u = x20 + 2x0u. (2.122)

2.5.4. DERIVATIVES OF FUNCTIONS OF VECTOR AND TENSOR ARGUMENTS

Let us now consider some simple illustrative examples of derivatives of functions whose
arguments and/or values may be scalar, vectors or tensors.
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Figure 2.1. Function derivative and linearisation.

Scalar function of vector argument

We start with the scalar function of a vector argument defined by

y(x) ≡ x · x = xixi. (2.123)

In this case, we have
y(x + u) = x · x + 2x · u + o(u) (2.124)

where o(u) = u · u. It then follows that

Dy(x) [u] = 2x · u, (2.125)

and the gradient ∇y can be identified as the vector

∇y(x) = 2x. (2.126)

The generic product operation indicated in (2.115) becomes the internal product between
vectors in the present case. We may alternatively use the notation

dy

dx
= 2x, (2.127)

or, in component form, (
dy

dx

)
i

=
dy

dxi
= 2xi. (2.128)

Scalar function of a tensor argument

Now consider the internal product between tensors

y(X) ≡ X : X = XijXij . (2.129)
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We have

y(X + U) = X : X + 2X : U + U : U

= y(X) + Dy(X) [U ] + o(U ). (2.130)

The gradient – a second-order tensor in this case – can be immediately identified as

∇y(X) = 2X, (2.131)

or, in component form,

(∇y)ij =
dy

dXij
= 2 Xij . (2.132)

Tensor function of a tensor argument

We now determine the derivative of the square of a tensor

Y (X) ≡ X2 = XX . (2.133)

This tensor-value function is equivalently expressed in component form as

Yij ≡ XikXkj . (2.134)

To obtain its derivative, we write

Y (X + U) = XX + XU + UX + UU

= Y (X) + DY (X) [U ] + o(U ). (2.135)

The derivative in this case is a linear mapping between second-order tensors and can be
identified as the fourth-order tensor ∇Y (X) that satisfies

∇Y (X) : U = DY (X) [U ] = XU + UX (2.136)

for any U . The Cartesian components of ∇Y can be easily found to be given by

(∇Y )ijkl = Xikδjl + Xljδik. (2.137)

Some useful relations

We list below (without proof) some basic expressions for derivatives relevant to theoretical
and computational mechanics applications:

(i) y(x) ≡ ‖x‖,

Dy(x) [u] =
x

‖x‖ · u

d‖x‖
dx

=
x

‖x‖ .

(2.138)
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(ii) y(X) ≡ ‖X‖,

Dy(X) [U ] =
X

‖X‖ : U

d‖X‖
dX

=
X

‖X‖ .

(2.139)

(iii) y(X) ≡ det X ,
Dy(X) [U ] = (det X) X−T : U

d
dX

det X = (det X) X−T .
(2.140)

(iv) Y (x) ≡ a ⊗ x (with constant a),

DY (x) [u] = (a ⊗ I) · u
d

dx
(a ⊗ x) = a ⊗ I.

(2.141)

(v) Y (x) ≡ x ⊗ x,
DY (x) [u] = (I ⊗ x + x ⊗ I) · u

d
dx

(x ⊗ x) = I ⊗ x + x ⊗ I.
(2.142)

(vi) Y (X) ≡ X ,
DY (X) [U ] = U

d
dX

X = I.
(2.143)

(vii) Y (X) ≡ X−1,

DY (X) [U ] = −X−1UX−1 = D : U ; Dijkl = −X−1
ik X−1

lj

d
dX

(X−1) = D.
(2.144)

2.5.5. THE CHAIN RULE

Let the function Y : D ⊂ X → Y be defined as the composition

Y(X) = W(Z(X))

of two differentiable functions

Z : D ⊂ X → Z and W : C ⊂ Z → Y.

The derivative of Y satisfies

DY(X) [U ] = DW(Z(X)) [DZ(X) [U ]]

for all U ∈ X.
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2.5.6. THE PRODUCT RULE

Let us consider a function Y : D ⊂ X → Y defined as

Y(X) = W(X) ∗ Z(X)

where the symbol ‘∗’ denotes a generic product between functions W : D ⊂ X → W and
Z : D ⊂ X → Z. If W and Z are vectors, for instance, this product could be the internal or
tensor product between vectors. If W is a fourth-order tensor and Z is a second-order tensor,
‘∗’ could be the double contraction operation, and so on. If W and Z are differentiable at an
argument X, then so is Y and

DY(X) [U ] = W(X) ∗ DZ(X) [U ] + DW(X) [U ] ∗ Z(X).

2.5.7. THE DIVERGENCE

Let v : D ⊂ E → U be a smooth vector field on D. The divergence of v is the scalar field
defined as

div v = tr(∇v) =
∂vi

∂xi
. (2.145)

Now let T be a smooth second-order tensor field on D. The divergence of T is the vector
field, denoted div T, that satisfies

(div T ) · u = div(T T u), ∀ u ∈ U. (2.146)

In Cartesian components, we have

(div T )i =
∂Tij

∂xj
. (2.147)

The divergence theorem

Let B ⊂ E be a closed region with piecewise smooth boundary ∂B and let α, v and T be
smooth scalar, vector and tensor-valued fields on B, respectively. Then,∫

∂B
α n da =

∫
B
∇α dv,

∫
∂B

v · n da =
∫

B
div v dv,

∫
∂B

T n da =
∫

B
div T dv,

(2.148)

where n is the field of unit outward normal vectors on ∂B.
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2.5.8. USEFUL RELATIONS INVOLVING THE GRADIENT AND THE DIVERGENCE

Let α and T be, respectively, smooth scalar and tensor fields on D ⊂ E and let u and v be
smooth vector fields on D. The following useful relations hold:

(i) ∇(αu) = α ∇u + u ⊗∇α.

(ii) div(αu) = α div u + u · ∇α.

(iii) ∇(u · v) = (∇v)T u + (∇u)T v.

(iv) div(u ⊗ v) = u div v + (∇u)v.

(v) div(T u) = T T : ∇u + u · div T T .

(vi) div(α T ) = α div T + T ∇α.

The proof of the above relations is given in Gurtin (1981).

2.6. Linearisation of nonlinear problems

The linearisation of nonlinear problems plays a crucial role in theoretical and computational
mechanics. An interesting presentation of the theory of linearisation is provided by Marsden
and Hughes (1983) within a rather general mathematical framework and by Hughes and
Pister (1978) within the context of solid mechanics problems. In theoretical continuum
mechanics, the concept of linearisation is essential in the derivation of linear approximations
to general nonlinear theories. In computational mechanics, on the other hand, the interest in
linearisation stems mostly from the fact that numerical solutions to nonlinear problems are
usually obtained by algorithms which require the solution of a sequence of linearised (or
approximately linearised) problems. A typical example is the well-known Newton–Raphson
iterative scheme, which is extensively exploited in the finite element framework described
later in this book.

2.6.1. THE NONLINEAR PROBLEM AND ITS LINEARISED FORM

Let Y : D ⊂ X → Y be a generic nonlinear function. Our generic nonlinear problem consists
in finding X ∈ D such that

Y(X) = 0. (2.149)

The linearisation of the problem defined by equation (2.149) about an arbitrary point X0 ∈ D
at which Y is differentiable consists in finding U ∈ D such that

L(U) ≡ Y(X0) + DY(X0) [U ] = 0, (2.150)

where L(U) is the linearisation of Y at X0.
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Figure 2.2. Linearisation of a nonlinear equation.

Example. The scalar case

To illustrate the above concept, let us again appeal to the case of a scalar function of a
single scalar argument, y(x) ≡ x2, and consider the trivial root-finding problem (refer to the
graphical illustration of Figure 2.2) defined by the equation

y(x) = 0. (2.151)

This is obviously a particularisation of the general nonlinear problem (2.149). In the present
case, the generic linearised problem (2.150) takes the form of the following scalar equation
for u at an arbitrary argument x0:

l(u) ≡ y(x0) + ∇y(x0) u = x20 + 2x0u = 0. (2.152)

2.6.2. LINEARISATION IN INFINITE-DIMENSIONAL FUNCTIONAL SPACES

So far, the discussion on differentiation and linearisation has been restricted to mappings
between finite-dimensional vector spaces. It is important to emphasise that such concepts
are equally applicable to the more general case where Y is a mapping between infinite-
dimensional functional spaces.§ Of particular interest in computational mechanics is the case
when Y is a functional, i.e. a scalar-valued function of a function. Linearisation of problems
involving functions of this type (such as the virtual work functional) are of paramount
importance in the computational solution of nonlinear solid mechanics boundary value
problems and will be discussed later in this book. Here, we describe a much simpler example
whose purpose is only to familiarise the reader with the concept.

§The precise definition of such spaces falls outside the scope of the present text. The more interested reader is
referred to Marsden and Hughes (1983) where the concept of linearisation is introduced in the context of mappings
between Banach spaces.
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A simple example

Let X now be a space of sufficiently smooth¶ functions x : R n → R. We define a functional
y : X → R as

y(x) ≡
∫
Ω

sin(x(p)) dp, (2.153)

where Ω ⊂ R n is a given integration domain. Linearisation of the above functional about a
given argument (function) x0 is the following generalisation of (2.114):

l(u) = y(x0) + Dy(x0) [u] =
∫
Ω

sin(x0(p)) dp + Dy(x0) [u], (2.154)

where the directional derivative Dy(x0) [u] is now a linear transformation on the function
u ∈ X and can be determined by direct generalisation of (2.113):

Dy(x0) [u] =
d
dε

y(x0 + εu)
∣∣∣∣
ε=0

=
d
dε

∫
Ω

sin(x0(p) + ε u(p)) dp

∣∣∣∣
ε=0

=
∫
Ω

cos(x0(p)) u(p) dp. (2.155)

From the above, the linearisation of the functional (2.153) at x0 is then established as

l(u) =
∫
Ω

sin(x0(p)) dp +
∫
Ω

cos(x0(p)) u(p) dp. (2.156)

¶To avoid a precise statement of regularity properties of functions, we frequently use the term sufficiently smooth
in the present text, meaning that functions have a sufficient degree of regularity so that all operations in which they
are involved are properly defined.



3 ELEMENTS OF CONTINUUM
MECHANICS AND
THERMODYNAMICS

THIS chapter reviews some basic concepts of mechanics and thermodynamics of contin-
uous media. The definitions and notation introduced will be systematically employed

throughout the subsequent chapters of this book. The material presented here is well
established in the continuum mechanics literature and an effort has been made to follow
the notation and nomenclature in use in standard textbooks (Billington and Tate, 1981; Bonet
and Wood, 1997; Ciarlet, 1988; Gurtin, 1981; Lemaitre and Chaboche, 1990; Ogden, 1984;
Spencer, 1980; Truesdell and Noll, 1965).

3.1. Kinematics of deformation

Let B be a body which occupies an open region Ω of the three-dimensional Euclidean space
E with a regular boundary ∂Ω in its reference configuration. A deformation of B (Figure 3.1)
is defined by a smooth one-to-one function

ϕ : Ω → E

that maps each material particle† p of B into a point

x = ϕ(p) (3.1)

where the particle is positioned in the deformed configuration of B. The region of E occupied
by B in its deformed configuration will be denoted

ϕ(Ω).

The vector field u(p), defined by

u(p) = ϕ(p) − p, (3.2)

is the displacement of p. Thus, one may write

x = p + u(p). (3.3)

†For convenience, material particles of B will be identified with their positions in the reference configuration
of B.

Computational Methods for Plasticity: Theory and Applications EA de Souza Neto, D Perić and DRJ Owen
c© 2008 John Wiley & Sons, Ltd
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A rigid deformation of B is a deformation that preserves the distances between all
material particles of B. A rigid deformation (Figure 3.2) can be a translation, a rotation,
or a combination of a translation and a rotation. A rigid translation is a deformation with
constant displacement vector (u independent of p):

ϕ(p) = p + u. (3.4)

A rigid rotation is a deformation that can be expressed as

ϕ(p) = q + R (p − q), (3.5)

where R is a proper orthogonal tensor (a rotation) and q is the point about which B is
rotated. A deformation is rigid, including translations and/or rotations, if and only if it can be
expressed in the form:

ϕ(p) = ϕ(q) + R (p − q). (3.6)

The deformation map above represents a rigid translation with displacement ϕ(q) − q
superimposed on a rigid rotation R about point q.

A time-dependent deformation of B is called a motion of B. A motion (Figure 3.3) is
defined by a function

ϕ : Ω × R → E,
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so that for each time t, the map ϕ(·, t) is a deformation of B. The deformation map at time t
will be also denoted ϕt. During the motion ϕ, the position x of a material particle p at time
t is given by

x = ϕ(p, t). (3.7)

Similarly,
ϕ(Ω, t)

will denote the region of E occupied by the body B at time t. In terms of the displacement
field the motion is expressed as

ϕ(p, t) = p + u(p, t). (3.8)

The parametric curve c(t), defined as

c(t) = ϕ(p, t) (3.9)

for a fixed material point p, describes the trajectory of p during the motion of B.
During a motion ϕ, the velocity of a material particle p is defined by

ẋ(p, t) =
∂ϕ(p, t)

∂t
. (3.10)

Since at each time t the map ϕ(·, t) is one-to-one (and hence invertible) by assumption,
material points can be expressed in terms of the place they occupy at a time t as

p = ϕ−1(x, t) = x − u(ϕ−1(x, t), t). (3.11)

The map ϕ−1 is called the reference map. Using the reference map, one may define the
function

v(x, t) ≡ ẋ(ϕ−1(x, t), t). (3.12)

The field v is called the spatial velocity and gives the velocity of the material particle
positioned at x at time t.
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A rigid motion of B is a motion for which, at each time t, the map ϕ(·, t) is a rigid
deformation. A motion ϕ is rigid if and only if at each time t, the spatial velocity v admits
the representation

v(x, t) = v(y, t) + W (t) (x − y) (3.13)

for all x, y ∈ ϕ(Ω, t), with W (t) a skew tensor. The velocity at x is given as the sum of a
uniform velocity v(y, t) and a superimposed rotation about the line that passes through y and
is parallel to the axial vector associated to the skew tensor W . By denoting w(t) the axial
vector of W (t), the velocity field above can be re-written as

v(x, t) = v(y, t) + w(t) × (x − y), (3.14)

which is the standard formula for the velocity field of classical rigid-body dynamics. The
vector w(t) is called the angular velocity of the body. The rigid velocity field is schematically
illustrated in Figure 3.4.

3.1.1. MATERIAL AND SPATIAL FIELDS

Both fields ẋ and v introduced above describe the velocity of material particles. However,
ẋ and v have different arguments. While ẋ has material particle and time as arguments, the
arguments of v are spatial position and time. This motivates the following definitions: Let
a general time-dependent (scalar, vectorial or tensorial) field α be defined over the body B.
If the domain of α is Ω × R, i.e. if the value of α is expressed as a function of material
particles p (and time) then α is said to be a material field. On the other hand, if its domain
is ϕt(Ω) × R, then α is said to be a spatial field. Using (3.7), the material description of a
spatial field α(x, t) is defined by

αm(p, t) = α(ϕ(p, t), t). (3.15)

Conversely, the spatial description of a material field β(p, t) is defined by

βs(x, t) = β(ϕ−1(x, t), t). (3.16)

It should be noted that any field associated with a motion of B can be expressed as a
function of time and material particles or spatial position. A material (spatial) field does
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not necessarily represent a quantity physically associated with the reference (deformed)
configuration of the body.

Example 3.1.1. Consider, for instance, the rectangular body of Figure 3.5 subjected to the
rigid translation:

x = ϕ(p, t) ≡ p + t v,

with constant velocity v. Assume that, during the motion ϕ, the temperature field of the
body in question is linearly distributed along its longitudinal axis and varies uniformly
throughout the body at a constant rate. Taking the initial configuration (at t = 0) as the
reference configuration (and, therefore, labelling material particles of the body with their
position p at time 0), the material description of this temperature field reads

θm(p, t) = a + b p1 + c t,

where a, b and c are constants. In view of the assumed motion ϕ, the spatial description of
the same field is given by

θs(x, t) = θm(p(x, t), t) = a + b(x1 − t v1) + c t.

Note that, in spite of having p as one of its arguments, θm (as θs) expresses a physical quantity
associated with the configuration of time t. The spatial description θs gives the temperature,
at time t, of the material particle whose position at time t is x. In experimental terms, it would
be the temperature read from a thermometer held fixed in space at x. The function θm gives
the temperature, at time t, of the material particle whose position at time 0 is p. It would be
the temperature indicated by a thermometer attached to this material particle.

To avoid notational complexity, the subscripts m and s employed above to denote the
material and spatial descriptions of general fields will not be used throughout this book unless
absolutely necessary. In general, the description employed will be evident either from the
context or from the argument used (p or x).
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3.1.2. MATERIAL AND SPATIAL GRADIENTS, DIVERGENCES AND TIME
DERIVATIVES

The material and spatial gradients of a general field α, denoted respectively ∇pα and ∇xα,
are defined as

∇pα =
∂

∂p
αm(p, t), ∇xα =

∂

∂x
αs(x, t), (3.17)

i.e. they are, respectively, the derivatives of α with respect to p and x holding t fixed.
Similarly, the material and spatial time derivatives of α, denoted respectively α̇ and α′,

are defined by

α̇ =
∂

∂t
αm(p, t), α′ =

∂

∂t
αs(x, t). (3.18)

The material time derivative α̇ measures the rate of change of α at a fixed material particle p.
The spatial time derivative, on the other hand, measures the rate of change of α observed at a
fixed spatial position x. In the example of Figure 3.5, the material and spatial time derivatives
of the temperature field θ are given by

θ̇ = c, θ′ = −b v1 + c.

The material time derivative in this case corresponds to the temperature rate computed from
a thermometer attached to a material particle p whilst θ′ is the temperature rate observed
in a thermometer held fixed in space at x. Note that the extra term −b v1 added to θ′ is
a contribution to the rate of change of temperature at x due to the motion of the body
combined with its non-uniform distribution of temperature. This contribution vanishes if the
body moves parallel to e2 (v1 = 0), i.e. the direction of temperature isolines. It would also
vanish if the temperature were uniform throughout the body (b = 0).

Analogously to (2.145) (page 37), we define the spatial and material divergence of a vector
field v, respectively, as

divp v = tr(∇pv), divx v = tr(∇xv). (3.19)

In addition (refer to (2.147)), for a tensor field T, the spatial and material divergence are
given, in Cartesian components, by

(divx T )i =
∂Tij

∂xj
, (divp T )i =

∂Tij

∂pj
. (3.20)

The compact definition (2.146) is also applicable to the material and spatial divergence of a
tensor.

3.1.3. THE DEFORMATION GRADIENT

The deformation gradient of the motion ϕ is the second-order tensor F defined by

F (p, t) = ∇pϕ(p, t) =
∂xt

∂p
. (3.21)

In view of (3.8) it can be written as

F = I + ∇pu. (3.22)
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Figure 3.6. The deformation gradient.

The Cartesian components of F are given by

Fij =
∂xi

∂pj

= δij +
∂ui

∂pj
, (3.23)

where xi denote the components of xt. In terms of the reference map (3.11), the deformation
gradient may be equivalently expressed as

F (x, t) = [∇xϕ−1(x, t)]−1 = [I −∇xu]−1. (3.24)

Consider the infinitesimal material fibre dp that connects two neighbouring material
particles p and p + dp of a deforming body (Figure 3.6). Under the deformation ϕt, these
particles are mapped, respectively, into x and x + dx. The deformation gradient is the linear
operator that relates infinitesimal material fibres dp with their deformed counterparts dx:

dx = F dp. (3.25)

A deformation of B with uniform deformation gradient (F independent of p) is called
a homogeneous deformation. A deformation is homogeneous if and only if it admits the
representation

ϕ(p) = ϕ(q) + F (p − q) (3.26)

for all points p, q ∈ B, with F a positive definite tensor. Clearly, rigid translations and
rotations are homogeneous deformations.

3.1.4. VOLUME CHANGES. THE DETERMINANT OF THE DEFORMATION
GRADIENT

Consider now the infinitesimal volume dv0 defined by the infinitesimal vectors da, db and dc
emanating from the material particle p in the reference configuration (Figure 3.7). Trivially,



48 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APPLICATIONS

p
da

reference
configuration

db

dc

t

F daxF db

F dc

dv0

dv = det[F] dv0

t

Figure 3.7. The determinant of the deformation gradient.

one has
dv0 = (da × db) · dc. (3.27)

The deformation ϕt maps the infinitesimal vectors, respectively, into F da, F db and F dc,
so that the deformed infinitesimal volume is given by

dv = (F da × F db) · F dc. (3.28)

By making use of identity (2.54), it follows that

det F =
dv

dv0
, (3.29)

i.e. the determinant of the deformation gradient represents, locally, the volume after defor-
mation per unit reference volume (or volume change ratio). Throughout this book, we will
adopt the following notation

J ≡ det F . (3.30)

From (3.29) it follows that if det F = 0, then the infinitesimal volume has collapsed
into a material particle. Since the body is not allowed to penetrate itself (this restriction
is embodied in the assumption that the deformation map is one-to-one), this represents a
physically unacceptable situation. Also note that, at the reference configuration, F = I and,
consequently, J = 1. Thus, a configuration with J < 0 cannot be reached from the reference
configuration without having, at some stage, J = 0. Therefore, in any deformed configuration
of a body, J satisfies

J > 0. (3.31)

Isochoric deformations

Isochoric (or volume-preserving) deformations are deformations that do not produce changes
in volume. A locally isochoric deformation is characterised by

J = 1. (3.32)
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Volumetric deformations

Volumetric deformations (i.e. pure contractions/dilations) are deformations consisting purely
of a uniform contraction/dilation in all directions. The deformation gradient of any volumetric
deformation is a spherical tensor:

F = α I, (3.33)

where the scalar α is the corresponding contraction/dilation ratio. With l0 and l denoting,
respectively, the undeformed and deformed lengths of a material fibre, for a locally volumetric
deformation we have:

l

l0
= α (3.34)

in all directions.

3.1.5. ISOCHORIC/VOLUMETRIC SPLIT OF THE DEFORMATION GRADIENT

Any deformation can be locally decomposed as a purely volumetric deformation followed
by an isochoric deformation or as an isochoric deformation followed by a pure volumetric
deformation. To see this, note that the deformation gradient can always be multiplicatively
split as

F = F iso F v = F v F iso, (3.35)

where
F v ≡ (det F )

1
3 I (3.36)

is the volumetric component of F and

F iso ≡ (det F )−
1
3 F (3.37)

is the isochoric (volume-preserving or unimodular) component. Note that, by construction,
F v corresponds indeed to a purely volumetric deformation (it has the representation (3.33))
and, since

det F v = [(det F )
1
3 ]3 det I = det F , (3.38)

F v produces the same volume change as F . The isochoric component in turn represents a
volume preserving deformation, that is,

det F iso = [(det F )−
1
3 ]3 det F = 1. (3.39)

3.1.6. POLAR DECOMPOSITION. STRETCHES AND ROTATION

By applying the polar decomposition to the deformation gradient, one obtains:

F = R U = V R, (3.40)

where the proper orthogonal tensor R is the local rotation tensor and the symmetric positive
definite tensors U and V are, respectively, the right and left stretch tensors. The right and left
stretch tensors are related by the rotation

V = R URT . (3.41)
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Figure 3.8. Polar decomposition of the deformation gradient. Stretches and rotation.

The stretch tensors U and V can be expressed as

U =
√

C, V =
√

B, (3.42)

where C and B – named, respectively, the right and left Cauchy–Green strain tensors – are
defined by

C = U2 = F TF , B = V 2 = F F T . (3.43)

Example 3.1.2 (A simple plane deformation). To illustrate the meaning of the polar
decomposition of F , a simple example consisting of a body subjected to a homogeneous
deformation, i.e. with F independent of p, is given in what follows. Consider the rectangular
body of Figure 3.8 subjected to homogeneous stretching/compression in the directions of its
longitudinal and transversal axes (respectively, the directions of i1 and i2 in the reference
configuration) with a superimposed rigid rotation of angle α. With pi and xi denoting
coordinates of p and x in the Cartesian system associated with the orthonormal basis {i1, i2},
the deformation map is defined as

ϕ :

{
x1 = p1 λ1 cos α − p2 λ2 sin α

x2 = p1 λ1 sin α + p2 λ2 cos α,
(3.44)

where the factors λ1 and λ2 determine how much stretching/compression occurs, respec-
tively, along the longitudinal and transversal axes. In the basis {i1, i2}, the matrix represen-
tation of the corresponding deformation gradient is given by

F =

[
λ1 cos α −λ2 sin α

λ1 sin α λ2 cos α

]
. (3.45)
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The rotation tensor, obtained from the polar decomposition of F , is represented by

R =

[
cos α −sin α

sin α cos α

]
(3.46)

and the right and left stretch tensors by

U =

[
λ1 0

0 λ2

]
(3.47)

and

V =


λ1 cos2 α + λ2 sin2 α (λ1 − λ2) sin α cos α

(λ1 − λ2) sin α cos α λ1 sin2 α + λ2 cos2 α


. (3.48)

Insight into the meaning of the polar decomposition of the deformation gradient can be gained
by focusing now on the generic infinitesimal fibre represented by dp in Figure 3.8. Under
deformation, dp is mapped into dx = F dp. With use of the polar decomposition of F , this
mapping can be split into two sequential steps. If the right polar decomposition F = R U is
used, the two steps are:

1. dp −→ U dp,

2. U dp −→ R (U dp) = F dp.

In the first operation, dp deforms as if the body were being purely stretched (or compressed)
along the directions of its longitudinal and transversal axes (which at this stage coincide with
i1 and i2 respectively). The second mapping is a pure rotation (of angle α) of the deformed
fibre U dp and corresponds to a rigid rotation of the body. If the left polar decomposition
F = V R is employed instead, the sequence is reversed:

1. dp −→ R dp,

2. R dp −→ V (R dp) = F dp.

In this case, the fibre is first rigidly rotated by an angle α. The second operation corresponds
to the deformation of the fibre under pure stretching/compression of the body along its axial
and transversal directions. However, due to the previous rotation, these directions coincide
now with i∗1 = R i1 and i∗2 = R i2, respectively. Note that if the basis {i∗1, i∗2} is used, the
matrix representation of V reads

V =

[
λ1 0

0 λ2

]
, (3.49)

so that the transformation (·) → V (·) indeed corresponds to stretchings along the directions
of i∗1 and i∗2.

The above example has illustrated the significance of the polar decomposition of F . The
discussion has been restricted to a homogeneous deformation only to ease visualisation of the
stretches and rotation involved in the decomposition of the deformation gradient. It should be
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remarked that for a generic deformation of a body, in which F is a function of p, intermediate
configurations of the body corresponding to pure stretching or pure rigid rotation (such as
those illustrated in Figure 3.8) do not exist in general. Nevertheless, the interpretation of U
and V as pure stretchings and of R as a rigid rotation remain valid in a local sense. Note that
for any deformation ϕ, one may write:

x + dx = ϕ(p + dp) = p + F (p) dp, (3.50)

that is, within an infinitesimal neighbourhood of a material point p, the deformation
behaves like a homogeneous deformation with gradient F (p). Thus, within this infinitesimal
neighbourhood of p, U(p) and V (p) measure stretches from p and R(p) measures the local
rigid rotation.

Spectral decomposition of the stretch tensors

Since U and V are symmetric, it follows from the spectral theorem that they admit the
spectral decomposition

U =
3∑

i=1

λi li ⊗ li, V =
3∑

i=1

λi ei ⊗ ei, (3.51)

where the {λ1, λ2, λ3} are the eigenvalues of U (and V ) named the principal stretches.
The vectors li and ei are unit eigenvectors of U and V respectively. The triads {l1, l2, l3}
and {e1, e2, e3} form orthonormal bases for the space U of vectors in E. They are called,
respectively, the Lagrangian and Eulerian triads and define the Lagrangian and Eulerian
principal directions.

Substitution of (3.41) into (3.51) gives the following relationship between the eigenvectors
of V and U :

li = R ei, (3.52)

that is, each vector ei differs from the corresponding li by a rotation R.
The spectral decomposition of the right and left stretch tensors implies that in any deforma-

tion, the local stretching from a material particle can always be expressed as a superposition
of stretches along three mutually orthogonal directions. In the example discussed above,
illustrated by Figure 3.8, {λ1, λ2} are the principal stretches and the Lagrangian and Eulerian
bases are, respectively, {i1, i2} and {i∗1, i∗2}.

3.1.7. STRAIN MEASURES

In the above section, we have seen that in a local sense, i.e. within an infinitesimal
neighbourhood of a generic material particle p, pure rotations can be distinguished from
pure stretching by means of the polar decomposition of the deformation gradient. Under the
action of pure rotations, the distances between particles within this neighbourhood remain
fixed. When the distances between material particles are identical to their values in the
reference configuration, we say that the region surrounding p is unstrained. In this case,
the difference between the deformed neighbourhood of p and its reference configuration is a
rigid deformation. Pure stretching, on the other hand, characterised by U or V, changes the
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distance between material particles. Under stretching, we say that the region surrounding p
is strained. To quantify straining, i.e. to evaluate how much U (or V ) departs from I (a rigid
deformation), some kind of strain measure needs to be defined.

Let us consider, again, the generic material fibre represented by the infinitesimal vector
dp that emanates from p (Figure 3.8 serves as an illustration). The deformation maps dp into
dx = F dp. Thus, the square of the deformed length of the material fibre in question reads

‖dx‖2 = F dp · F dp = C dp · dp = (I + 2 E(2)) dp · dp, (3.53)

where C = F T F = U 2 is the right Cauchy–Green tensor and the strain measure E(2) (the
meaning of the superscript will be made clear below) is the so-called Green–Lagrange strain
tensor defined as

E(2) = 1
2 (C − I )

= 1
2 [∇pu + (∇pu)T + (∇pu)T∇pu]. (3.54)

No straining occurs, that is, the size of any infinitesimal material fibre emanating from
p remains constant (‖dx‖ = ‖dp‖, ∀ dp), if and only if E(2) = 0. This condition is
equivalent to C = U = I, implying that F is an orthogonal tensor and the deformation is
rigid (pure translation and/or rotation) in the neighbourhood of p. From the definition of
E(2), its eigenvectors coincide with the Lagrangian triad so that it can be expressed as

E(2) =
3∑

i=1

1
2 (λ

2
i − 1) li ⊗ li, (3.55)

and, since it measures strains along the principal Lagrangian directions, it is called a
Lagrangian strain measure.

It must be emphasised that the Green–Lagrange strain measure is defined by expression
(3.54). It is by no means the unique way of quantifying straining. In fact, the definition of a
strain measure is somewhat arbitrary and a specific choice is usually dictated by mathematical
and physical convenience. An important family of Lagrangian strain tensors, i.e. strain
measures based on the Lagrangian triad, is defined by Seth (1964), Hill (1978) and Ogden
(1984)

E(m) =




1
m

(U m − I) m 
= 0

ln[U ] m = 0
(3.56)

where m is a real number and ln[ · ] denotes the tensor logarithm of [ · ]. Equivalently, in
terms of its spectral decomposition, (3.56) may be rephrased as

E(m) =
3∑

i=1

f(λi) li ⊗ li, (3.57)

where

f(λi) =




1
m

(λm
i − 1) m 
= 0

ln λi m = 0.

(3.58)
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Figure 3.9. Strain measures. Principal strain as a function of the principal stretch for various strain
measures.

The Green–Lagrange strain tensor, E(2), is a particular member of this family (with m = 2).
Other commonly used members of this family are the Biot (m = 1), Hencky (m = 0) and
Almansi (m = −2) strain tensors. Note that for any m, the associated strain tensor vanishes
if and only if the deformation gradient represents, locally, a rigid deformation, i.e.

E(m) = 0 ⇐⇒ U = I ⇐⇒ F = R. (3.59)

To illustrate the relationship between the stretch and strain tensors, the principal strain for
various strain measures is plotted in Figure 3.9 as a function of the corresponding principal
stretch.

Analogously to the strain measures discussed above, it is also possible to define tensors
that measure strain along the principal Eulerian directions or, simply, Eulerian strain tensors.
Based on the left stretch tensor, the Eulerian counterpart of the Lagrangian family of strain
measures above is defined by

ε(m) =




1
m

(V m− I ) m 
= 0

ln[V ] m = 0,

(3.60)

or, using the Eulerian triad,

ε(m) =
3∑

i=1

f(λi) ei ⊗ ei. (3.61)

Lagrangian and Eulerian strain tensors are related by

ε(m) = R E(m)RT , (3.62)

that is, they differ by the local rotation R.
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3.1.8. THE VELOCITY GRADIENT. RATE OF DEFORMATION AND SPIN

The spatial field L, defined as
L = ∇xv, (3.63)

is named the velocity gradient. Equivalently, with application of the chain rule one has

L =
∂

∂t

(
∂ϕ

∂p

)
∂p

∂x
= Ḟ F −1. (3.64)

Two important tensors are obtained by splitting L into its symmetric and skew parts. Namely,
the rate of deformation tensor (also referred to as the stretching tensor), D, and the spin
tensor, W , are defined by

D = sym(L), W = skew(L). (3.65)

To gain insight into the physical meaning of the tensors D and W , it is convenient to
consider a body undergoing a motion with uniform (independent of x) velocity gradient. For
such a motion the velocity field reads

v(x, t) = v(y, t) + L(t) (x − y). (3.66)

If the decomposition of L into its symmetric and skew parts is introduced, the velocity field
can be split as

v(x, t) = vR(x, t) + vS(x, t), (3.67)

where the following definitions have been used:

vR(x, t) = v(y, t) + W (t) (x − y),

vS(x, t) = D(t) (x − y).
(3.68)

By recalling expression (3.13), the velocity vR, associated with the spin tensor W , can be
immediately identified as a rigid velocity. The only contribution to straining is then provided
by the term vS , associated with the rate of deformation tensor. Note that, due to its symmetry,
D admits the representation

D =
3∑

i=1

di ei ⊗ ei, (3.69)

with di and {ei}, respectively, the eigenvalues and an orthonormal basis of eigenvectors of D.
With the spectral representation above, the velocity field vS can be decomposed as a sum of
three linearly independent velocities of the form:

di (ei ⊗ ei) (x − y),

with no summation implied on i, so that the components of vS relative to the basis
{e1, e2, e3} are given by

vS
i = di (xi − yi), (3.70)

again with no summation implied, where xi and yi denote the coordinates of points x and y
in a Cartesian system associated to {e1, e2, e3}. As schematically illustrated in Figure 3.10,
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each vS
i corresponds to a velocity field that purely stretches the body in the direction of ei,

with the plane perpendicular to ei that passes through y fixed. Thus, the rate of deformation
tensor corresponds indeed to a pure stretching of the body.

If a general motion (in which L is not necessarily uniform) is considered, the above
decomposition of the velocity field into the sum of a rigid velocity and a straining velocity
remains valid in the local sense. In this case, consider a point x and a point x + dx lying
within an infinitesimal neighbourhood of x. The velocity field within this infinitesimal
neighbourhood of x is given by

v(x + dx, t) = v(x, t) + L(x, t) dx, (3.71)

so that, in any motion, the velocity field can be locally decomposed as a sum of a rigid velocity

v(x, t) + W (x, t) dx,

associated with the spin tensor W , and a straining velocity

D(x, t) dx,

associated exclusively to the rate of deformation tensor D.

3.1.9. RATE OF VOLUME CHANGE

The rate of volume change, J̇ , is related to the rate of deformation tensor through the
expression

J̇ = J tr D. (3.72)

To derive this expression, we first apply the chain rule to obtain

J̇ ≡ (det F )̇ =
∂(det F )

∂F
: Ḟ = J F −T : Ḟ , (3.73)
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where we have made use of relation (2.140) (page 36) for the derivative of the determinant.
This, together with definition (2.36) (page 22) of the trace of a tensor and the fact that the
skew symmetry of W implies

tr L = tr D, (3.74)

leading to (3.72).
Also note that from the definition (2.145) of the divergence of a vector field we have

tr D = divx v, (3.75)

so that the rate of volume change can be equivalently expressed as

J̇ = J divx v. (3.76)

3.2. Infinitesimal deformations

Small or infinitesimal deformations are deformations with sufficiently small displacement
gradient, ∇pu. For such deformations, the description of kinematics can be substantially
simplified.

3.2.1. THE INFINITESIMAL STRAIN TENSOR

Recall definition (3.43) of the Cauchy–Green tensors. In terms of the displacement gradient,
one has

C = I + ∇pu + (∇pu)T + (∇pu)T ∇pu,

B = I + ∇pu + (∇pu)T + ∇pu (∇pu)T .
(3.77)

If the displacement gradient is sufficiently small, the second-order terms in ∇pu of the expres-
sions above can be neglected so that, under small deformations, the following approximation
can be made

C ≈ B ≈ I + ∇pu + (∇pu)T . (3.78)

From the above expression and the definitions of the Green–Lagrange strain tensor E(2) and
its Eulerian counterpart ε(2), it follows that, to the same order of approximation,

E(2) ≈ ε(2) ≈ 1
2 [∇pu + (∇pu)T ]. (3.79)

This motivates the definition of the infinitesimal strain tensor to measure strains under small
deformations

ε ≡∇s
pu, (3.80)

where we have introduced the notation

∇s(·) = sym[∇(·)] = 1
2 [∇(·) + ∇(·)T ], (3.81)

for the symmetric gradient of a vector field. It is worth pointing out here that ε is a linear
functional of u. This fact greatly simplifies the description of small deformations.

In fact, it can be easily shown that not only E(2) and ε(2) but all Lagrangian and Eulerian
strain measures defined by expressions (3.56) and (3.60) have the same small deformation
limit, i.e. for any m and to within an error of second order in ∇pu, one has

ε(m) ≈ E(m) ≈ ε. (3.82)
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3.2.2. INFINITESIMAL RIGID DEFORMATIONS

In terms of the infinitesimal strain tensor, the square of the deformed length of a generic
material fibre dp (recall the text preceding expression (3.53)) reads

‖dx‖2 = (I + 2 ε) dp · dp + o(∇pu) (3.83)

with o(∇pu) a term of second order in ∇pu. It is clear from this expression that, to within an
error of o(∇pu), only the symmetric part ε of ∇pu is associated with local straining. The skew
part of ∇pu produces no straining and is associated exclusively with local infinitesimal rigid
rotations. For a pure local infinitesimal rigid rotation (‖dx‖ = ‖dp‖, ∀ ‖dp‖) the tensor ε
vanishes or, equivalently, ∇pu is skew.

For a body under an arbitrary homogeneous deformation (∇pu independent of p), the
displacement field can be written as

u(p) = u(q) + ∇pu (p − q), (3.84)

for all points p and q. For infinitesimal rigid deformations and within an approximation of
second order in the displacement gradient, ∇pu is skew and the field u can be written as

u(p) = u(q) + A (p − q), (3.85)

for all points p and q with A ≡∇pu a skew tensor. Alternatively, with a denoting the axial
vector of A, u can be expressed as

u(p) = u(q) + a × (p − q). (3.86)

Any displacement that admits the representation (3.85)–(3.86) is called an infinitesimal rigid
displacement field. Note that infinitesimal rigid displacements have the same representation
as rigid velocity fields (see expressions (3.13) and (3.14)).

3.2.3. INFINITESIMAL ISOCHORIC AND VOLUMETRIC DEFORMATIONS

Analogously to the isochoric/volumetric split of the deformation gradient in the finite strain
context (refer to Section 3.1.5), the infinitesimal strain tensor ε can also be split into a
purely volumetric and a volume-preserving contribution. The isochoric/volumetric split of the
infinitesimal strain tensor is additive (in contrast to the multiplicative split of the deformation
gradient in the finite strain theory) and reads

ε = εd + εv, (3.87)

where
εd ≡ ε − εv (3.88)

is the isochoric component, known as the strain deviator or deviatoric strain, which measures
pure infinitesimal distortions. The tensor

εv ≡ 1
3 εv I (3.89)
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is the infinitesimal volumetric strain tensor. The scalar invariant of ε, defined as

εv ≡ I1(ε) = tr ε = tr ∇su = tr ∇u (3.90)

is named the infinitesimal volumetric strain. An infinitesimal deformation is volume-
preserving if and only if

εv = 0. (3.91)

The tensors εd and εv can be equivalently written in terms of linear operations on ε as

εd = [IS − 1
3 I ⊗ I ] : ε, εv = 1

3 (I ⊗ I ) : ε. (3.92)

It should be noted that the strain deviator is a traceless tensor, i.e.

tr εd = 0. (3.93)

The fourth-order tensor defined as

Id ≡ IS − 1
3 I ⊗ I, (3.94)

is referred to as the deviatoric projection tensor. It projects second-order symmetric tensors
into the deviatoric subspace, i.e. into the space of traceless tensors. Throughout this book we
shall often use the alternative notation

dev(S)

to represent the deviator of a symmetric tensor S, i.e.

dev(S) ≡ Id : S. (3.95)

From finite to infinitesimal isochoric and volumetric strains

Analogously to Section 3.2.1, where the infinitesimal strain tensor is derived from the
finite strain theory, the above isochoric/volumetric split can also be obtained from its finite
deformation counterpart by neglecting higher order terms in ∇pu.

To show this, let us consider the Green–Lagrange strain tensor, E(2). Following the
isochoric/volumetric split of the deformation gradient given by (3.35), we define the cor-
responding isochoric and volumetric Green–Lagrange strains

E
(2)
iso ≡ 1

2 (Ciso − I ); E(2)v ≡ 1
2 (Cv − I ), (3.96)

where
Ciso ≡ F T

iso F iso = (det F )−
2
3 F T F = (det F )−

2
3 C (3.97)

and
Cv ≡ F T

v F v = (det F )
2
3 I. (3.98)

Now we proceed to show that, under small strain conditions (small ∇pu), the volumetric
Green–Lagrange strain defined above leads to definition (3.90). From (3.96)2 and (3.98),
we have

E(2)v = 1
2 [(det F )

2
3 − 1] I. (3.99)
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From the standard concepts of differentiation discussed in Section 2.5 together with the
definition F = I + ∇pu and the expression given in (iii) of page 36 for the derivative of
the determinant, we find that

det F = det(I + ∇pu)
= det I + (det I) I : ∇pu + o(∇pu)
= 1 + tr ∇pu + o(∇pu) (3.100)

and
(det F )

2
3 = 1 + 2

3 tr ∇pu + o(∇pu). (3.101)

With the substitution of the above expression into (3.99), we then obtain

E(2)v = εv + o(∇pu). (3.102)

Thus, if higher-order terms are neglected, we have the following approximation

E(2)v ≈ εv. (3.103)

Following a completely analogous procedure with the isochoric Green–Lagrange strain,
we obtain

E
(2)
iso = 1

2 [(det F )−
2
3 (I + ∇T

p u + ∇pu + ∇T
p u ∇pu) − I ]

= 1
2{[1 − 2

3 tr ∇pu + o(∇pu)][I + ∇T
p u + ∇pu + o(∇pu)] − I }

= ε − 1
3 (tr ∇pu)I + o(∇pu)

= εd + o(∇pu). (3.104)

Thus, to within second-order terms in ∇pu, we have

E
(2)
iso ≈ εd. (3.105)

The infinitesimal limits above are valid for all Lagrangian and Eulerian finite strain
measures defined by expressions (3.56) and (3.60).

3.3. Forces. Stress Measures

The previous sections of this chapter have been limited to the mathematical description of the
kinematics of deformation. In particular, concepts such as the deformation gradient, rotations
and the different strain measures used to quantify internal straining are of utmost importance
in the formulation of the mechanical and thermodynamical theory of continua. It should be
noted that, thus far, no reference has been made to forces and how they are transferred within
continuum bodies.

The forces associated with the mechanical description of a body can be classed into three
categories:‡

‡Stress couples could also be considered but these are outside the scope of this book and fall within the realm of
the so-called polar continuum theories (Cosserrat and Cosserrat, 1909; Toupin, 1962; Truesdell and Noll, 1965).
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1. Boundary forces. Forces applied to the boundary of the body such as those resulting
from contact with another body. The dimension of boundary forces is force per unit
area.

2. Body forces. Forces exerted on the interior of the body. Gravitational and magnetic
forces are typical examples of such forces. The dimension of body forces is force per
unit mass (or volume).

3. Internal interactions between adjacent parts of a body. The dimension of such
interactions is force per unit area.

Internal interaction forces arise from the action of one part of the body upon an adjacent
part and are transmitted across the surface that separate them. Boundary forces represent
interactions between the exterior and the interior of a body and, as internal interactions,
are transmitted across a surface (the boundary of the body in this case). Thus, boundary
forces and interactions between distinct parts of a body are forces of essentially the same
type and will be collectively called surface forces. To describe surface forces mathematically,
the concept of stress as well as the different ways of quantifying it are introduced in this
section.

3.3.1. CAUCHY’S AXIOM. THE CAUCHY STRESS VECTOR

Crucial to the description of surface forces is Cauchy’s axiom stated in what follows. Consider
a body B in an arbitrarily deformed configuration (Figure 3.11). Let S be an oriented
surface of B with unit normal vector n at a point x. Cauchy’s axiom states that ‘At x,
the surface force, i.e. the force per unit area, exerted across S by the material on the side
of S into which n is pointing upon the material on the other side of S depends on S only
through its normal n’. This means that identical forces are transmitted across any surfaces
with normal n at x (such as surfaces S and T in Figure 3.11). This force (per unit area) is
called the Cauchy stress vector and will be denoted

t(n),

with dependence on x and time omitted for notational convenience. If S belongs to the
boundary of B, then the Cauchy stress vector represents the contact force exerted by the
surrounding environment on B.

3.3.2. THE AXIOM OF MOMENTUM BALANCE

Let B now be subjected to a system of surface forces, t(x, n), and body forces, b(x). The
spatial field b(x) represents force per unit mass acting on the interior of B. The axiom of
momentum balance asserts that ‘For any part P of the deformed configuration of B, with
boundary S, the balance of linear momentum,∫

S
t(n) da +

∫
P

ρ b dv =
∫

P
ρ v̇ dv (3.106)

and the balance of angular momentum,∫
S

x × t(n) da +
∫

P
x × ρ b dv =

∫
P

x × ρ v̇ dv (3.107)
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Figure 3.11. Surface forces.

are satisfied, with ρ = ρ(x) denoting the mass density field, i.e. the mass per unit volume in
the deformed configuration of B ’. The right-hand sides of (3.106) and (3.107) contain the
inertia terms, with v̇ = ü denoting the acceleration field of B.

3.3.3. THE CAUCHY STRESS TENSOR

One of the most fundamental results in continuum mechanics is Cauchy’s theorem which
establishes that, as a consequence of the axiom of momentum balance, the dependence of
the surface force t upon the normal n is linear, i.e. there exists (recall Section 2.2, starting
page 19) a second-order tensor field σ(x) such that the Cauchy stress vector (see Figure 3.12)
is given by

t(x, n) = σ(x) n. (3.108)

Further, σ is symmetric,§

σ = σT . (3.109)

The tensor σ is called the Cauchy stress tensor and is often referred to as the true stress tensor
or, simply, stress tensor. Formal proofs to Cauchy’s theorem can be found, among others, in
Wang and Truesdell (1973), Gurtin (1972, 1981), Gurtin and Martins (1976), Marsden and
Hughes (1983) and Ciarlet (1988).

At this point, it should be emphasised that, in real life bodies, forces are actually
transferred by atomic interactions which are clearly discrete quantities. The continuum
mathematical representation of such interactions by means of a stress tensor is meaningful
only in an average sense and is valid only for a sufficiently large volume of material. This
observation applies equally to quantities such as strain measures or any other continuum
fields associated with the body. The smallest volume of material for which the continuum
representation makes sense is called the representative volume element.

Cauchy stress components

Using an orthonormal basis {e1, e2, e3}, the Cauchy stress tensor is represented as

σ = σij ei ⊗ ej, (3.110)

§The symmetry of σ is a result of the balance of angular momentum.
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Figure 3.12. The Cauchy stress.
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Figure 3.13. Cauchy stress tensor components and principal Cauchy stresses.

with summation on repeated indices implied and the components σij given by

σij = (σ ei) · ej . (3.111)

From (3.108), it follows that the vector σ ei is the force per unit area exerted across a surface
whose unit normal vector is ei at the point of interest. The component σij of the Cauchy
stress tensor is the magnitude of the projection of σ ei in the direction of ej . The schematic
representation of such projections is illustrated in Figure 3.13 where an infinitesimal cube
with faces normal to the base vectors e1, e2 and e3 is considered. The components σ11,
σ22 and σ33 represent the tractions normal to the faces of the infinitesimal cube whereas the
remaining components, σ12, σ13, σ21, σ23, σ31 and σ32 are the shear tractions acting parallel
to the faces.

Principal Cauchy stresses

Due to its symmetry, the Cauchy stress tensor admits the spectral representation

σ =
3∑

i=1

σi e∗
i ⊗ e∗

i , (3.112)
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that is, there exists an orthonormal basis {e∗
1, e∗

2, e∗
3}, for which all shear components of the

Cauchy stress tensor vanish and only the normal components may be non-zero. The normal
components, σi, are the eigenvalues of σ and are called the principal Cauchy stresses. The
directions defined by the basis {e∗

1, e∗
2, e∗

3} are named the principal stress directions. The
schematic representation of the forces acting on the faces of the infinitesimal cube oriented
according to the principal stress directions is shown in Figure 3.13. The forces are exclusively
normal to the faces of this cube. Note that, analogously to the representation of the stress
tensor in terms of principal stresses, the spectral decomposition has been used in Section 3.1
to represent the stretch tensors U and V in terms of principal stretches (see expression
(3.51)).

Deviatoric and hydrostatic stresses

It is often convenient, particularly for the purpose of constitutive modelling, to split the stress
tensor σ into the sum of a spherical and a traceless component

σ = s + p I, (3.113)

where the invariant
p ≡ 1

3 I1(σ) = 1
3 tr σ (3.114)

is the hydrostatic pressure (also referred to as hydrostatic stress, mean stress or mean normal
pressure), and

s ≡ σ − p I = Id : σ, (3.115)

with Id defined by (3.94), is a traceless tensor named the deviatoric stress or stress deviator.
The tensor

p I = 1
3 (I ⊗ I ) : σ (3.116)

is called the spherical stress tensor. The above decomposition is analogous to the iso-
choric/volumetric split of the infinitesimal strain tensor discussed in Section 3.2.3.

3.3.4. THE FIRST PIOLA–KIRCHHOFF STRESS

The traction vector t of expression (3.108) measures the force exerted across a material
surface per unit deformed area. Crucial to the definition of the first Piola–Kirchhoff stress
is the counterpart t̄ of t that measures, at the point of interest, the force that acts across
any surface whose normal is n in the deformed configuration per unit reference area. With
da denoting an infinitesimal element of area of a surface normal to n in the deformed
configuration and with da0 being its undeformed counterpart, t̄ is expressed as (Figure 3.14)

t̄ =
da

da0
t =

da

da0
σ n. (3.117)

Consider the surface S in the reference configuration of B (Figure 3.14). Let dp1 and
dp2 be infinitesimal (linearly independent) vectors tangent to S at the material point p and
let da0 be the area element generated by dp1 and dp2. With m denoting the unit normal to
S at p, one has

m da0 = dp1 × dp2. (3.118)
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Figure 3.14. The first Piola–Kirchhoff stress tensor.

Under deformation, the tangent vectors dp1 and dp2 are mapped, respectively, into F dp1
and F dp2 so that the unit normal to the deformed configuration of S reads

n da = F dp1 × F dp2, (3.119)

where da is the corresponding deformed area element. Pre-multiplication of both sides of the
expression above by F T together with use of the identity

Su × Sv = (det S) S −T (u × v), (3.120)

valid for any invertible tensor S and vectors u and v, leads to

F T n da = J dp1 × dp2 = J m da0, (3.121)

where J ≡ det F . This is equivalent to

da

da0
n = J F −T m. (3.122)

Finally, with substitution of the expression above into (3.117), t̄ may be written in terms of
the reference unit normal m as

t̄ = J σ F −T m. (3.123)

This last expression motivates the following definition

P ≡ J σ F −T , (3.124)

so that the force transmitted across S measured per unit reference area reads

t̄ = P m. (3.125)

The tensor P is called the first Piola–Kirchhoff stress and is often referred to as the Piola–
Kirchhoff stress or nominal stress.¶ The vector t̄ is obtained by applying the first Piola–
Kirchhoff stress to the unit vector m, normal to the reference configuration of S at the point
of interest. Note that in contrast to the Cauchy stress, P is generally unsymmetric.

¶Some authors (Billington and Tate, 1981; Nemat-Nasser, 1999) define the nominal stress as the transpose of the
first Piola–Kirchhoff stress tensor.
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Figure 3.15. The first Piola–Kirchhoff stress. Example.

Example 3.3.1 (The Piola–Kirchhoff stress). Consider a cylindrical bar (Figure 3.15)
with cross-sectional area a0 in its initial configuration (taken as reference). During a
uniaxial experiment this bar is stretched along its longitudinal axis (direction of e1) with
a simultaneous reduction of its cross section. Assume that the final deformed configuration
of the bar corresponds to a state of homogeneous deformation with cross-sectional area a.
Furthermore, assume that the bar is subjected to a state of uniaxial stress, with constant σ
given by

σ = σ11 e1 ⊗ e1.

Let f = f e1 be the total force applied to the deformed configuration of the bar (by the
experimental equipment). Under the assumption of uniform stress distribution in the cross-
section of the bar, force balance requires that the Cauchy stress component σ11 be given by

σ11 =
f

a
.

In practice, the force f (and not the stress component) is what can actually be measured in an
experiment. Thus, after f is measured, the Cauchy stress σ11 is determined according to the
expression above. If instead of a, the reference cross-sectional area a0 is used, then the first
Piola–Kirchhoff or nominal stress component is determined

P11 =
f

a0
.

It is obvious that, in this case, the corresponding tractions t and t̄, respectively per unit
deformed and reference area, are simply

t = σ11 e1 =
1
a

f, t̄ = P11 e1 =
1
a0

f.

3.3.5. THE SECOND PIOLA–KIRCHHOFF STRESS

The Second Piola–Kirchhoff stress tensor, denoted S, is the tensor defined as

S ≡ JF −1σF −T . (3.126)
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Note that from this definition, we have

ST = JF −1σT F −T , (3.127)

so that the symmetry of σ implies that S is symmetric.

3.3.6. THE KIRCHHOFF STRESS

Another important measure of stress is the Kirchhoff stress tensor, τ, defined by

τ ≡ J σ. (3.128)

Due to the symmetry of σ, the Kirchhoff stress is symmetric. Its spectral representation reads

τ =
3∑

i=1

τi e∗
i ⊗ e∗

i , (3.129)

where the principal Kirchhoff stresses, τi, are related to the principal Cauchy stresses, σi, by

τi = J σi. (3.130)

Later in this book, frequent reference to the principal Kirchhoff stresses will be made in the
formulation of various constitutive models.

3.4. Fundamental laws of thermodynamics

In order to state the fundamental laws of thermodynamics, it is necessary to introduce the
scalar fields θ, e, s and r defined over B which represent, respectively, the temperature,
specific internal energy, specific entropy and the density of heat production. In addition, b
and q will denote the vector fields corresponding, respectively, to the body force (force per
unit volume in the deformed configuration) and heat flux.

3.4.1. CONSERVATION OF MASS

The postulate of conservation of mass requires that

ρ̇ + ρ divx u̇ = 0. (3.131)

3.4.2. MOMENTUM BALANCE

In terms of the Cauchy stress tensor, whose existence has been established in Section 3.3.3,
the balance of momentum for B can be expressed by the following partial differential
equation with boundary condition:‖

divx σ + b = ρ ü in ϕ(Ω)

t = σ n in ϕ(∂Ω),
(3.132)

‖Equations (3.132) are also a result of Cauchy’s theorem, alluded to in page 62.
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where n is the outward unit vector normal to the deformed boundary ϕ(∂Ω) of B and t is the
applied boundary traction vector field on ϕ(∂Ω). Equations (3.132) are often referred to as
the strong, local or point-wise form of equilibrium. Equation (3.132)1 is known as Cauchy’s
equation of motion.

The above momentum balance equations are formulated in the spatial (deformed) config-
uration. Equivalently, they may be expressed in the reference (or material) configuration of
B in terms of the first Piola–Kirchhoff stress tensor as

divp P + b̄ = ρ̄ ü in Ω

t̄ = P m in ∂Ω,
(3.133)

where

b̄ = J b (3.134)

is the reference body force, i.e. the body force measured per unit volume in the reference
configuration,

ρ̄ = J ρ, (3.135)

is the reference density (mass per unit volume in the reference configuration), t̄ is the
reference boundary traction (boundary force per unit reference area) and m is the outward
normal to the boundary of B in its reference configuration.

3.4.3. THE FIRST PRINCIPLE

The first principle of thermodynamics postulates the conservation of energy. Before stating
this principle, it is convenient to introduce the product

σ : D,

which represents the stress power per unit volume in the deformed configuration of a body.
The first principle of thermodynamics is mathematically expressed by the equation

ρ ė = σ : D + ρ r − divx q. (3.136)

In words, the rate of internal energy per unit deformed volume must equal the sum of the
stress power and heat production per unit deformed volume minus the spatial divergence of
the heat flux.

3.4.4. THE SECOND PRINCIPLE

The second principle of thermodynamics postulates the irreversibility of entropy production.
It is expressed by means of the inequality

ρ ṡ + divx

[
q

θ

]
− ρ r

θ
≥ 0. (3.137)
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3.4.5. THE CLAUSIUS–DUHEM INEQUALITY

By combination of the first and second principles stated above, one easily obtains the
fundamental inequality

ρ ṡ + divx

[
q

θ

]
− 1

θ
(ρ ė − σ : D + divx q) ≥ 0. (3.138)

The introduction of the specific free energy ψ (also known as the Helmholtz free energy
per unit mass), defined by

ψ = e − θ s, (3.139)

along with the identity

divx

[
q

θ

]
=

1
θ

divx q − 1
θ2

q · ∇xθ, (3.140)

into the above fundamental inequality results in the Clausius–Duhem inequality

σ : D − ρ(ψ̇ + s θ̇) − 1
θ

q · g ≥ 0, (3.141)

where we have defined g = ∇xθ. The left-hand side of (3.141) represents the dissipation
per unit deformed volume. Equivalently, by making use of (3.135), the Clausius–Duhem
inequality can be expressed in terms of dissipation per unit reference volume as

τ : D − ρ̄(ψ̇ + s θ̇) − J

θ
q · g ≥ 0. (3.142)

3.5. Constitutive theory

The balance principles presented so far are valid for any continuum body, regardless of
the material of which the body is made. In order to distinguish between different types of
material, a constitutive model must be introduced. In this section, we review the principles
that form the basis of the constitutive theories discussed in later chapters of this book. We
start by stating, in Section 3.5.1, three fundamental axioms that define a rather general class of
constitutive models of continua. The use of internal variables to formulate constitutive models
of dissipative materials is then addressed in Section 3.5.2. We remark that all dissipative
constitutive models discussed in Parts Two and Three of this book are based on the internal
variable approach. Section 3.5.4 summarises a generic purely mechanical internal variable
model. The discussion on constitutive theory ends in Section 3.5.5 where the fundamental
constitutive initial value problems are stated.

3.5.1. CONSTITUTIVE AXIOMS

In the present context, the axioms stated in this section must be satisfied for any constitutive
model. Before going further, it is convenient to introduce the definitions of thermokinetic and
calorodynamic processes (Truesdell, 1969). A thermokinetic process of B is a pair of fields

ϕ(p, t) and θ(p, t).

A set
{σ(p, t), e(p, t), s(p, t), r(p, t), b(p, t), q(p, t)}

of fields satisfying the balance of momentum, the first and the second principles of thermo-
dynamics is called a calorodynamic process of B.
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Thermodynamic determinism

The basic axiom underlying the constitutive theory discussed here is the principle of
thermodynamically compatible determinism (Truesdell, 1969). It postulates that ‘the history
of the thermokinetic process to which a neighbourhood of a point p of B has been subjected
determines a calorodynamic process for B at p’. In particular, we shall be concerned with
so-called simple materials, for which the local history (history at point p only) of F , θ and
g suffices to determine the history of the thermokinetic process for constitutive purposes. In
this case, regarding the body force b and heat supply r as delivered, respectively, by the linear
momentum balance (3.132)1 and conservation of energy (3.136) and introducing the specific
free energy (3.139), the principle of thermodynamic determinism implies the existence of
constitutive functionals F, G, H and I of the histories of F , θ and g such that, for a point p,

σ(t) = F (F t, θ
t
, gt)

ψ(t) = G(F t, θ
t
, gt)

s(t) = H(F t, θ
t
, gt)

q(t) = I (F t, θ
t
, gt)

(3.143)

and the Clausius–Duhem inequality (3.141) holds for every thermokinetic process of B. The
dependence on p is understood on both sides of (3.143) and (·)t on the right-hand sides
denotes the history of (·) at p up to time t.

Material objectivity

Another fundamental axiom of the constitutive theory is the principle of material objectivity
(or frame invariance). It states that ‘the material response is independent of the observer’.
The motion ϕ∗ is related to the motion ϕ by a change in observer if it can be expressed as

ϕ∗(p, t) = y(t) + Q(t) [ϕ(p, t) − x0], (3.144)

where y(t) is a point in space, Q(t) is a rotation and ϕ(p, t) − x0 is the position vector
of ϕ(p, t) relative to an arbitrary origin x0. This relation corresponds to a rigid relative
movement between the different observers and the deformation gradient corresponding to ϕ∗

is given by

F ∗ = Q F . (3.145)

Scalar fields (such as θ, ψ and s) are unaffected by a change in observer but the Cauchy stress
σ(t), heat flux q(t) and the temperature gradient g(t) transform according to the rules

σ −→ σ∗ = Q σ QT

q −→ q∗ = Q q

g −→ g∗ = Q g.

(3.146)
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The principle of material objectivity places restrictions on the constitutive functionals
(3.143). Formally, it requires that F, G, H and I satisfy

σ∗(t) = F (F t∗, θ
t
, gt∗)

ψ(t) = G(F t∗, θ
t
, gt∗)

s(t) = H(F t∗, θt
, gt∗)

q∗(t) = I (F t∗, θ
t
, gt∗)

(3.147)

for any transformation of the form (3.145, 3.146).

Material symmetry

The symmetry group of a material is the set of density preserving changes of reference
configuration under which the material response functionals F, G, H and I are not affected.
The symmetry group of a solid material is a subset of the proper orthogonal group O+, that
is, a set of rotations. Thus, the symmetry group of a solid material is the set of rotations of
the reference configuration under which the response functionals remain unchanged. This
concept is expressed mathematically as follows. A subgroup S of O + is said to be the
symmetry group of the material defined by the constitutive functionals F, G, H and I if
the relations

F (F t, θ
t
, gt) = F ([F Q]t, θ

t
, gt)

G (F t, θ
t
, gt) = G([F Q]t, θ

t
, gt)

H (F t, θ
t
, gt) = H([F Q]t, θt

, gt)

I (F t, θ
t
, gt) = I ([F Q]t, θt

, gt)

(3.148)

hold for any time-independent rotation Q ∈ S. A solid is said to be isotropic∗∗ if its symme-
try group is the entire proper orthogonal group. In the development of any constitutive model,
the constitutive functionals must comply with the restrictions imposed by the symmetries of
the material in question.

3.5.2. THERMODYNAMICS WITH INTERNAL VARIABLES

The constitutive equations (3.143) written in terms of functionals of the history of F , θ and
g, in that format, are far too general to have practical utility in modelling real materials
undergoing real thermodynamical process. This is especially true if one has in mind the
experimental identification of the constitutive functionals and the solution of the boundary
value problems of practical interest. Therefore, it is imperative that simplifying assumptions
are added to the general forms of the constitutive relations stated above.

An effective alternative to the general description based on history functionals is the
adoption of the so-called thermodynamics with internal variables. The starting point of
the thermodynamics with internal variables is the hypothesis that at any instant of a
thermodynamical process the thermodynamic state (defined by σ, ψ, s and q) at a given

∗∗We remark that most constitutive models discussed in this book are isotropic.
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point p can be completely determined by the knowledge of a finite number of state variables.
The thermodynamic state depends only on the instantaneous value of the state variables and
not on their past history.

Mathematically, state variable models can be seen as particular instances of the general
history functional-based constitutive theory. The relationship between the two approaches
is discussed in detail by Kestin and Bataille (1977) and Bataille and Kestin (1979). In
general terms, state variable models can be obtained from the general history functional-
based description by re-defining the history of the thermokinetic process in terms of a finite
number of parameters (the state variables).

The state variables

For the applications with which we are mostly concerned, it will be convenient to assume that
at any time t, the thermodynamic state at a point is determined by the following set of state
variables:

{F , θ, g, α},
where F , θ and g are the instantaneous values of deformation gradient, temperature and the
temperature gradient and

α = {αk} (3.149)

is a set of internal variables containing, in general, entities of scalar, vectorial and tensorial
nature associated with dissipative mechanisms.

Thermodynamic potential. Stress constitutive equation

Following the above hypothesis, the specific free energy is assumed to have the form††

ψ = ψ(F , θ, α), (3.150)

so that its rate of change is given by

ψ̇ =
∂ψ

∂F
: Ḟ +

∂ψ

∂θ
θ̇ +

∂ψ

∂αk
α̇k, (3.151)

where summation over k is implied. In this case, using the connection

σ : D = σ F −T : Ḟ , (3.152)

for the stress power, one obtains for the Clausius–Duhem inequality(
σ F −T − ρ

∂ψ

∂F

)
: Ḟ − ρ

(
s +

∂ψ

∂θ

)
θ̇ − ρ

∂ψ

∂αk
α̇k − 1

θ
q · g ≥ 0. (3.153)

Equivalently, in terms of power per unit reference volume, we have(
P − ρ̄

∂ψ

∂F

)
: Ḟ − ρ̄

(
s +

∂ψ

∂θ

)
θ̇ − ρ̄

∂ψ

∂αk
α̇k − J

θ
q · g ≥ 0. (3.154)

††The dependence of ψ on the temperature gradient is disregarded as it contradicts the second principle of
thermodynamics (Coleman and Gurtin, 1967).
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Expression (3.154) is obtained from (3.153), by simply using relation (3.135).
The principle of thermodynamic determinism requires that the constitutive equations must

be such that the above inequality holds for any thermokinetic process. Thus, (3.154) must
remain valid for any pair of functions {Ḟ (t), θ̇(t)}. This implies the constitutive equations

P = ρ̄
∂ψ

∂F
, s = −∂ψ

∂θ
, (3.155)

for the first Piola–Kirchhoff stress and entropy. Equation (3.155)1 is equivalent to the
following constitutive relations for the Cauchy and Kirchoff stress tensors:

σ =
1
J

ρ̄
∂ψ

∂F
F T , τ = ρ̄

∂ψ

∂F
F T . (3.156)

Thermodynamical forces

For each internal variable αk of the set α, we define the conjugate thermodynamical force

Ak ≡ ρ̄
∂ψ

∂αk
. (3.157)

With this definition and the identities (3.155), the Clausius–Duhem inequality can be
rewritten as

−Ak ∗ α̇k − J

θ
q · g ≥ 0, (3.158)

where we recall that the symbol ‘∗’ denotes the appropriate product operation between Ak

and α̇k. In what follows, we will adopt for convenience the notation

A ≡ {Ak} (3.159)

for the set of thermodynamical forces, so that (3.158) can be expressed in a more compact
form as

−A ∗ α̇ − J

θ
q · g ≥ 0. (3.160)

Dissipation. Evolution of the internal variables

In order to completely characterise a constitutive model, complementary laws associated with
the dissipative mechanisms are required. Namely, constitutive equations for the flux variables
1
θ q and α̇ must be postulated. In the general case, we assume that the flux variables are given
functions of the state variables. The following constitutive equations are then postulated

α̇ = f(F , θ, g, α)
1
θ
q = h(F , θ, g, α).

(3.161)

Recalling the principle of thermodynamic determinism, the Clausius–Duhem inequality, now
expressed by (3.158), must hold for any process. This requirement places restrictions on the
possible forms of the general constitutive functions f and h in (3.161) (the reader is referred
to Coleman and Gurtin, 1967; Truesdell, 1969, for further details on this issue). It is also
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important to mention that when internal variables of vectorial or tensorial nature are present,
it is frequently convenient to re-formulate (3.161)1 in terms of so-called objective rates rather
than the standard material time derivative of α. Objective rates are insensitive to rigid-body
motions and may be essential in the definition of a frame invariant evolution law for variables
representing physical states associated with material directions. Objective rates are discussed
in Section 14.10 (starting page 615) in the context of the hypoelastic-based formulation of
plasticity models.

Dissipation potential. Normal dissipativity

An effective way of ensuring that (3.158) is satisfied consists in postulating the existence of
a scalar-valued dissipation potential of the form

Ξ = Ξ(A, g; F , θ, α), (3.162)

where the state variables F , θ and α appear as parameters. The potential Ξ is assumed convex
with respect to each Ak and g, non-negative and zero valued at the origin, {A, g} = {0, 0}.
In addition, the hypothesis of normal dissipativity is introduced, i.e. the flux variables are
assumed to be determined by the laws

α̇k = − ∂Ξ
∂Ak

,
1
θ
q = −∂Ξ

∂g
. (3.163)

A constitutive model defined by (3.150), (3.155) and (3.163) satisfies a priori the
dissipation inequality. It should be noted, however, that the constitutive description by means
of convex potentials as described above is not a consequence of thermodynamics but, rather,
a convenient tool for formulating constitutive equations without violating thermodynamics.
Examples of constitutive models supported by experimental evidence which do not admit
representation by means of dissipation potentials are discussed by Onat and Leckie (1988).

3.5.3. PHENOMENOLOGICAL AND MICROMECHANICAL APPROACHES

The success of a constitutive model intended to describe the behaviour of a particular
material depends critically on the choice of an appropriate set of internal variables. Since
no plausible model will be general enough to describe the response of a material under
all processes, we should have in mind that the choice of internal variables must be guided
not only by the specific material in question but, equally importantly, by the processes
(i.e. the range of thermokinetic processes defined by strain and temperature histories as
well as the time span) under which the model is meant to describe the behaviour of the
material. The importance of considering the possible thermokinetic processes when devising
a constitutive model can be clearly illustrated, for instance, by considering a simple steel bar.
When subjected to a sufficiently small axial strain at room temperature, the bar exhibits a
behaviour that can be accurately modelled by linear elasticity theory (generalised Hooke’s
law). If strains become larger, however, linear elasticity may no longer capture the observed
response satisfactorily. In this case, a plasticity theory may be more appropriate. With further
increase in complexity of the strain history (by introducing, say, cyclic extension), other
phenomena such as internal damaging and possibly fracturing may take place and more
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refined constitutive models, incorporating a larger number of state variables, will be required.
Due account of the possible temperature histories and time span to be considered is also
fundamental. At higher temperatures, the long-term behaviour of the steel bar subjected to
even a very small strain, may no longer be accurately modelled by the linear elasticity theory.
In this case the introduction of time-dependent effects (creep/relaxation) may be essential to
produce an acceptable model. In an extreme situation, if the temperature rises above melting
point, the bar will cease to be a solid. Under such circumstances, a fluid mechanics theory
will be needed to describe the behaviour of the material.

In general, due to the difficulty involved in the identification of the underlying dissipative
mechanisms, the choice of the appropriate set of internal variables is somewhat subtle and
tends to be biased by the preferences and background of the investigator. In simplistic
terms, we may say that constitutive modelling by means of internal variables relies either
on a micromechanical or on a phenomenological approach. The micromechanical approach
involves the determination of mechanisms and related variables at the atomic, molecular
or crystalline levels. In general, these variables are discrete quantities and their continuum
(macroscopic) counterparts can be defined by means of homogenisation techniques. The
phenomenological approach, on the other hand, is based on the study of the response of
the representative volume element, i.e. the element of matter large enough to be regarded as
a homogeneous continuum. The internal variables in this case will be directly associated
with the dissipative behaviour observed at the macroscopic level in terms of continuum
quantities (such as strain, temperature, etc.). Despite the macroscopic nature of theories
derived on the basis of the phenomenological methodology, it should be expected that ‘good’
phenomenological internal variables will be somehow related to the underlying microscopic
dissipation mechanisms.

The phenomenological approach to irreversible thermodynamics has been particularly
successful in the field of solid mechanics. Numerous well-established models of solids, such
as classical isotropic elastoplasticity and viscoplasticity, discussed in Parts Two and Three of
this book, have been developed on a purely phenomenological basis providing evidence of
how powerful such an approach to irreversible thermodynamics can be when the major con-
cern is the description of the essentially macroscopic behaviour. In some instances, however,
the inclusion of microscopic information becomes essential and a purely phenomenological
methodology is unlikely to describe the behaviour of the material with sufficient accuracy.
One such case is illustrated in Chapter 16, where a microscopically-based continuum model
of ductile metallic crystals is described.

3.5.4. THE PURELY MECHANICAL THEORY

Thermal effects are ignored in the constitutive theories addressed in Parts Two and Three of
this book. It is, therefore, convenient at this point to summarise the general internal variable-
based constitutive equations in the purely mechanical case. By removing the thermally-
related terms of the above theory, we end up with the following set of mechanical constitutive
equations: 



ψ = ψ(F , α)

P = ρ̄
∂ψ

∂F

α̇ = f(F , α).

(3.164)
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The infinitesimal strain case

In the infinitesimal strain case, the infinitesimal strain tensor, ε, replaces the deformation
gradient and the stress tensor σ of the infinitesimal theory replaces the first Piola–Kirchhoff
stress. We then have the general constitutive law



ψ = ψ(ε, α)

σ = ρ̄
∂ψ

∂ε

α̇ = f(ε, α).

(3.165)

3.5.5. THE CONSTITUTIVE INITIAL VALUE PROBLEM

Our basic constitutive problem is defined as follows: ‘Given the history of the deformation
gradient (and the history of temperature and temperature gradient, if thermal effects are con-
sidered), find the free-energy and stress (plus entropy and heat flux, in the thermomechanical
case) according to the constitutive law conceptually expressed by (3.143)’. If the internal
variable approach is adopted in the formulation of the constitutive equations, the generic
constitutive problem reduces to the following fundamental mechanical initial value problem.

Problem 3.1 (The mechanical constitutive initial value problem). Given the initial values
of the internal variables α(t0) and the history of the deformation gradient,

F (t), t ∈ [t0, T ],

find the functions P (t) and α(t), for the first Piola–Kirchhoff stress and the set of internal
variables, such that the constitutive equations


P (t) = ρ̄

∂ψ

∂F

∣∣∣∣
t

α̇(t) = f(F (t), α(t))

(3.166)

are satisfied for every t ∈ [t0, T ].

In the infinitesimal case, P and F are replaced with σ and ε, respectively, in the above
initial value problem. For completeness, the infinitesimal constitutive initial value problem is
stated in the following.

Problem 3.2 (The infinitesimal constitutive initial value problem). Given the initial values
of the internal variables α(t0) and the history of the infinitesimal strain tensor,

ε(t), t ∈ [t0, T ],

find the functions σ(t) and α(t), for the stress tensor and the set of internal variables, such
that the constitutive equations 


σ(t) = ρ̄

∂ψ

∂ε

∣∣∣∣
t

α̇(t) = f(ε(t), α(t))

(3.167)

are satisfied for every t ∈ [t0, T ].
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3.6. Weak equilibrium. The principle of virtual work

The strong (point-wise, local or differential) forms of the momentum balance have been
stated in Section 3.4 by expressions (3.132) and (3.133). In this section, we state the
momentum balance equations in their corresponding weak (global or integral) forms. The
weak equilibrium statement – the Principle of Virtual Work – is fundamental to the definition
of the basic initial boundary value problem stated in Section 3.7 and, as we shall see in
Chapter 4, is the starting point of displacement-based finite element procedures for the
analysis of solids.

Again, let us consider the body B which occupies the region Ω ⊂ E with boundary ∂Ω in
its reference configuration subjected to body forces in its interior and surface tractions on its
boundary. In its deformed configuration, B occupies the region ϕ(Ω) with boundary ϕ(∂Ω)
defined through the deformation map ϕ.

3.6.1. THE SPATIAL VERSION

The spatial version of the principle of virtual work states that the body B is in equilibrium
if, and only if, its Cauchy stress field, σ, satisfies the equation∫

ϕ(Ω)

[σ : ∇xη − (b − ρ ü) · η] dv −
∫

ϕ(∂Ω)

t · η da = 0, ∀ η ∈ V, (3.168)

where b and t are the body force per unit deformed volume and boundary traction per unit
deformed area and V is the space of virtual displacements of B, i.e. the space of sufficiently
regular arbitrary displacements

η : ϕ(Ω) → U.

Equivalence between strong and weak equilibrium statements

When the stress field σ is sufficiently smooth, the virtual work equation is equivalent to the
strong momentum balance equations (3.132). To show this, let us start by assuming that the
field σ is sufficiently regular so that we can use the identity (v) of Section 2.5.8 (page 38) to
obtain

σ : ∇xη = divx(σ η) − (divxσ) · η. (3.169)

In obtaining the above identity we have used the fact that σ is symmetric. Next, by
substituting the above expression into (3.168), it follows that∫

ϕ(Ω)

[divx(σ η) − (divx σ + b − ρü) · η] dv −
∫

ϕ(∂Ω)

t · η da = 0, ∀ η ∈ V. (3.170)

We now concentrate on the first term within the square brackets of the above equation. The
divergence theorem (expression (2.148)2, page 37) implies the following identity∫

ϕ(Ω)

divx(σ η) dv =
∫

ϕ(∂Ω)

σ η · n da. (3.171)

By taking into account the symmetry of σ, which implies ση · n = σn · η, together with the
above identity, equation (3.170) can be rewritten in the equivalent form∫

ϕ(Ω)

(divx σ + b − ρü) · η dv +
∫

ϕ(∂Ω)

(t − σ n) · η da = 0, ∀ η ∈ V. (3.172)
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Finally, since this equation holds for all virtual displacement fields η, then it follows from the
fundamental theorem of variational calculus (refer, for instance, to Gurtin 1972; Oden 1979
or Reddy 1998) that each bracketed term of the above equation must vanish pointwise within
their respective domains, i.e. we recover the strong equilibrium equations (3.132).

Conversely, the strong form yields the weak form of equilibrium. This can be shown in a
relatively straightforward manner by applying a weighted residual method to the strong form
together with use of the divergence theorem.

3.6.2. THE MATERIAL VERSION

The virtual work equation can be equivalently expressed in the reference configuration of B.
The corresponding material (or reference) version of the Principle of Virtual Work states that
B is in equilibrium if and only if its first Piola–Kirchhoff stress field, P , satisfies∫

Ω

[P : ∇pη − (b̄ − ρ̄ü) · η] dv −
∫

∂Ω

t̄ · η da = 0, ∀ η ∈ V, (3.173)

where b̄ and t̄ are, respectively, the body force per unit reference volume and the surface
traction per unit reference area and ρ̄ is the mass density in the reference configuration. The
space of virtual displacements, V, is accordingly defined as the space of sufficiently regular
arbitrary displacement fields

η : Ω → U.

The material version of the virtual work equation is obtained by introducing, in its spatial
counterpart, the identities

σ =
1
J

P F T ; ∇xa = ∇pa F −1, (3.174)

where the second expression holds for a generic vector field a, and making use of the standard
relation (Gurtin, 1981) ∫

ϕ(Ω)

a(x) dv =
∫
Ω

J(p) a(ϕ(p)) dv, (3.175)

valid for any scalar field a.
The proof of equivalence between (3.173) and the strong form (3.133) under conditions

of sufficient regularity is then analogous to that given for the spatial version discussed in
Section 3.6.1 above.

3.6.3. THE INFINITESIMAL CASE

Under infinitesimal deformations, reference and deformed configurations coincide and the
virtual work equation reads simply∫

Ω

[σ : ∇η − (b − ρü) · η] dv −
∫

∂Ω

t · η da = 0, ∀ η ∈ V. (3.176)
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3.7. The quasi-static initial boundary value problem

Having defined the generic constitutive initial value problems in Section 3.5 and the weak
equilibrium statements in Section 3.6, we are now in a position to state the weak form of
fundamental initial boundary value problems, whose numerical solution by the finite element
method is the main subject of the subsequent chapters of this book. The problems formulated
here are restricted to quasi-static conditions, where inertia effects are ignored. This is the case
on which the numerical methods discussed in this book are focused.

3.7.1. FINITE DEFORMATIONS

Let the body B (Figure 3.16) be subjected to a prescribed history of body forces

b(t), t ∈ [t0, T ]

in its interior. In the above, dependence of b on x is implicitly assumed. In addition, the
following boundary conditions are imposed.

(i) The natural boundary condition. The history of the surface traction

t(t), t ∈ [t0, T ],

with dependence on x implied, is prescribed over the portion of the boundary of B that
occupies the region ∂Ωt in its reference configuration.

(ii) The essential boundary condition. The motion is a prescribed function on the part of
the boundary of B that occupies the region ∂Ωu in the reference configuration

ϕ̄(p, t) = p + ū(p, t) t ∈ [t0, T ], p ∈ ∂Ωu,

where ū is the corresponding prescribed boundary displacement field. For simplicity,
it is assumed here that ∂Ωu

⋂
∂Ωt = ∅. We define the set of kinematically admissible

displacements of B as the set of all sufficiently regular displacement functions that
satisfy the kinematic constraint (the essential boundary condition)

K = {u : Ω × R → U | u(p, t) = ū(p, t), t ∈ [t0, T ], p ∈ ∂Ωu}. (3.177)

The body B is assumed to be made from a generic material modelled by the internal
variable-based constitutive equations associated with Problem 3.1 (page 76) and the internal
variable field, α, is known at the initial time t0, i.e.

α(p, t0) = α0(p). (3.178)

The fundamental quasi-static initial boundary value problem is stated in its spatial version in
the following.

Problem 3.3 (The spatial quasi-static initial boundary value problem). Find a kinemati-
cally admissible displacement function, u ∈ K, such that, for all t ∈ [t0, T ], the virtual work
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Figure 3.16. The initial boundary value problem. Schematic illustration.

equation is satisfied∫
ϕ(Ω,t)

[σ(t) : ∇xη − b(t) · η] dv −
∫

ϕ(∂Ωt,t)

t(t) · η da = 0, ∀ η ∈ Vt. (3.179)

The space of virtual displacements at time t is defined by

Vt = {η : ϕ(Ω, t) → U | η = 0 on ϕ(∂Ωu, t)} (3.180)

and, at each point of B, the Cauchy stress is given by

σ(t) = P (t)F (t)T /J(t), (3.181)

where P (t) is the solution of constitutive initial value Problem 3.1 (page 76) with prescribed
deformation gradient

F (t) = ∇pϕ(p, t) = I + ∇pu(p, t). (3.182)

The problem can be equivalently formulated in the reference configuration of B in terms
of the material version of the principle of virtual work (3.173). For completeness, we state
the material version of the fundamental initial boundary value problem in the following.

Problem 3.4 (The material quasi-static initial boundary value problem). Find a kinemat-
ically admissible displacement function, u ∈ K, such that, for all t ∈ [t0, T ],∫

Ω

[P (t) : ∇pη − b̄(t) · η] dv −
∫

∂Ωt

t̄(t) · η da = 0, ∀ η ∈ V, (3.183)

where
V = {η : Ω → U | η = 0 on ∂Ωu} (3.184)

and the Piola–Kirchhoff stress, P (t), is the solution of initial value Problem 3.1 with
prescribed deformation gradient (3.182).
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3.7.2. THE INFINITESIMAL PROBLEM

Under infinitesimal deformations, the quasi-static initial boundary value problem is based on
the weak form (3.176). It is stated in the following.

Problem 3.5 (The infinitesimal quasi-static initial boundary value problem). Find a
kinematically admissible displacement, u ∈ K, such that, for t ∈ [t0, T ],∫

Ω

[σ(t) : ∇η − b(t) · η] dv −
∫

∂Ωt

t(t) · η da = 0, ∀ η ∈ V, (3.185)

where
V = {η : Ω → U | η = 0 on ∂Ωu} (3.186)

and, at each point p, σ(t) is the solution of the constitutive initial value Problem 3.2 (page 76)
with prescribed strain

ε(t) = ∇su(p, t). (3.187)





4 THE FINITE ELEMENT METHOD
IN QUASI-STATIC NONLINEAR
SOLID MECHANICS

IN this chapter we present a summary of the application of the Finite Element Method
to quasi-static nonlinear solid mechanics. Our aim here is to review the main techniques

involved in the finite element solution of the quasi-static initial boundary value problems
stated in Section 3.7. No attempt is made to provide a comprehensive review of the subject.
For a detailed account on the Finite Element Method, and related techniques we refer to
standard textbooks (Bathe, 1996; Belytschko et al., 2000; Hughes, 1987; Wriggers, 2001;
Zienkiewicz and Taylor, 2000). The material presented here covers the basic procedures that
form the backbone of the computer implementation provided in the finite element program
HYPLAS and should be helpful to readers who wish to learn more about the code in Chapter 5.
Throughout the chapter, reference is frequently made to subroutines of HYPLAS involved in
the computational implementation of the procedures described.

At this point, it is probably worth emphasising that two major numerical approximations
(Figure 4.1) are necessary in the finite element solution of the generic initial boundary value
problems stated in Section 3.7:

1. A time discretisation of the underlying constitutive initial value problem. A numerical
integration scheme is introduced to solve the initial value problem defined by the
constitutive equations of the model that relate stresses to the history of deformations.
The general constitutive initial value problems are those stated in Section 3.5.5.
Upon introduction of the numerical integration scheme, the original time-continuum
constitutive equations are transformed into incremental (or time-discrete) counterparts.

2. A finite element discretisation. This comprises a standard finite element approximation
of the virtual work statement where the domain of the body and the associated
functional sets are replaced with finite-dimensional counterparts generated by finite
element interpolation functions.

With the introduction of the above approximations, the original initial boundary value
problem is reduced to a set of incremental (generally nonlinear) algebraic finite element
equations to be solved at each time station of the considered time interval. In addition to items
1 and 2 above, the present chapter addresses the solution of the associated algebraic system,
with particular emphasis on the quadratically convergent Newton–Raphson algorithm. The
arc-length technique, which becomes crucial in the solution of problems involving structural
instability, is also described.

Computational Methods for Plasticity: Theory and Applications EA de Souza Neto, D Perić and DRJ Owen
c© 2008 John Wiley & Sons, Ltd
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equilibrium
(principle of virtual work)

constitutive initial
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initial boundary value
problem

time-discretisation
of the constitutive IVP

incremental constitutive
law
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finite element
discretisation of the PVW

incremental
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Figure 4.1. Numerical approximations. Reducing the initial boundary value problem to a set of
incremental finite element equations.

We start in Section 4.1 with a brief description of displacement-based finite element
methods for small strain problems. Most of the basic finite element matrices and arrays are
introduced here. At this stage, the underlying material is assumed elastic so that no time
discretisation of the constitutive equations is required and attention can be focused on the
finite element discretisation alone. The treatment of path-dependent (inelastic) materials, still
within the small strain context, is introduced in Section 4.2. Here, the numerical integration
of the constitutive initial value problem is briefly discussed and a generic incremental form of
the original equation is introduced. Associated nonlinear solution schemes, particularly the
Newton–Raphson scheme, are also discussed. In Section 4.3 we move on to the realm of finite
deformations and strains and describe a general finite element strategy based on the spatial
configuration (spatial version of the virtual work equation). The consistent linearisation of the
field equations, required by the Newton–Raphson scheme for the solution of the nonlinear
discretised equation system, is also discussed. Finally, in Section 4.4, we review the arc-
length technique.

Before proceeding, we would like to draw the attention of the reader to the notation
adopted. Finite element arrays (matrices, vectors) are represented exclusively with upright
bold-faced Roman and Greek fonts:

B, u, σ, . . .

so that they can be distinguished from standard vector and second-order tensor quantities that
are represented with italic bold-faced fonts.

4.1. Displacement-based finite elements

Let us start by considering the infinitesimal deformation case. We also assume that the
underlying material is elastic; that is, the stress tensor is a (possibly nonlinear) function of
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the strain tensor only (without dependence on internal variables). Since the strain tensor is in
turn a functional of the displacement field, we have the following constitutive equation

σ = σ(ε(u)) = σ(∇su). (4.1)

With the above constitutive equation, the infinitesimal problem of Section 3.7.2 reduces to
finding a kinematically admissible displacement field u ∈ K such that∫

Ω

[σ(∇su) : ∇sη − b · η] dv −
∫

∂Ωt

t · η da = 0, ∀ η ∈ V (4.2)

holds.

4.1.1. FINITE ELEMENT INTERPOLATION

The finite element method for numerical solution of the above problem consists of replacing
the functional sets K and V with discrete subsets hK and hV generated by a finite element
discretisation h of the domain Ω.

Let the generic finite element e be defined by nnode nodes with one shape function
(or interpolation function) N

(e)
i (x) associated with each node i whose coordinate is xi.

Figure 4.2 illustrates a three-noded triangular element with linear shape functions. Each shape
function N

(e)
i (x) is defined so that its value is unity at node i, i.e.

N
(e)
i (xi) = 1, (4.3)

and zero at any other node of the element:

N
(e)
i (xj) = 0, for j 
= i. (4.4)

Now let a(x) be a generic field defined over the domain Ωe of the element. The finite element
interpolation ha of the field a within element e is obtained as

ha(x) ≡
nnode∑
i=1

ai N
(e)
i (x), (4.5)

where ai is the value of a at node i:

ai ≡ a(xi). (4.6)

Now let a(x) be defined over the entire domain Ω. In the finite element interpolation of a
we discretise Ω with a mesh of nelem finite elements. Within each element, a is interpolated as
described in the above. The interpolated function, now defined over the approximate domain

hΩ =
nelem⋃
e=1

Ω(e), (4.7)

is given by

ha(x) =
npoin∑
i=1

ai Ng
i (x), (4.8)

where Ng
i is a piecewise polynomial function – the global shape function – associated with

the global node i and npoin is the total number of nodal points in the finite element mesh.
A typical case, where a plane domain has been discretised by a mesh of triangular finite
elements, is illustrated in Figure 4.3.
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Figure 4.2. Finite element interpolation. The element shape function.
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Figure 4.3. Finite element interpolation. The global shape function.

4.1.2. THE DISCRETISED VIRTUAL WORK

With the introduction of the above interpolation procedure we generate the finite-dimensional
sets

hK ≡
{

hu(x) =
npoin∑
i=1

ui Ng
i (x) | ui = ū(xi) if xi ∈ ∂Ωu

}
(4.9)

and

hV ≡
{

hη(x) =
npoin∑
i=1

ηi Ng
i (x) | ηi = 0 if xi ∈ ∂Ωu

}
. (4.10)

The finite element approximation to the continuum variational equation (4.2) is then obtained
by replacing the functional sets K and V with the above defined finite-dimensional subsets.
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Matrix notation

To derive the discretised form of the virtual work equation it is convenient to introduce the
standard matrix notation that follows. Let ndim be the number of spatial dimensions. Firstly,
we define the global interpolation matrix:

Ng(x) = [diag[Ng
1 (x)] diag[Ng

2 (x)] · · · diag[Ng
npoin

(x)]], (4.11)

where diag[Ng
i ] denotes the ndim × ndim diagonal matrix defined as

diag[Ng
i ] =




Ng
i 0 · · · 0

0 Ng
i · · · 0

. . .

0 0 · · · Ng
i


. (4.12)

We also define the global vector of nodal displacements:

u = [u11, . . . , u1ndim
, . . . . . . , u

npoin
1 , . . . , unpoin

ndim
]T , (4.13)

where the generic element uj
i is the i-component of the displacement vector at the global

node j. Any element hu ∈ hK can be represented as

hu = Ng u, (4.14)

where the components of u corresponding to nodal points on ∂Ωu satisfy the prescribed
kinematic constraints and dependence on x has been omitted for notational convenience.
Analogously, any virtual displacement hη ∈ hV has the representation

hη = Ng η, (4.15)

where
η = [η11 , . . . , η1ndim

, . . . . . . , η
npoin
1 , . . . , ηnpoin

ndim
]T (4.16)

is the vector of virtual nodal displacements. In accordance with the definition of hV, the
components of η associated with nodal points belonging to ∂Ωu must vanish.

It is also convenient to introduce the global discrete symmetric gradient operator (or
strain-displacement matrix) which, in two dimensions (plane stress and plane strain prob-
lems), has the format

Bg =



Ng
1,1 0 Ng

2,1 0 · · · Ng
npoin,1 0

0 Ng
1,2 0 Ng

2,2 · · · 0 Ng
npoin,2

Ng
1,2 Ng

1,1 Ng
2,2 Ng

2,1 · · · Ng
npoin,2 Ng

npoin,1


, (4.17)

where

(·)i,j =
∂(·)i

∂xj
. (4.18)
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For a generic vector field v = Ng v, we have

Bg v =




v1,1

v2,2

v1,2 + v2,1


=




(∇sv)11
(∇sv)22

2 (∇sv)12


; (4.19)

that is, the multiplication of Bg by a global vector of nodal displacements gives the array of
engineering strains ordered according to the convention discussed in Appendix D.

Finally, the array of stress components in plane strain/stress problems is defined as†

σ = [σ11, σ22, σ12]T . (4.20)

In axisymmetric analyses, σ is defined by

σ = [σ11, σ22, σ12, σ33]T , (4.21)

where the hoop direction is associated with the index 3. In three-dimensional problems, we
have

σ = [σ11, σ22, σ33, σ12, σ23, σ13]T . (4.22)

The discrete boundary value problem

With the above notation at hand, the replacement of K and V respectively with hK and hV
in (4.2) gives the following discretised virtual work expression∫

hΩ

[σT Bg η − b · Ng η] dv −
∫

∂hΩt

t · Ng η da = 0, ∀ η ∈ hV (4.23)

which can be conveniently rearranged as{∫
hΩ

[(Bg)T σ − (Ng)T b] dv −
∫

∂hΩt

(Ng)T t da

}T

η = 0, ∀ η ∈ hV. (4.24)

Since the above equation is satisfied for all vectors η of the form (4.16), the term within the
curly brackets on the left-hand side must vanish. Also, recall that the stress tensor components
depend on the strain components which, in turn, depend on the displacement field defined by
u. The finite element discrete boundary value problem is then formulated as follows. Find the
global vector of nodal displacements, u, such that

f int(u) − f ext = 0, (4.25)

where f int and f ext are, respectively, the internal and external global force vectors

f int =
∫

hΩ

(Bg)T σ dv

f ext =
∫

hΩ

(Ng)T b dv +
∫

∂hΩt

(Ng)T t da.

(4.26)

†The computational array representation of tensors is described in more detail in Appendix D. The reader
unfamiliar with this notation is advised to read Appendix D before proceeding.
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The element force vectors

In actual finite element computations, the above force vectors are obtained as the assemblies

f int =
nelem

A
e=1

(f int(e))

f ext =
nelem

A
e=1

(f ext(e) )

(4.27)

of the element vectors

f int(e) =
∫
Ω(e)

BT σ dv

f ext(e) =
∫
Ω(e)

NT b dv +
∫

∂Ω
(e)
t

NT t da.

(4.28)

The finite element assembly operator, A, implies that each component of the global force
associated with a particular global node is obtained as the sum of the corresponding
contributions from the element force vectors of all elements that share that global node. For
a generic element e, the interpolation matrix N is given by

N = [diag[N (e)1 (x)] diag[N (e)2 (x)] · · · diag[N (e)nnode(x)]], (4.29)

and matrix B (in plane stress/strain analyses) has the standard format

B =



N
(e)
1,1 0 N

(e)
2,1 0 · · · N

(e)
nnode,1 0

0 N
(e)
1,2 0 N

(e)
2,2 · · · 0 N

(e)
nnode,2

N
(e)
1,2 N

(e)
1,1 N

(e)
2,2 N

(e)
2,1 · · · N

(e)
nnode,2 N

(e)
nnode,1


. (4.30)

The multiplication of matrix B by an elemental vector of nodal displacements produces the
array of engineering strains within the element.

Numerical integration. Gaussian quadratures

As a general rule, the exact integrals of (4.28) are replaced with Gaussian quadratures for
numerical evaluation of the element force vectors. Let Γ be a standard integration domain.
A Gaussian quadrature approximation with ngaus Gauss points to the integral of a generic
function f over Γ reads ∫

Γ

f(ξ) dξ ≈
ngaus∑
i=1

wi f(ξi), (4.31)

where ξi (i = 1, . . . , ngaus) are the positions (coordinates) of the Gauss points in the standard
domain Γ and wi (i = 1, . . . , ngaus) are the corresponding weights.

Now let g be a generic function defined over the element domain, Ω(e), and let x : Γ →
Ω(e) map the standard domain Γ onto Ω(e). By a straightforward transformation of variables
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the Gaussian quadrature for approximation of the integral of g over Ω(e) is obtained as

∫
Ω(e)

g(x) dx =
∫
Γ

g(x(ξ)) j(ξ) dξ ≈
ngaus∑
i=1

wi gi ji, (4.32)

where
j(ξ) = det[∂x/∂ξ] (4.33)

is the determinant of the Jacobian of the transformation x and we have defined

ji = j(ξi) (4.34)

and
gi = g(x(ξi)). (4.35)

Similarly to (4.32), we define the Gaussian quadrature to approximate integrals over the
boundary, ∂Ω(e), of an element. With ∂Γ denoting the standard integration interval and the
function g defined over ∂Ω(e) we have

∫
∂Ω(e)

g(xb) dxb =
∫

∂Γ

g(xb(ξb)) jb(ξb) dξb ≈
ngausb∑

i=1

wb
i gi jb

i , (4.36)

where wb
i are the weights at the corresponding boundary integration points ξb

i and jb
i denotes

the Jacobian of the boundary transformation xb : ∂Γ → ∂Ω(e).
By applying Gaussian quadratures with ngausp and ngausb points for integrals, respec-

tively, over the element domain and the relevant portion of its boundary (∂Ω(e)t ), the element
arrays f int(e) and f ext(e) are evaluated as

f int(e) =
ngausp∑

i=1

wi BT
i σi ji

f ext(e) =
ngausp∑

i=1

wi NT
i bi ji +

ngausb∑
i=1

wb
i NT

i ti jb
i .

(4.37)

4.1.3. SOME TYPICAL ISOPARAMETRIC ELEMENTS

For completeness, some commonly used two-dimensional isoparametric elements, which are
coded in program HYPLAS, are reviewed in this section.

Linear triangle

We start by considering the simplest two-dimensional element – the three-noded linear
triangle. This element is named TRI 3 in program HYPLAS. Figures 4.2 and 4.3 have already
illustrated element and global shape functions associated with the linear triangle. Let the
element be defined over the standard domain Γ (Figure 4.4). The element shape functions are



THE FINITE ELEMENT METHOD IN QUASI-STATIC NONLINEAR SOLID MECHANICS 91

x1

Ω(e)

x2

x3

Γ

1 2

3

ξ

η

x

y

x ( )ξ

(1,0)(0,0)

(0,1)

Figure 4.4. Linear triangle.

defined as

N1(ξ) = N1(ξ, η) = 1 − ξ − η

N2(ξ) = N2(ξ, η) = ξ

N3(ξ) = N3(ξ, η) = η.

(4.38)

The function x(ξ) that maps Γ onto Ω(e) is given by

x(ξ) =
3∑

i=1

Ni(ξ) xi, (4.39)

or, in component form,

x(ξ, η) =
3∑

i=1

Ni(ξ, η) xi

y(ξ, η) =
3∑

i=1

Ni(ξ, η) yi.

(4.40)

In HYPLAS, the shape functions (as well as their derivatives) for the three-node triangle are
coded in subroutine SFT3.

This element is typically used with a one-point Gauss quadrature. The corresponding
Gauss-point position and weight are

ξ1 =
(
1
3 ,
1
3

)
, w1 = 1

2 . (4.41)
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i

Ni
(e)

bi-linear
shape function,

Figure 4.5. Bi-linear quadrilateral.

Bi-linear quadrilateral

The bi-linear quadrilateral (named QUAD 4 in HYPLAS) has the following shape functions:

N1(ξ) = 1
4 (1 − ξ − η + ξη)

N2(ξ) = 1
4 (1 − ξ + η − ξη)

N3(ξ) = 1
4 (1 + ξ + η + ξη)

N4(ξ) = 1
4 (1 + ξ − η − ξη).

(4.42)

The above shape functions are computed in subroutine SFQ4 of HYPLAS. The element is
illustrated in Figure 4.5. The four-point (2 × 2) Gauss quadrature is usually adopted for this
element. The corresponding sampling point positions and weights can be found in subroutine
GAUS2D.

Eight-noded quadrilateral

Another important isoparametric element, which is widely used in infinitesimal elastoplastic
analysis, is the eight-noded isoparametric quadrilateral (element QUAD 8 of HYPLAS). The
corresponding shape functions will not be listed here. We refer to subroutine SFQ8 where the
shape functions and derivatives for this element are computed.

In elastoplastic analysis under plane strain and axisymmetric conditions and isochoric
plastic flow, this element is almost always used with a four-Gauss point (reduced) numerical
integration rule. The reduced integration is particularly helpful in avoiding the phenomenon
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of volumetric ‘locking’ observed when low-order elements are used under near incompress-
ibility conditions (volumetric locking is discussed in Chapter 15). Under plane stress, the
nine-point (3 × 3) Gauss quadrature is recommended.

4.1.4. EXAMPLE. LINEAR ELASTICITY

So far we have left the stress tensor, whose components are grouped in the stress array σ, as a
generic (possibly nonlinear) function of the strain tensor, ε. A simple example of application
of the Finite Element Method is given in isotropic linear elasticity, where the stress tensor is
a linear function of the strain tensor:

σ = De : ε, (4.43)

and the fourth-order isotropic elasticity tensor has the classical general format

De = 2G IS + A (K − 2
3G) I ⊗ I, (4.44)

where G and K are, respectively, the shear and bulk moduli, I is the second-order identity
and IS is the fourth-order symmetric identity tensor. In plane strain, axisymmetric and three-
dimensional analyses, the constant A is given by

A = 1, (4.45)

whereas, in plane stress,

A =
2G

K + 4
3G

. (4.46)

Matrix notation

Let us now define the array of engineering strains.‡ Analogously to the array σ of stress
components, we define for plane strain/stress,

ε = [ε11, ε22, 2ε12]T . (4.47)

Under axisymmetric conditions, we have

ε = [ε11, ε22, 2ε12, ε33]T , (4.48)

and, for three-dimensional analyses,

ε = [ε11, ε22, ε33, 2ε12, 2ε23, 2ε13]T . (4.49)

The elastic law can then be written equivalently in terms of the arrays σ and ε as

σ = De ε, (4.50)

where the elasticity matrix, De, has the general form

De = 2G IS + A (K − 2
3G) i iT , (4.51)

where IS is the array of components of IS (refer to Section D.2, starting on page 761) and i is
the array representation of the second-order identity. For example, in axisymmetric problems
we have

i =
[
1 1 0 1

]T
. (4.52)

‡Refer to Appendix D for further details on the computational array representation of tensors in the finite element
context.
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The finite element equilibrium equation

From the definition of the strain-displacement matrix, it follows that

ε = Bg u, (4.53)

so that, in view of the linear elastic constitutive law for σ, we have

σ = De Bg u. (4.54)

With the substitution of the above relation into (4.26)1, the global internal force vector
reduces to the following linear function of u:

f int(u) =
[∫

hΩ

(Bg)T De Bg dv

]
u, (4.55)

or, equivalently,
f int(u) = K u, (4.56)

where K is the global stiffness matrix assembled from the element stiffnesses

K =
nelem

A
e=1

K(e), (4.57)

with

K(e) =
∫
Ω(e)

BT De B dv. (4.58)

Finally, with (4.56), the discrete boundary value problem defined by the equilibrium
equation (4.25) is reduced to the solution of the following linear system of algebraic equations
for the global nodal displacement vector u:

K u = f ext. (4.59)

In program HYPLAS, the solution of the above system is undertaken by the classical frontal
method (Hinton and Owen, 1977; Irons, 1970). The frontal linear equation solver is coded in
subroutine FRONT.

4.2. Path-dependent materials. The incremental finite element
procedure

Let us now assume that the constitutive equations of the underlying material model are path-
dependent; that is, the stress tensor is no longer a function of the instantaneous value of the
infinitesimal strain only. It is now dependent on the history of strains to which the solid has
been subjected. The stress tensor now is the solution of a constitutive initial value problem
whose general form is stated in Problem 3.2 (page 76). Examples of path-dependent materials
are the general elastoplastic and elasto-viscoplastic models that will be dealt with in Parts Two
and Three of this book.
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4.2.1. THE INCREMENTAL CONSTITUTIVE FUNCTION

Given a generic path-dependent model, the solution of the constitutive initial value problem
for a given set of initial conditions is usually not known for complex strain paths ε(t).
Therefore, the use of an appropriate numerical algorithm for integration of the rate con-
stitutive equations is an essential requirement in the finite element simulation of problems
involving such models. The choice of a particular technique for integration of a constitutive
law will be dependent on the characteristics of the model considered. In general, algorithms
for integration of rate constitutive equations are obtained by adopting some kind of time (or
pseudo-time) discretisation along with some hypothesis on the deformation path between
adjacent time stations. Within the context of the purely mechanical theory, considering
the time increment [tn, tn+1] and given the set αn of internal variables at tn, the strain
tensor εn+1 at time tn+1 must determine the stress σn+1 uniquely through the integration
algorithm. This requirement may be regarded as the numerical counterpart of the principle
of thermodynamic determinism stated in Section 3.5.1. Such an algorithm defines an
(approximate) incremental constitutive function, σ̂ , for the stress tensor:

σn+1 = σ̂ (αn, εn+1), (4.60)

whose outcome, σn+1, is expected to converge to the exact solution of the actual evolution
problem as the strain increments are reduced. The numerical constitutive law is nonlinear in
general and is path-independent within one increment; that is, within each increment σn+1 is
a function of εn+1 alone (note that the argument αn is constant within [tn, tn+1]), analogous
to a nonlinear elastic law. The integration algorithm also defines a similar incremental
constitutive function for the internal variables of the model:

αn+1 = α̂ (αn, εn+1). (4.61)

In the context of elastoplasticity, procedures such as the elastic predictor/return mapping
algorithms, thoroughly discussed in Part Two of this book, provide concrete examples of
numerical integration schemes for path-dependent constitutive laws.

4.2.2. THE INCREMENTAL BOUNDARY VALUE PROBLEM

Having defined the above generic incremental constitutive law, we can state the incremental
(or time-discrete) version of the initial boundary value problem of Section 3.7.2 as follows.

Problem 4.1 (The infinitesimal incremental boundary value problem). Given the set αn

of internal variables at time tn, find a displacement field un+1 ∈ Kn+1 such that∫
Ω

[σ̂(αn, ∇sun+1) : ∇sη − bn+1 · η] dv −
∫

∂Ωt

tn+1 · η da = 0 (4.62)

for any η ∈ V, where bn+1 and tn+1 are the body force and surface traction fields prescribed
at time station tn+1. The set Kn+1 is defined as

Kn+1 = {u : Ω → U | u = ūn+1 on ∂Ωu}, (4.63)

where ūn+1 is the prescribed boundary displacement at tn+1.
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4.2.3. THE NONLINEAR INCREMENTAL FINITE ELEMENT EQUATION

After a standard finite element discretisation of (4.62) the problem is reduced to the following.
Find the nodal displacement vector un+1 at time tn+1 such that the incremental finite element
equilibrium equation

r(un+1) ≡ f int(un+1) − f extn+1 = 0, (4.64)

is satisfied, where f int(un+1) and f extn+1 are assembled from the element vectors

f int(e) =
∫
Ω(e)

BT σ̂(αn, ε(un+1)) dv

f ext(e) =
∫
Ω(e)

NT bn+1 dv +
∫

∂Ω
(e)
t

NT tn+1 da.

(4.65)

Equation (4.64) is generally nonlinear. The source of its nonlinearity is the nonlinearity of
the incremental constitutive function that takes part in the definition of the element internal
force vector above.

The incremental finite element scheme is summarised in Box 4.1 where the particular
case of proportional loading (implemented in HYPLAS) is considered. Proportional loading is
characterised by body force and surface traction fields given, at an arbitrary instant tn+1, by

bn+1 = λn+1 b̃

tn+1 = λn+1 t̃,
(4.66)

where λn+1 is the prescribed load factor at tn+1 and b̃ and t̃ are prescribed constant (in time)
fields. In this case, the global external force vector reduces to

f extn+1 = λn+1 f̄
ext

, (4.67)

where f̄
ext

is computed only once at the beginning of the incremental procedure as the
assembly of element vectors

f̄
ext
(e) =

∫
Ω(e)

NT b̃ dv +
∫

∂Ω
(e)
t

NT t̃ da. (4.68)

4.2.4. NONLINEAR SOLUTION. THE NEWTON–RAPHSON SCHEME

The Newton–Raphson algorithm is particularly attractive for the solution of the nonlinear
incremental equation (4.64). Due to its quadratic rates of asymptotic convergence, this
method tends to produce relatively robust and efficient incremental nonlinear finite element
schemes.

Each iteration of the Newton–Raphson scheme comprises the solution of the linearised
version of the discretised incremental equilibrium equation (4.64)§ – or, equivalently, the
discrete version of the linearised virtual work equation (C.12) (page 754). The finite element

§The reader is referred to Section 2.6 (from page 38) for details on linearisation of nonlinear problems.
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Box 4.1. The incremental nonlinear finite element scheme.

(i) Assemble global external force, f̄ ext and set up the proportional loading curve, λ(t)

(ii) Initialise increment counter, i := 1

(iii) Set load factor λi := λ(ti) at the end of the current interval [ti−1, ti]

(iv) Solve the nonlinear equation

f int(ui) − λi f̄
ext

= 0

for ui and obtain updated stresses and state variables, {αi, σi}
(v) IF i < nincr (prescribed number of increments) THEN

i := i + 1 and GOTO (iii)

(vi) EXIT

discretisation of (C.12) reads{∫
hΩ

(Bg)TD Bg dv

}
δu · η = −

{∫
hΩ

[(Bg)T σ − (Ng)T b] dv

−
∫

∂hΩt

(Ng)T t da

}
· η, ∀ η ∈ hV. (4.69)

By the same argument leading to (4.25), the above gives{∫
hΩ

(Bg)T D Bg dv

}
δu = −

{∫
hΩ

[(Bg)T σ − (Ng)T b] dv

−
∫

∂hΩt

(Ng)T t da

}
. (4.70)

At a state defined by the global displacement vector u(k−1)n+1 , the typical iteration (k) of the
Newton–Raphson scheme consists of solving the linear system of equations

KT δu(k) = −r(k−1), (4.71)

for δu(k), where we have defined the residual (or out-of-balance force) vector

r(k−1) ≡ f int(u(k−1)n+1 ) − f extn+1, (4.72)

and KT is the global tangent stiffness matrix:

KT ≡
∫

hΩ

(Bg)T D Bg dv =
∂r

∂un+1

∣∣∣∣
u

(k−1)
n+1

. (4.73)

With the solution δu(k) of the linear system (4.71) at hand, we apply the Newton correction
to the global displacement

u(k)n+1 = u(k−1)n+1 + δu(k), (4.74)
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or, in terms of displacement increments,

u(k)n+1 = un + ∆u(k), (4.75)

where ∆u(k) is the incremental displacement vector:

∆u(k) = ∆u(k−1) + δu(k). (4.76)

The method is schematically illustrated in Figure 4.6. The Newton–Raphson iterations are
repeated until after some iteration (m), the following convergence criterion is satisfied:

|r(m)|
|f extn+1|

≤ εtol, (4.77)

where εtol is a sufficiently small specified equilibrium convergence tolerance. The corre-
sponding displacement vector, u(m)n+1, is then accepted as sufficiently close to the solution
of (4.64)

un+1 := u(m)n+1. (4.78)

To start up the Newton–Raphson iterations, we need an initial guess, u(0)n+1. The initial guess
is usually taken as the converged (equilibrium) displacement vector at the end of the previous
increment,

u(0)n+1 = un or ∆u(0)n+1 = 0. (4.79)

The overall Newton–Raphson algorithm for solution of the nonlinear finite element equations
is summarised in Box 4.2 in pseudo-code format. The procedure is implemented in program
HYPLAS. To help familiarise the reader with the program, the main subroutines of HYPLAS
associated with some of the items listed in Box 4.2 are named within square brackets.

4.2.5. THE CONSISTENT TANGENT MODULUS

The global tangent stiffness defined by (4.73) is the assembly of the element tangent stiffness
matrices

K(e)T =
∫
Ω(e)

BT D B dv, (4.80)

where D is the consistent tangent matrix – the matrix form of the fourth-order consistent
tangent operator

D ≡ ∂σ̂

∂εn+1

∣∣∣∣
ε(k−1)

n+1

. (4.81)

This tensor possesses the symmetries

Dijkl = Djikl = Dijlk. (4.82)

The consistent tangent operator is the derivative of the incremental constitutive function
σ̂. This generally implicit function is typically defined by some numerical algorithm for
integration of the rate constitutive equations of the model. The full (exact) linearisation of
the finite element equations in the context of path-dependent materials, including the exact



THE FINITE ELEMENT METHOD IN QUASI-STATIC NONLINEAR SOLID MECHANICS 99

u

f int(   )u

f ext
n

f ext
n+1

un un+1

r

r
K T (0)

(1)
K T

(0)un+1 = (1)un+1
(2)un+1

...

δ (1)u δ (2)u

Figure 4.6. The Newton–Raphson algorithm for the incremental finite element equilibrium equation.

linearisation of the incremental constitutive function, has been first addressed by Nagtegaal
(1982). In particular, this author has emphasised the need for linearisation of the incremental
stress updating procedure, rather than to appeal to the rate stress–strain tangential relation
(commonly used at the time), in order to achieve quadratic rates of asymptotic convergence
in the iterative solution of the finite element equilibrium equations. This concept was later
formalised by Simo and Taylor (1985) who coined the term consistent tangent to refer to
the tangent operator consistent with the relevant numerical algorithm for integration of the
path-dependent rate constitutive equations. The derivation of consistent tangent operators
is thoroughly discussed in Part Two of this book, in the context of elastoplasticity and
elastoviscoplasticity. We remark that the full Newton–Raphson scheme, which relies on
consistent tangent operators, is available for all material models implemented in HYPLAS.

4.2.6. ALTERNATIVE NONLINEAR SOLUTION SCHEMES

Other iterative methods can be used to solve the nonlinear incremental finite element
equations. A straightforward alternative to the above full Newton–Raphson scheme are
the so-called modified Newton methods. These methods consist of replacing the tangential
stiffness KT , which in the standard method is updated in every iteration, by a constant
counterpart. Traditional approaches include (Owen and Hinton (1980) and Zienkiewicz and
Taylor (2000))

(i) the use of the initial tangent stiffness throughout all increments;

(ii) the use of a constant stiffness within each increment. The stiffness is updated at the
beginning of every increment;
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Box 4.2. The Newton–Raphson scheme for solution of the incremental nonlinear
finite element equation (infinitesimal strains).

(i) k := 0. Set initial guess and residual

u(0)
n+1 := un; r := f int(un) − λn+1 f̄ ext

(ii) Compute consistent tangent matrices [MATICT]

D := ∂σ̂/∂εn+1

(iii) Assemble element tangent stiffness matrices [ELEIST, STSTD2]

K(e)
T :=

∑ngausp
i=1 wi ji BT

i Di Bi

(iv) k := k + 1. Assemble global stiffness and solve for δu(k) [FRONT]

KT δu(k) = −r(k−1)

(v) Apply Newton correction to displacements [UPCONF]

u(k)
n+1 := u(k−1)

n+1 + δu(k)

(vi) Update strains [IFSTD2]
ε(k)

n+1 := B u(k)
n+1

(vii) Use constitutive integration algorithm to update stresses and other state variables
[MATISU]

σ
(k)
n+1 := σ̂(αn, ε(k)

n+1); α
(k)
n+1 := α̂(αn, ε(k)

n+1)

(viii) Compute element internal force vectors [INTFOR, IFSTD2]

f int
(e) :=

∑ngausp
i=1 wi ji BT

i σ
(k)
n+1

∣∣∣
i

(ix) Assemble global internal force vector and update residual [CONVER]

r := f int − λn+1f̄ ext

(x) Check for convergence [CONVER]

IF ‖r‖/‖f ext‖ ≤ εtol THEN set (·)n+1 := (·)(k)
n+1 and EXIT

ELSE GOTO (ii)

(iii) a variant of method (ii) where the stiffness matrix is updated after a certain number of
iterations within each increment.

For such schemes, the stiffness matrix does not need to be computed or factorised whenever it
is reused. Some procedures of this type are available in the HYPLAS program. The convergence
rates of such methods are far slower than the quadratic rates of the classical Newton algorithm
and numerical experience shows that much faster solutions are obtained generally with the
full Newton–Raphson scheme.



THE FINITE ELEMENT METHOD IN QUASI-STATIC NONLINEAR SOLID MECHANICS 101

Other alternatives include the quasi-Newton methods. Such methods, whose roots are in
the theory of optimisation (Haftka et al., 1990), require neither the direct computation of
the tangent stiffness nor its inversion (linear system solution). Instead, at a new iteration,
an updated approximation of the inverse of the stiffness matrix is obtained which depends
on the residual and displacement vectors at the end of the previous two iterations and
the inverse stiffness approximation employed in the previous iteration of the algorithm.
The Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) is a particularly popular quasi-
Newton scheme. Its application in the finite element context has been introduced by Matthies
and Strang (1979). At the beginning of an iteration (k), the approximate inverse stiffness of
the BFGS scheme is updated by the formula

K−1
(k) = K−1

(k−1) −
vwT K−1

(k−1)
vT w

−
K−1
(k−1)wvT

vT w
+
(

1 +
wT K−1

(k−1)w

vT w

)
vwT

vT w
, (4.83)

where
v = u(k−1) − u(k−2), w = r(k−1) − r(k−2). (4.84)

These methods can be useful, for instance, when the derivation of the tangent operator (4.81)
is difficult – a situation that may arise in dealing with complex material models/integration
algorithms. Again, the rates of convergence are much slower than those produced by the
standard Newton algorithm.

4.2.7. NON-INCREMENTAL PROCEDURES FOR PATH-DEPENDENT MATERIALS

The framework discussed above for the solution of quasi-static solid mechanics problems
with path-dependent material models relies crucially upon the use of numerical integration
procedures whereby the numerical solution of the constitutive initial value problem is
undertaken in sequential steps in time. Such procedures generate approximate (incremental)
constitutive functions for the stress tensor with general form (4.60), whose substitution
into the generic initial boundary value problem of Section 3.7.2 (page 81) results in the
incremental version stated in Problem 4.1 (page 95). The numerical solution of the initial
boundary value problem in this case is obtained by splitting the considered time interval,
say [t0, T ], into a number of sufficiently small time steps and then solving sequentially, for
each step, the corresponding incremental boundary value problem whose unknown is the
displacement field over the domain Ω at the end of the time step (instant tn+1 in Problem 4.1).

An interesting alternative to the above general incremental procedure deserves special
mention: the so-called Large Time Increment Method, or LATIN Method for short, originally
proposed by Ladevèze (1984, 1989, 1999) is a non-incremental iterative procedure relying on
a radically different approach to the treatment of the problem. Its computational implementa-
tion is considerably different from that of the incremental approach explored and explained in
detail throughout this book. The LATIN method falls outside the scope of the present text. The
interested reader is referred to Ladevèze (1999) for further details. Essentially, this method
generates a sequence of histories {vi, σi} of velocity and stress fields over Ω × [t0, T ] – note
that the entire time domain considered is covered by each function of the sequence – that
converges to a pair {v∗, σ∗} whose stress satisfies equilibrium (over the entire time domain
[t0, T ]) and is related to the strain history resulting from v∗ through the constitutive equations
of the model. Each iteration i of the LATIN method produces a new velocity history, vi, of



102 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APPLICATIONS

the form

vi(x, t) = vi−1(x, t) +
p∑

k=1

gk(t) wk(x), (4.85)

where gk are suitably chosen scalar-valued basis functions defined over [t0, T ] and wk are
vector-valued functions defined over Ω. The functions wk are generated by conventional
finite element interpolation and their corresponding nodal values are unknowns at each
iteration of the method. Analogous approximations are used to describe the sequence of strain
rate and stress rate histories. The overall accuracy of the history approximations depends
crucially upon the choice of the total number, p, of terms used to describe the iterative history
differences. In contrast to the conventional incremental procedure, the single increment of the
LATIN Method comprising the interval [t0, T ] may contain several cycles of a cyclic load.
This is illustrated, for instance, by Boisse et al. (1990, 1989) in elastoplastic applications.
Further applications are found in Boucard et al. (1997), Cognard and Ladèveze (1993),
Cognard et al. (1999), Ladevèze and Perego (2000) and Dureisseix et al. (2003).

4.3. Large strain formulation

We now focus our attention on the use of the Finite Element Method in the solution of solid
mechanics problems involving finite deformations and strains. The starting point here is the
finite strain version of the Principle of Virtual Work and the corresponding initial boundary
value problem stated at the end of Chapter 3.

4.3.1. THE INCREMENTAL CONSTITUTIVE FUNCTION

At the outset, we shall assume that the underlying material model is path-dependent. Thus,
the comments made in Section 4.2.1 about the need for a numerical integration scheme
to update the stresses and other state variables of the model apply equally to the present
case. Analogously to (4.60) the corresponding algorithmic incremental constitutive function
is defined in the following general format

σn+1 = σ̂ (αn, F n+1), (4.86)

where F n+1 is the deformation gradient prescribed at the end of the standard interval
[tn, tn+1] and σ is now the Cauchy stress tensor; that is, given the set αn of internal variables,
the prescribed deformation gradient F n+1 will determine the Cauchy stress tensor uniquely
through the incremental constitutive function σ̂ defined by means of some algorithm for
numerical integration of the constitutive equations of the model. An equivalent incremental
function can be defined for the Kirchhoff stress

τn+1 = τ̂ (αn, F n+1) = Jn+1 σ̂ (αn, F n+1), (4.87)

where Jn+1 = det[F n+1].
It is important to note that path-independent (finite elasticity) laws can also be written

in incremental form as particular cases of the above functions. In such cases, no internal
variables are needed and σn+1 (or τn+1) can usually be computed by simple function
evaluation (rather than by some numerical integration algorithm). Thus, the framework
presented in this section is equally applicable to finite elasticity models. Finite strain path-
dependent models (including constitutive integration algorithms) as well as hyperelastic
theories are discussed in Part Three of this book.
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4.3.2. THE INCREMENTAL BOUNDARY VALUE PROBLEM

The finite strain incremental boundary value problem is obtained by introducing the above
time-discrete constitutive law into the original time-continuum initial boundary value prob-
lem of Section 3.7.1 (starting on page 79). The problem – here considered in its spatial
version – is stated in the following.

Problem 4.2 (The finite strain incremental boundary value problem). Given the field αn

at time tn and given the body forces and surface traction fields at tn+1, find a kinematically
admissible configuration ϕn+1(Ω) ∈ Kn+1 such that the virtual work equation∫

ϕn+1(Ω)

[σ̂(αn, F n+1) : ∇s
x η − bn+1 · η] dv −

∫
ϕn+1(∂Ωt)

tn+1 · η da = 0, (4.88)

is satisfied for any η ∈ V, where ϕn+1 is the deformation map at tn+1

xn+1 = ϕn+1(p) = p + un+1(p), (4.89)

and
F n+1 = ∇pϕn+1 = I + ∇pun+1. (4.90)

4.3.3. THE FINITE ELEMENT EQUILIBRIUM EQUATION

The finite element discretisation of the above equation is completely analogous to the
discretisation of its infinitesimal counterpart. The discrete problem consists in finding a kine-
matically admissible global displacement vector un+1 that satisfies the standard incremental
equilibrium equation

r(un+1) ≡ f int(un+1) − f extn+1 = 0, (4.91)

where, now, the internal and external force vectors are defined as

f int(e) =
∫

ϕn+1(Ω(e))

BT σ̂(αn, F (un+1)) dv

f ext(e) =
∫

ϕn+1(Ω(e))

NT bn+1 dv +
∫

ϕn+1(∂Ω
(e)
t )

NT tn+1 da.

(4.92)

The B-matrix above is the spatial discrete symmetric gradient operator. It has the same
format as that of its small strain counterpart (such as, for example, that given by (4.30) for the
plane stress and plane strain cases), but its shape function derivatives are spatial derivatives;
that is, derivatives with respect to the spatial coordinates of the finite element mesh (at the
deformed configuration defined by un+1).

4.3.4. LINEARISATION. THE CONSISTENT SPATIAL TANGENT MODULUS

Analogously to the infinitesimal deformations case of Section 4.2.4, the linearised version
of (4.91), to be used in the Newton–Raphson algorithm for solution of the large deformation
incremental equilibrium equation, can be obtained by applying a finite element discretisation
to the linearised form (C.32) (page 757) of the virtual work equation (4.88).



104 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APPLICATIONS

Starting from (C.32) and following the same arguments as those resulting in (4.70) we
obtain the discrete form of the linearised virtual work equation for large strain problems in
spatial description:¶{∫

ϕ(hΩ)

(Gg)T a Gg dv

}
δu = −

{∫
ϕ(hΩ)

[(Bg)T σ − (Ng)T b] dv

−
∫

ϕ(∂hΩ)

(Ng)T t da

}
, (4.93)

where a is the matrix of components of the spatial tangent modulus (C.31) ordered according
to the convention described in Section D.2.1 (starting page 763). The matrix Gg is the global
discrete spatial gradient operator. In plane strain and plane stress analyses, for example, it is
given by

Gg =




Ng
1,1 0 Ng

2,1 0 · · · Ng
npoin,1 0

0 Ng
1,1 0 Ng

2,1 · · · 0 Ng
npoin,1

Ng
1,2 0 Ng

2,2 0 · · · Ng
npoin,2 0

0 Ng
1,2 0 Ng

2,2 · · · 0 Ng
npoin,2


. (4.94)

Its multiplication by, say, the global vector δu gives the array of components of the spatial
gradient of δu ordered according to the convention of Section D.2.1.

Similarly to the infinitesimal strain case, the generic Newton–Raphson iteration (k) here
requires the solution of the standard linear system for δu:

KT δu(k) = −r(k−1), (4.95)

where the global tangent stiffness matrix KT corresponds to the bracketed term on the left-
hand side of (4.93). This matrix is constructed in practice by assembling the element tangent
stiffness matrices defined as

K(e)T =
∫

ϕ
(k)
n+1(Ω

(e))

GT a G dv, (4.96)

where G is the element discrete spatial gradient operator which, in plane stress/strain
analyses, has the format

G =




N
(e)
1,1 0 N

(e)
2,1 0 · · · N

(e)
nnode,1 0

0 N
(e)
1,1 0 N

(e)
2,1 · · · 0 N

(e)
nnode,1

N
(e)
1,2 0 N

(e)
2,2 0 · · · N

(e)
nnode,2 0

0 N
(e)
1,2 0 N

(e)
2,2 · · · 0 N

(e)
nnode,2



. (4.97)

¶We remark that this expression is valid when the external loads b and t are configuration-independent, i.e. they
do not depend on the displacement u. Its extension to account for configuration-dependent loads is briefly addressed
in Section 4.3.6.
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Box 4.3. The Newton–Raphson scheme for the large strain incremental nonlinear
finite element equation. Modifications to Box 4.2.

(ii) Compute consistent spatial tangent modulus matrix [MATICT]

aijkl :=
1

J

∂τ̂ij

∂Fkm
Flm − σil δjk

(iii) Assemble element tangent stiffness matrices [ELEIST, STSTD2]

K(e)
T :=

∑ngausp
i=1 wi ji GT

i ai Gi

(vi) Update deformation gradient [IFSTD2]

F
(k)
n+1 := (I −∇xu

(k)
n+1)

−1

(vii) Use constitutive integration algorithm to update stresses and other state variables
[MATISU]

σ
(k)
n+1 := σ̂(αn, F

(k)
n+1); α

(k)
n+1 := α̂(αn, F

(k)
n+1)

The consistent spatial tangent modulus

Let us recall here the expression for the Cartesian components of the consistent spatial
tangent modulus derived in Section C.2.2:

aijkl =
1
J

∂τij

∂Fkm
Flm − σil δjk. (4.98)

On the right-hand side of the above expression, the only terms that depend on the constitutive
equations of the model are the derivatives of the Kirchhoff stress tensor components. In the
general case considered here, the Kirchhoff stress tensor is the outcome of the algorithmic
incremental constitutive function (4.87). As in the infinitesimal case, the incremental function
is usually implicit and is defined by the particular algorithm used to integrate the constitutive
equations of the model. Thus, the derivatives ∂τij/∂Fkm are the components of the derivative
of this generally implicit incremental constitutive function, that is,

∂τij

∂Fkm
=
[

∂τ̂

∂F n+1

]
ijkm

. (4.99)

The overall Newton procedure in the finite strain case is completely analogous to that
shown in Box 4.2 for the infinitesimal theory. The only necessary change is the replacement
of some of the items of Box 4.2 with the finite strain counterparts listed in Box 4.3.

Examples of path-dependent material implementations where τ is defined by an implicit
algorithmic function are given in Part Three of this book. The derivation of explicit
expressions for the above implicit function derivative may become quite intricate but involve
nothing more than standard concepts of linearisation. Finite elasticity (also addressed in
Part Three) is a particular instance where τn+1 is obtained by direct function evaluation.
In such a case, τ̂ is an explicit function of the deformation gradient and its derivative can, as
a general rule, be derived in a relatively straightforward manner.
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4.3.5. MATERIAL AND GEOMETRIC STIFFNESSES

In finite element computations, the tangent stiffness (4.96) is frequently split into the so-called
material and geometric stiffnesses

K(e)T = K(e)M + K(e)G , (4.100)

defined by

K(e)M =
∫

ϕ
(k)
n+1(Ω

(e))

BT c B dv

K(e)G =
∫

ϕ
(k)
n+1(Ω

(e))

GT S G dv,

(4.101)

where c is the array representation of the fourth-order tensor

cijkl = aijkl − σjl δik, (4.102)

and S is the array representation of the tensor

Sijkl = σjl δik. (4.103)

As the infinitesimal tangent operator (4.81), the tensor c has the symmetries

cijkl = cjikl = cijlk . (4.104)

The material stiffness matrix (4.101)1 has the same format as that of the infinitesimal stiffness
matrix (4.80) except that, in the finite strain case, the matrix form of the tensor defined
by (4.102) replaces the matrix form of the infinitesimal consistent tangent operator. In
computational terms, this allows the subroutines for computation of the infinitesimal element
tangent stiffness matrix to be reused to compute the material stiffness of the finite strain case.
If this approach is adopted, the full tangent stiffness under finite strains can be obtained by
simply adding the geometrical term (4.101)2 to the material stiffness. We remark, however,
that in program HYPLAS the form (4.96) is adopted instead; that is, under finite strains,
we firstly compute the matrix form of tensor a and then obtain the element stiffness by
performing a single computation with (4.96).

4.3.6. CONFIGURATION-DEPENDENT LOADS. THE LOAD-STIFFNESS MATRIX

If the external load depends on the configuration of the body, that is, if

f extn+1 = f ext(un+1), (4.105)

then the tangent stiffness, that takes part in (4.95), is replaced by

KT + KL,

where the added contribution, KL, is the so-called load-correction or load-stiffness matrix.
The load stiffness is the derivative of the external force vector with respect to the displacement
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vector:

KL =
∂f ext

∂un+1

∣∣∣∣
u(k−1)

n+1

. (4.106)

The consideration of configuration-dependence of external loads becomes important in
situations where substantial changes in direction and/or intensity of loads may result from
the deformation of the loaded body. A typical example is given by pressure loading of rubber
membranes (see some of the numerical examples of Section 13.6). The explicit derivation of
the load stiffness will not be addressed in this book. The reader is referred to Schweizerhof
and Ramm (1984) for details of derivation (see also Argyris and Symeonidis, 1981).

4.4. Unstable equilibrium. The arc-length method

Many finite deformation problems of practical interest are characterised by the existence
of unstable equilibrium configurations. Common examples appear in buckling instability
and problems involving snap-through or snap-back phenomena. Let us consider the case of
proportional loading. An equilibrium path is formed by the set of all load factor-displacement
pairs

{λ, u}
which satisfy equilibrium. Typical equilibrium paths associated with snap-through and snap-
back behaviour are illustrated in Figure 4.7. In such situations, the standard load-controlled
finite element scheme of the previous section, where the displacement vector is found
for a prescribed load factor, cannot be used in general once a limit point (points A of
Figure 4.7) is reached. To trace an equilibrium path beyond limit points we need to resort
to continuation techniques, of which the arc-length method appears to be the most popular
(Crisfield, 1981, 1983, 1991, 1997; de Souza Neto and Feng, 1999; Feng et al., 1997, 1995,
1996; Ramm, 1981; Riks, 1972, 1979; Wempner, 1971). A description of the arc-length
method is given in this section. The method is implemented in program HYPLAS. Readers
who wish to skip the description of this technique are referred directly to Box 4.4 (page 109),
where the combined Newton–Raphson/cylindrical arc-length scheme provided in HYPLAS
is summarised in pseudo-code format. The names of the main routines involved in the
computational implementation of the most relevant procedures of Box 4.4 are shown within
square brackets.

4.4.1. THE ARC-LENGTH METHOD

Let us consider, again, the standard interval [tn, tn+1] and let

∆λ ≡ λn+1 − λn (4.107)

be the corresponding incremental load factor. To derive the arc-length method, we allow ∆λ
to become a variable and redefine the residual equation (4.91) as

r(un+1, ∆λ) ≡ f int(un+1) − (λn + ∆λ) f̄
ext = 0. (4.108)

The arc-length method consists of adding an extra constraint to the above augmented residual
equation so as to limit the ‘length’ of the incremental solution.
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Figure 4.7. Unstable equilibrium. Snap-through and snap-back behaviour.

The spherical arc-length method

For the so-called spherical arc-length method, the constraint equation has the general format

∆uT ∆u + ∆λ2 ψ2 f̄ ext T f̄ ext − l2 = 0, (4.109)

where ∆u and ∆λ are converged incremental quantities, l is a prescribed incremental solution
length and ψ is a prescribed scaling parameter.

The cylindrical arc-length method

For the more widely used cylindrical arc-length method (implemented in HYPLAS), the
scaling parameter ψ is set to zero and the constraint equation reads simply

∆uT ∆u = l2. (4.110)

In this case, the constraint equation requires that the Euclidean norm of the converged
incremental displacement be l, i.e. the equilibrium solution at the end of the increment lies
at an intersection between the solution path and a ball of radius l in the space of nodal
displacements (a cylinder in the λ-u space) centred at the equilibrium configuration un of
the beginning of the increment. A graphical representation is shown in Figure 4.8 which
illustrates a system with two degrees of freedom. The possible intersections are denoted A
and B.

4.4.2. THE COMBINED NEWTON–RAPHSON/ARC-LENGTH PROCEDURE

In summary, having specified the required l, an equilibrium solution is obtained by solving,
for both un+1 and ∆λ, the residual equation (4.108) in conjunction with one of the above
‘length’ constraint equations ((4.109) or (4.110)). The standard Newton–Raphson algorithm
for iterative solution of the augmented arc-length system of nonlinear equations is derived by
simply linearising (4.108) together with the relevant arc-length constraint. For the cylindrical
version of the arc-length method, the linearised system to be solved for δu(k) and δλ(k) at
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Box 4.4. The combined Newton–Raphson/arc-length scheme.

(i) Initialise iteration counter, k := 0, and set initial guess for displacement and incremen-
tal load factor

u(0)
n+1 := un; λ

(0)
n+1 := λn; r(0) := f int(un) − λnf̄ ext

(ii) Assemble stiffness, KT := KT (u(k)
n+1) [FRONT, ELEIST]

(iii) Set k := k + 1. Solve the linear systems for δu∗ and for the tangential solution, δū
[subroutine FRONT]

KT δu∗ = −r(k−1); KT δū = −f̄ ext

(iv) Find iterative load factor δλ(k) [ARCLEN]

(a) If k = 1 (predictor solution) then compute

δλ(1) := sign(∆uT
n δū)

l√
δūT δū

(b) If k �= 1 then solve the cylindrical arc-length constraint equation

a δλ(k)2 + b δλ(k) + c = 0

with coefficients defined by (4.117) and choose root δλ(k) according to (4.118)

(v) Apply correction to incremental load factor [ARCLEN]

λ
(k)
n+1 := λ

(k−1)
n+1 + δλ(k)

(vi) Compute iterative displacement [ARCLEN]

δu(k) := δu∗ + δλ(k) δū

(vii) Correction to total and incremental displacements [UPCONF]

u(k)
n+1 := u(k−1)

n+1 + δu(k); ∆u(k)
n+1 := ∆u(k−1)

n+1 + δu(k)

(viii) Update residual, r(k) := f int(u(k)
n+1) − λ

(k)
n+1f̄ ext [INTFOR, CONVER]

(ix) Check for convergence [CONVER]

IF ‖r(k)‖/‖f ext‖ ≤ εtol THEN set (·)n+1 := (·)(k)
n+1 and EXIT

ELSE GOTO (ii)

the kth Newton iteration reads
KT (u(k−1)) −f̄ ext

2∆u(k−1)
T

0






δu(k)

δλ(k)


= −




r(u(k−1), ∆λ(k−1))

∆u(k−1)
T
∆u(k−1) − l2


 , (4.111)

where the subscripts n + 1 have been dropped for notational convenience.
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Figure 4.8. The cylindrical arc-length method.

The non-consistent scheme

In practice, instead of solving the above coupled system (whose coefficients matrix is non-
banded), it is more convenient to adopt what is sometimes referred to as the non-consistent
scheme, where the original augmented system to be solved at each iteration is replaced by the
following equations:

[
KT (u(k−1)) −f̄ ext

] 
δu(k)

δλ(k)


= −r(u(k−1), ∆λ(k−1))

∆u(k)
T
∆u(k) = l2.

(4.112)

In the iterations (4.111), the arc-length constraint is guaranteed to hold only at the converged
solution whereas, in the non-consistent scheme, the arc-length constraint is enforced at every
iteration. Both iterative schemes lead to identical converged equilibrium solutions {∆λ, u}.
From (4.112)1, we have

δu(k) = δu∗ + δλ δū, (4.113)

where δu∗ is the iterative displacement stemming from the Newton–Raphson algorithm for
the standard load controlled scheme:

δu∗ ≡−K−1
T r(k−1), (4.114)

and δū is the so-called tangential solution defined by

δū ≡ K−1
T f̄ ext. (4.115)
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Substitution of (4.113) into the relation ∆u(k) = ∆u(k−1) + δu(k), followed by the enforce-
ment of the constraint (4.112)2, results in the quadratic equation for the iterative load factor
δλ(k)

a δλ(k)
2

+ b δλ(k) + c = 0, (4.116)

with coefficients

a = δūT δū

b = 2(∆u(k−1) + δu∗)T δū

c = (∆u(k−1) + δu∗)T (∆u(k−1) + δu∗) − l2.

(4.117)

The choice of the appropriate root

The iterative load factor is normally chosen as the solution to the quadratic equation that
yields the minimum angle between ∆u(k−1) and ∆u(k) (Crisfield, 1991), i.e. δλ(k) is the
solution of (4.116) which gives the maximum product ∆u(k) T ∆u(k−1):

δλ(k) = arg
[

max
δλ̂ | a δλ̂2+b δλ̂+c=0

{(∆u(k−1) + δu∗ + δλ̂ δū)T ∆u(k−1)}
]
. (4.118)

The incremental load factor, ∆λ(k), is updated according to

∆λ(k) = ∆λ(k−1) + δλ(k). (4.119)

4.4.3. THE PREDICTOR SOLUTION

When k = 1 (the predictor solution), the above criterion cannot be used for determination of
the appropriate root δγ(k) as the initial guess, ∆u(0) = 0, does not contain information about
the path being currently followed by the iterative procedure. The two possible values of δλ(1)

for the predictor solution are

δλ(1) = ± l√
δūT δū

, (4.120)

and the success of the path-following technique depends crucially on the choice of the
appropriate sign for the iterative load factor. If the wrong choice is made, the predictor
solution will ‘track back’ on the current path (Crisfield, 1991). Many procedures are currently
used to predict the continuation direction, i.e. to choose the sign of δλ(1) that carries on
tracing the current solution path. Some criteria are listed below:

(a) Stiffness determinant. Follow the sign of the stiffness determinant |KT (u(0))|:

sign(δλ(1)) = sign(|KT (u(0))|); (4.121)

(b) Incremental work. Follow the sign of the predictor work increment:

sign(δλ(1)) = sign(δūT f̄ ext); (4.122)

(c) Secant path (Feng et al., 1995, 1996). The sign of δλ(1) is determined as

sign(δλ(1)) = sign(∆uT
n δū). (4.123)
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Criteria (a) and (c) are implemented in program HYPLAS. Procedure (a) is widely used
in commercial finite element codes and works well in the absence of bifurcations. In the
presence of bifurcations, however, it is known not to be appropriate and fails in most cases.
As pointed out by Crisfield (1991), its ill-conditioned behaviour stems from the fact that
the sign of |KT | changes either when a limit point or when a bifurcation point is passed.
In this case, the predictor cannot distinguish between these two quite different situations,
unless further (usually computationally expensive) analyses are undertaken. In the presence
of a bifurcation, instead of following the current equilibrium path, the solution will oscillate
about the bifurcation point. This property is mathematically proved by Feng et al. (1997).
Procedure (b), on the other hand, is ‘blind’ to bifurcations and can continue to trace an
equilibrium path after passing a bifurcation point. However, this criterion proves ineffective
in the descending branch of the load-deflection curve in ‘snap-back’ problems, where the
predicted positive ‘slope’ will provoke a ‘back tracking’ load increase. One important feature
shared by the criteria (a) and (b) is the fact that they rely exclusively on information relative
to the current equilibrium point (at the beginning of the increment). The decision on the sign
of δλ is made without considering the history of the currently traced equilibrium path. In
situations such as the ones pointed out above, this may result in wrong direction prediction.
In contrast, a key point concerning criterion (c) is the fact that ∆un carries with it information
about the history of the current equilibrium path. The importance of this fact is established in
the discussion that follows, where, in particular, we show by means of geometric arguments
that the secant predictor can easily overcome the problems associated with criteria (a) and (b).

Secant path. Geometric interpretation

Firstly, let us concentrate on the meaning of the tangential solution, δū. As schematically
illustrated in Figure 4.9, δū is a vector tangent to the equilibrium path in the space of
displacements. In view of its definition (4.115), it points in the direction of the positive
gradient of λ. Thus, δū provides information on the direction (starting from the current
configuration) along which the load factor increases – direction associated with the choice
of positive δλ. Note that δū is not defined at load-reversing points (cf. points S1 and S2 of
Figure 4.9) where KT is singular. The incremental displacement ∆un, on the other hand, is
secant to the equilibrium path and, when sufficiently small, gives a good approximation to the
solution curve within the interval [tn−1, tn]. In other words, ∆un approximates the history
of the current equilibrium path within [tn−1, tn]. A schematic representation is shown in
Figure 4.10. Clearly, when sufficiently small, ∆un indicates the ‘forward’ direction of the
current solution path at un. In order to keep tracing the current path without returning to
previously obtained points, this criterion requires that the incremental displacement of the
predictor solution, δλδū, be in the ‘forward’ direction, that is,

δλ ∆uT
n δū > 0. (4.124)

The above inequality is equivalent to (4.123). In essence, a positive product, ∆uT
nδū,

indicates that the load factor is currently increasing so that the positive sign should be chosen
for the predictor δλ to carry on following the present equilibrium path (Figure 4.10(a)).
Similarly, if ∆uT

n δū is negative, the load factor is decreasing and the negative sign should be
chosen (Figure 4.10(b)).
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Figure 4.9. The tangential solution, δū. (Reproduced with permission from On the determination of the
path direction for arc-length methods in the presence of bifurcations and ‘snap-backs’, EA de Souza
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Figure 4.10. The secant path direction prediction criterion. (a) Load factor is currently increasing:
choose δλ > 0; (b) load factor is currently decreasing: choose δλ < 0. (Reproduced with permission
from On the determination of the path direction for arc-length methods in the presence of bifurcations
and ‘snap-backs’, EA de Souza Neto and YT Feng, Computer Methods in Applied Mechanics and
Engineering, Vol 179, Issue 12 c© 1999 Elsevier Science S.A.)

It is important to emphasise that the secant path criterion is insensitive to the presence of
bifurcations and, provided that ∆un is sufficiently small, does not show the basic deficiency
associated with the criterion based on the sign of |KT |. Also, in the descending branch of
‘snap back’ curves, the secant path predictor should indicate that the load is decreasing
(negative δλ), overcoming the problem associated with the predictor incremental work
criterion. Numerical experiments demonstrating the effectiveness of the secant path criterion
in situations where criteria (a) and (b) fail are shown by de Souza Neto and Feng (1999).

Step-size limitation

The need for sufficiently small ∆un has been stressed above as a condition for producing
reliable indications of the ‘forward’ direction. With regard to this aspect, it is important
to recall that a natural limitation on the maximum size of ∆un is already imposed by the
Newton–Raphson algorithm. If the convergence radius of the Newton–Raphson scheme is
smaller than the maximum size of ∆un that produces an accurate direction prediction, then
no further increment size restrictions are introduced by the use of the secant path predictor
criterion. In fact, numerical experience shows that the maximum increment size is usually
dictated by the Newton–Raphson algorithm rather than by the direction predictor criterion.





5 OVERVIEW OF THE PROGRAM
STRUCTURE

IN Chapter 4, we have described a general strategy for the finite element simulation of linear
and nonlinear solid mechanics problems, including generic path-dependent constitutive

models and finite deformations and strains. Most procedures described there are incorporated
in the standard version of the program HYPLAS that accompanies this book. Throughout their
description, whenever appropriate, reference has been made to the subroutines of HYPLAS
where some of the most relevant computational operations associated with such numerical
procedures are carried out.

In the present chapter we provide a more thorough description of the HYPLAS program,
with emphasis on its structure. The depth at which details of the code are described here is
only what the authors believe to be sufficient to help readers find their way through HYPLAS.
It is by no means intended to be a comprehensive guide to the code. The present chapter is
particularly relevant for researchers who wish to understand and/or modify the basic code
by including new procedures, material models, finite elements, etc. Those who are only
interested in the theoretical and numerical aspects of nonlinear solid mechanics may skip
this chapter and move on to Part Two of the book.

5.1. Introduction

HYPLAS is a finite element code for implicit small and large strain analysis of hyperelastic
and elastoplastic solids in plane stress, plane strain and axisymmetric states.

5.1.1. OBJECTIVES

The main purpose of HYPLAS is to illustrate the computational implementation of numerical
procedures described throughout this book. The general framework adopted is that described
in Chapter 4. It comprises:

(i) a general displacement-based incremental finite element procedure;

(ii) iterative schemes (e.g. Newton–Raphson) for the solution of nonlinear incremental
finite element equations;

(iii) an arc-length scheme for problems involving structural instability.

Within this framework, numerous (elastic and elastoplastic) material models have been
incorporated. The theory and numerical methods underlying the implementation of each

Computational Methods for Plasticity: Theory and Applications EA de Souza Neto, D Perić and DRJ Owen
c© 2008 John Wiley & Sons, Ltd
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material model are thoroughly discussed in Parts Two and Three of this book. Part Two
focuses on the infinitesimal theory and Part Three on the finite strain range. The reader will
find there a detailed description of the associated procedures including, in many cases, the
pseudo-code and the corresponding FORTRAN source code of the relevant routines.

5.1.2. REMARKS ON PROGRAM STRUCTURE

In order to treat a wider range of material models and finite element types within the above
general framework, the structure of HYPLAS has been designed so as to have element type-
specific and material model-specific procedures as more or less self-contained modules which
remain confined to relatively small parts of the program. Element and material model-related
data are also self-contained to some extent.

Due to this modularity, the code of, say, a constitutive integration algorithm for a
particular material model can be easily identified with the corresponding description provided
in this book. In addition, the adopted program structure makes the incorporation of new
material models and finite element types relatively straightforward tasks (once the associated
numerical procedures have been coded by the developer). This feature is particularly relevant
for researchers who wish to use HYPLAS for the development, implementation and testing of
new constitutive models/algorithms as well as finite elements.

Clarity of coding

When developing a computer code, programmers are frequently faced with the dilemma:
clarity versus efficiency. Finite element codes are no exception. We do not mean that clarity
of coding and computational efficiency are opposing concepts but, as a general rule, excessive
optimisation of computer operations tends to result in cumbersome, difficult-to-follow source
codes.

In view of the educational purposes of HYPLAS, the programming philosophy adopted in
its development has been biased towards code clarity and modularity. This is particularly true
for the numerical procedures whose theory is described in this text.

Cross-referencing. Comment lines

The reader will also find that numerous comments have been added to the source code.
Frequently, the comments indicate where in the book the procedure being carried out is
described. Whenever convenient, the routines of HYPLAS involved in the computational
implementation of procedures described in the book are also indicated in the text. This
should allow a relatively easy cross-referencing between theory and corresponding computer
implementation.

5.1.3. PORTABILITY

The code of HYPLAS is entirely written in (almost) standard FORTRAN 77 programming
language (ANSI, 1978). The existing exceptions to the FORTRAN 77 standards are known
to be accepted by most currently available compilers.
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5.2. The main program

The main program of HYPLAS can be divided into three basic parts:

1. Data input and initialisation. The data input and initialisation phase is carried out at
the very beginning of the execution of the program. At this stage all data defining the
problem to be analysed are read from the relevant files and all necessary arrays are
initialised.

2. The incremental finite element procedure. This is the main body of the program,
where the numerical procedures discussed in Chapter 4 are implemented. Essentially,
it consists of a main loop over load increments with a nested loop over equilibrium
iterations. The procedure has been conceptually described in Boxes 4.1–4.4 of the
previous chapter.

3. Output of converged results. This comprises all output operations necessary to print
converged finite element solutions into the results file and/or dump an image of the
database into a restart output file. Output routines are called from inside the main loop
over load increments.

These components are described in more detail in the following sections.

5.3. Data input and initialisation

The first operations carried out as the execution of HYPLAS is initiated, comprise the opening
of files accessed during the execution, reading of input data and initialising of most global
arrays. Input data can be read:

(a) either from an input data file only,

(b) or from an input restart file and an input data file.

The input data file is an ASCII format file which, in case (a), contains all information about
the problem to be analysed. Under option (b), most of the problem definition is read from
an input restart file. This is a binary file generated during a previous execution of HYPLAS. It
contains an image of the complete database at the time of its creation. In this case (case (b)),
the finite element analysis is restarted from where the restart file was created. The only
information read from the relevant (ASCII) input data file, is the data related to the definition
of the proportional load incrementation programme. The flowchart of the procedure is shown
in Figure 5.1, where the main routines involved are indicated.

5.3.1. THE GLOBAL DATABASE

The global database of HYPLAS stores most arrays and program control parameters required
in the finite element solution process. The corresponding data can be classed into two basic
categories:

(i) Problem-defining (fixed) data. These are data that do not change during the solution
process such as initial nodal coordinates, topology of the finite element mesh (nodal
connectivities), material and element properties, kinematic constraints and applied
external loads as well as various control parameters required in the finite element
analysis.
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Figure 5.1. Data input and initialisation. Flowchart.

(ii) Solution-related (variable) data. Data that change during the solution process. Typical
solution-related data are nodal displacements, current nodal coordinates (changes in
large deformation analysis only), stresses and state variables in general at Gauss points,
arrays storing element internal forces, etc.

The global database is defined in the include file GLBDBASE.INC. The reader is referred to
the comment lines of this file for a description of the data stored in the arrays and variables
of the global database. These will be further explained in this chapter only when convenient
for a better understanding of the program. All arrays of the database have fixed dimension
and are grouped in a number of COMMON blocks. File GLBDBASE.INC is included in all
routines that require data stored in any of the COMMON blocks of the global database. The
array-dimensioning parameters defining the dimensions of the global database arrays are set
in the include files MAXDIM.INC, MATERIAL.INC and ELEMENTS.INC (refer to their
comment lines). File MAXDIM.INC sets the parameters that define the maximum admissible
problem size that can be analysed. Files MATERIAL.INC and ELEMENTS.INC set,
respectively, maximum array dimensions required by the currently implemented material
models and element types. These are discussed further in Sections 5.6 and 5.7.

Variables and arrays (or array components) containing data of type (i) are set once and for
all in subroutines INDATA, INLOAD and ININCR, according to the input data file. If in restart
mode, the data otherwise read and set in INDATA and INLOAD are retrieved from the input
restart file by subroutine RSTART. In the data input and initialisation phase of HYPLAS, data
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of type (ii) are initialised in subroutine INITIA. If in restart mode, current values at the last
equilibrium (converged) solution are retrieved instead from the input restart file in RSTART.

5.3.2. MAIN PROBLEM-DEFINING DATA. SUBROUTINE INDATA

This routine reads, from the input data file, the geometry of the problem, mesh topology,
kinematic constraints, material properties, element properties as well as most program control
parameters including: analysis type (plane stress, strain or axisymmetric) flag, nonlinear
solution algorithm, etc.

INDATA also carries out a number of checks to ensure the validity of the given data.
If unacceptable data is detected (such as undefined or multiply defined nodal numbers,
coordinates, etc.), then an error message is printed (by routine ERRPRT) and the execution
of the program is aborted.

5.3.3. EXTERNAL LOADING. SUBROUTINE INLOAD

Subroutine INLOAD reads the input data defining the external loading and assembles the
global external force vector

f̄
ext

(refer to expressions (4.67) and (4.68)). The components of f̄
ext

are stored in the global array

RLOAD.

The loading types implemented in INLOAD are

• Point load. Forces defined directly at nodal points. In this case, the corresponding
prescribed values are assigned to their appropriate position in array RLOAD.

• Gravity load. Assembled from the element load vectors

ρ g

∫
Ω(e)

NT g dv ≈ ρ g

ngausp∑
i=1

wi j(ξi) N(ξi)
T g, (5.1)

where the input data ρ, g and g are, respectively, the material density, the gravity
acceleration and the unit vector defining the direction of the gravity acceleration.

• Distributed load at element boundaries (edges in two dimensions). Assembly of
element vectors ∫

∂Ω
(e)
t

NT
b t da ≈

ngausb∑
i=1

wi j(ξi) Nb(ξi)T t, (5.2)

where ∂Ω(e)t is the loaded edge of the boundary of element e, Nb is the boundary shape
function associated with the loaded boundary and ngausb is the number of Gauss points
used for numerical integration over the element boundary. Array t is the array of nodal
pressure vectors of the loaded edge. The above numerical integration is carried out for
each loaded edge of the element.

Some checks are also made in INLOAD to detect incorrect data.
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5.3.4. INITIALISATION OF VARIABLE DATA. SUBROUTINE INITIA

This routine initialises some arrays and problem control variables. Arrays such as dis-
placements (incremental, iterative and total) are initialised to zero. Stresses and other state
variables (most arrays of COMMON block STATE), which are defined at the Gauss point level,
are initialised by material-specific routines called from subroutine MATISW. The convenience
of using material-specific routines for state variable initialisation is discussed in Section 5.7.

5.4. The load incrementation loop. Overview

Let us now focus on the core of the finite element analysis code: the load incrementation loop.
The main load incrementation loop carries out the proportional loading programme either
with prescribed (fixed) load increments (where the incremental load factors are prescribed
in the input data file) or via an arc-length method. In the latter case, the proportional load
increments are determined along the process according to the cylindrical arc-length procedure
described in the previous chapter.

Within each step of the loop over load increments, an iterative procedure (typically the
Newton–Raphson algorithm) is carried out to solve the nonlinear equilibrium problem. The
pseudo-code of the overall scheme is given in Boxes 4.1–4.3 for the fixed increments option.
The inner (equilibrium iteration) loop for the combined Newton–Raphson/arc-length scheme
is summarised in Box 4.4.

5.4.1. FIXED INCREMENTS OPTION

A flowchart illustrating the main steps of the load increment loop under the fixed increments
option is shown in Figure 5.2. The main routines called from the HYPLAS main program are
indicated.

Under this option, the incremental load factors for each increment are fixed, as defined
in the input data file. If the increment cutting procedure (Section 5.4.3) is activated, the
current incremental load factor is split into two equally sized sub-increments. In the present
implementation, the loop over load increments is ended either if the load programme
is successfully completed (the last prescribed increment converges) or if the number of
successive increment cuts causes the sub-increment stack array DFSUB to become full.

5.4.2. ARC-LENGTH CONTROL OPTION

Under arc-length control, the flow of the main program is a small variation of that followed
with prescribed load increments. The corresponding flowchart is shown in Figure 5.3. The
essential difference is that the proportional load increment factor here is recalculated (routine
ARCLEN) in each pass of the iteration loop whereas, with fixed increments, the external load is
incremented (in INCREM) before the iteration loop starts. Also, the arc-length method requires
the solution of the linear system (in FRONT) for two right-hand sides (refer to item (iii) of
Box 4.4).

In the present arc-length implementation, the arc length, l, is changed at the end of every
increment (after convergence) according to the number of iterations required to achieve
convergence within the prescribed tolerance. The idea is to allow the arc length to increase
when convergence is ‘easy’ and to reduce it if convergence is ‘difficult’, trying to obtain
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Figure 5.2. The load incrementation loop. Fixed increments option.

convergence in a desired number of iterations, nitdes (prescribed in the input data file). With
nitact and lcurr denoting, respectively, the number of iterations for convergence and the arc
length used in the current step, the new length lnext to be used in the next step is set (in
subroutine LENGTH) as

lnext = lcurr
nitdes
nitact

. (5.3)

The new length is not allowed to be larger than a maximum value lmax.
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Figure 5.3. The load incrementation loop. Arc-length control.

Start-up length.

Obviously, at the beginning of the first iteration of the very first load increment, the above
length adjustment cannot be applied. Since it is not normally easy to imagine the magnitude
of l that would be reasonable for a particular problem, the start-up length, l0, is calculated
(in ARCLEN) by specifying (in the input data file) an initial load increment factor, ∆λ0, and
setting

l0 =
√

∆λ20 δūT ū (5.4)
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where ū is the initial tangential solution (see item (iii) of Box 4.4). The maximum length
lmax is also set at this stage as

lmax = p l0, (5.5)

where p is the maximum arc-length parameter (defined in the input data file).

Predictor solution.

The present implementation allows the choice of the sign of the predictor solution (refer to
Section 4.4.3) to be made by two criteria: the stiffness determinant sign or the secant path
predictor. The predictor solution is computed in subroutine ARCLEN.

Stopping the load incrementation loop.

Under arc-length control, the iteration loop is broken and the program stopped if a maximum
prescribed load factor has been exceeded or if a maximum prescribed number of successful
(converged) load steps has been completed.

5.4.3. AUTOMATIC INCREMENT CUTTING

An automatic increment cutting facility is available in HYPLAS (see dashed lines in the
flowcharts of Figures 5.2 and 5.3). This facility proves extremely useful in general nonlinear
analysis. It frequently occurs that a converged equilibrium solution cannot be attained in the
equilibrium iterations. Whenever that happens, the increment cutting procedure is activated
and the current step is restarted (from the last converged solution) with reduced increment
size. The causes of failure to converge are

• The load increment is too large. The total prescribed load (with fixed increments
option) is beyond the limit load of the structure or the initial guess, u(0)n+1 (refer to
Box 4.2), falls outside the convergence radius of the iterative solution method. In
this case the residual norm will either diverge or not converge within a reasonable
number of iterations. A possible alternative (not available in HYPLAS) to increase the
convergence radius is the incorporation of line-searches (Crisfield, 1991) within the
equilibrium iterations.

• The algorithm for numerical integration of path-dependent constitutive equations (the
state update procedure) fails to produce a solution at a Gauss point. This is normally
caused by excessively large strain increments. Highly nonlinear material models can
be particularly prone to this type of ill behaviour and some more complex algorithms
may fail even for relatively small increments. Certain measures can be taken to make
constitutive algorithms more robust and avoid the problem. This issue is addressed in
Part Two of this book.

• The linear equation system cannot be solved in FRONT due to a zero pivot in the stiffness
matrix. This may occur for material models whose tangent operator may become
singular under certain states of stress.
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• For arc-length control only. The arc-length constraint equation (4.116), solved in
routine ARCLEN, may have no real roots. This problem is also generally overcome by
reducing the increment size (the arc length, l, in this case) and restarting the current
step with the reduced value of l.

5.4.4. THE LINEAR SOLVER. SUBROUTINE FRONT

The linear system solution is carried out in subroutine FRONT which uses the classical
frontal method (Hinton and Owen, 1977; Irons, 1970). In the frontal method, the linear
system is solved by Gauss elimination. The equations are assembled, with the appropriate
contribution of individual elements to the global stiffness matrix and load vector, and
eliminated simultaneously. Details of the technique are described elsewhere (Hinton and
Owen, 1977) and will not be discussed here.

In the present implementation, the equation system is solved for up to two right-hand sides.
Note that the solution for two right-hand sides is required by the arc-length method. In this
case, the stiffness matrix is reduced only once. The number of right-hand sides for which the
solution is required is set in the local variable NRHS. Another local control flag used by this
routine is the integer MODE. If MODE=1, the standard system

KT δu = −r (5.6)

is solved for δu. If MODE=2, the tangential solution of the arc-length method, δū, is obtained
instead by solving

KT δū = −f̄
ext

. (5.7)

If MODE=3, then both solutions are obtained. The variable KRESL controls whether or not a
new stiffness is computed. If KRESL=1, then a new stiffness is required. When the standard
Newton–Raphson algorithm is used, KRESL is always set to 1. If KRESL=2, then the stiffness
of the previous iteration is to be reused in the current iteration and only the load term will be
reduced (this situation will occur, for instance, when the initial stiffness method is used).

The global arrays of HYPLAS used exclusively by the frontal solver are not included in
the global database (file GLBDBASE.INC). They are grouped in the COMMON block named
FRONTA.

5.4.5. INTERNAL FORCE CALCULATION. SUBROUTINE INTFOR

Subroutine INTFOR computes the element internal force vector of all elements of the mesh.
For each element, it calls the internal force evaluation routine of the corresponding element
class. Stresses and all other relevant variables defined at the Gauss point level are updated
(at a lower layer of code) by material-specific state updating procedures during internal force
computation. Further details on the structure of HYPLAS regarding the evaluation of internal
forces and general state updating are given in Section 5.5.

5.4.6. SWITCHING DATA. SUBROUTINE SWITCH

Some arrays of the global database store data related to the current iteration (generally not
an equilibrium state) as well as values obtained in the last converged (equilibrium) solution.
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This applies to all arrays of COMMON block STATE (see comments in file GLBDBASE.INC).
Switching between current and last converged data is managed by subroutine SWITCH as
follows (refer to source code). Before a material-specific state updating procedure is called
(this is required during the calculation of the internal force vector in the element class-specific
routines called from ELEIIF), the previous converged values are assigned to the positions
corresponding to the current values. These are passed on to the state-updating procedure
which returns (in the same position) the updated (or current) values. When the iterative
procedure converges, the converged values need updating. The current values (which have
converged at this point) are then assigned to the corresponding array positions that store
converged data. Appropriate switching/resetting is also needed when increment cutting is
activated. Most arrays of COMMON block STATE are switched in material-specific routines
(see Section 5.7). In large deformation analysis, array COORD (in COMMON block MESH) of
nodal coordinates also needs switching between current and last converged values. Other
arrays, such as the total, incremental and iterative nodal displacement vectors also require
switching/resetting. The type of switching operation carried out by SWITCH depends on the
integer argument MODE.

5.4.7. OUTPUT OF CONVERGED RESULTS. SUBROUTINES OUTPUT AND RSTART

Once the equilibrium iteration loop has converged, the results are, if required, printed in the
results file. Printed results can be nodal displacements, reactions, state variables at Gauss
points and (extrapolated) state variables at nodes. The operations of output to results file are
performed by subroutine OUTPUT. At this point, an image of the complete database of the
program can also be dumped into a (binary) restart file to allow HYPLAS to be restarted later
from that point. Output to the restart file is carried out by routine RSTART.

Output control, i.e. when and what to output, is made with the output control flags stored
in arrays NOUTP and NOUTPV.

5.5. Material and element modularity

In the above, we have provided an overview of the main program with a summary description
of the input phase and the main load incrementation loop. The basic steps executed are, to a
large extent, independent of finite element types and material models adopted. In designing
the structure of HYPLAS, this feature has been exploited to allow a relatively high degree of
modularity of finite element types and constitutive models/algorithms. Brief reference to the
modularity of elements and material models in HYPLAS has been made in Section 5.1.2. This
will be addressed here in more detail.

The basic idea consists of confining element-specific and material-specific operations to
localised areas of the code and avoiding interference with general procedures that are not
material- or element-related. The concept is illustrated in the following example.

5.5.1. EXAMPLE. MODULARISATION OF INTERNAL FORCE COMPUTATION

An example where clear distinction can be made between element-specific operations,
material-specific operations and the ‘rest’ of the program occurs in the computation of
the element internal force vector. This is illustrated in the call tree of Figure 5.4. When
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Figure 5.4. Element and material modularity in internal force computation.

element internal forces need to be computed within the equilibrium iteration loop, the main
program calls subroutine INTFOR (refer to the flowcharts of Figures 5.2 and 5.3). INTFOR
loops over all elements of the mesh and calls the element interface routine for internal force
calculation ELEIIF (see call tree of 5.4). Before ELEIIF is called, only operations related
to the general incremental procedure, with no distinction between different types of finite
element or material, are carried out.

Material and element levels

At this point, it is worth recalling how the element internal force vector is computed:

f int(e) :=
ngausp∑

i=1

wi j(ξi) B(ξi)
T σ|ξi . (5.8)

The Gaussian quadrature weights, wi, the Gauss points positions, ξi and the way in which
the Jacobian, j, and the strain-displacement matrix, B, are computed depend only on
the particular element being used. More precisely, they depend on the element class to
which the adopted element belongs.† The calculation of these quantities is independent of
the underlying material model. The stress array, on the other hand, is the outcome of a
state update procedure which depends exclusively on the adopted material model and the

†The definition of element class is given in Section 5.6.
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algorithm used to integrate its constitutive equations (if the material is path-dependent). In the
general path-dependent case, under infinitesimal strains, the state update algorithm defines an
incremental constitutive function

σ = σ̂(αn, εn+1) (5.9)

within the typical interval [tn, tn+1]. In the above, αn is the set of internal variables at the
converged state at tn and εn+1 is the given strain at the end of the interval. The incremental
constitutive function can be expressed in the equivalent form‡

σ = σ̂(αn, ∆ε), (5.10)

where the function arguments are the incremental strains,

∆ε ≡ εn+1 − εn = ∇s(∆u), (5.11)

and the set αn which now contains the converged internal state variables at time station tn
and the strain εn.§ In HYPLAS, the incremental strain is the actual argument passed into the
state update interface in the infinitesimal case. In finite strain analysis, the corresponding
argument is the incremental deformation gradient,

F∆ ≡ I + ∇n(∆u) = [I −∇n+1(∆u)]−1, (5.12)

and the incremental constitutive function is represented as

σ = σ̂(αn, F∆). (5.13)

Based on the above comments, the computation of the internal force vector can be split
into two well-defined levels:

1. The element level. Here, all element-related quantities (wi, j, B) are computed together
with the essential kinematic variable ∆ε (F∆ in large strains). The incremental strain
(or deformation gradient) is passed on to the material level which returns the updated
stress. With the updated stress at hand, the internal force vector is assembled according
to (5.8).

2. The material level. This is the lowest layer of code. It receives the incremental strain
(or deformation gradient) from the element level, retrieves the relevant converged state
variables αn stored in appropriate arrays and updates the stress by using the material
model-specific subroutine that defines the incremental function (5.10). The updated
stress is returned to the element level.

‡Note that, formally, the function on the right-hand side of (5.9) differs from that on the right-hand side of (5.10)
in that it has different arguments. Throughout the text, however, we shall employ the symbol σ̂ to denote algorithmic
(incremental) constitutive functions for the stress tensor in general, regardless of their list of arguments.

§As we shall see later, in computations with elastoplastic/viscoplastic models, it will be convenient to have the
elastic strain of time station tn, rather than the strain εn, as part of αn.
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HYPLAS implementation

In HYPLAS, the element level starts in subroutine ELEIIF. This routine identifies the element
class and calls the appropriate element class-specific internal force computation routine.
The element class-specific routine (e.g. IFSTD2 for standard two-dimensional isoparametric
elements), in turn, calls the material interface for state update, MATISU. The material
level starts here. MATISU identifies the material model/algorithm in question and calls the
corresponding material-specific state updating procedure (e.g. routine SUTR for the Tresca
elastoplastic model).

As we shall see in the following sections, the modularity concept discussed here is applied
not only to the internal force computation, but also to the evaluation of the element tangent
stiffness and some input/output operations. It makes the program particularly suitable for the
incorporation of new elements and material models and/or modification of the existing ones.

5.6. Elements. Implementation and management

Finite elements in HYPLAS are grouped into element classes. One element class may contain
several element types. Within the program, each element class and type is identified by a
unique enumeration parameter set in the include file ELEMENTS.INC. This file defines
our element database. It also sets maximum dimensioning parameters for some arrays of the
global database whose size depends on properties of the available elements.

We define as an element class (this definition is by no means strict) a family of elements
whose main operations for computation of internal force vector and tangent stiffness matrix
follow the same steps. Thus, each element class has one subroutine for computation of the
internal force vector and one subroutine for stiffness evaluation. These routines are used by
all element types of the class. What differentiates element types within the same class are only
trivial characteristics such as number of nodes, Gaussian integration rule, shape functions and
so on.

All two-dimensional isoparametric elements of HYPLAS, for instance, form one class. The
internal force computation for this class is carried out in routine IFSTD2 (see call tree of
Figure 5.4). The stiffness is computed in STSTD2.

5.6.1. ELEMENT PROPERTIES. ELEMENT ROUTINES FOR DATA INPUT

The essential data defining one element type within a class is stored in COMMON block ELEMEN
(refer to file GLBDBASE.INC). The data is stored in the arrays

IELPRP and RELPRP,

that contain, respectively, integer and real element properties. Typical element properties are
listed below:

• Integer element properties. Number of nodes, number of degrees of freedom, number
of Gauss points, number of boundaries, node ordering on boundaries, etc.

• Real element properties. Gauss quadrature weights and positions for domain and
boundary integration, extrapolation matrices to extrapolate Gauss point values to nodes
(used for output purposes only), etc.
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Each group of elements in the structure (as defined in the input data file) is assigned one
element type. The properties of the element type assigned to an element group IGRUP are
stored in the columns

IELPRP( ,IGRUP) and RELPRP( ,IGRUP),

of the element properties arrays. These data are used by the corresponding element class-
specific subroutines for computation of internal force and tangent stiffness matrices. Element
properties are also used in the evaluation of the external load vector carried out in INLOAD.

Element type-specific data input routines

Element properties are assigned to the arrays of COMMON block ELEMEN during the input phase
of the program (refer to source code of subroutine INDATA). To read the relevant data from
the input data file and assign all necessary properties to IELPRP and RELPRP, each element
type uses its own routine. Such subroutines are named following the convention:

RSxxxx.

For instance, subroutines RST3 and RSQ4 read and set data, respectively, for the isoparametric
three-noded triangle and four-noded bi-linear quadrilateral. These routines are called only
once during the program execution.

5.6.2. ELEMENT INTERFACES. INTERNAL FORCE AND STIFFNESS
COMPUTATION

The modularisation of elements in the internal force computation has been discussed in
Section 5.5.1. Subroutine ELEIIF in this case is the element interface routine that controls the
evaluation of the element internal force vector. The basic task of the element interface here is
to identify the class of the element whose internal force is required and call the appropriate
class-specific internal force evaluation routine. For standard isoparametric two-dimensional
elements, the class-specific routine is IFSTD2. For F -bar elements (discussed in Chapter 15),
the corresponding class-specific routine is IFFBA2.

The evaluation of the element tangent stiffness matrix is also carried out in a modular
structure completely analogous to that shown in Figure 5.4. The corresponding call tree is
shown in Figure 5.5. At the element level, we have the interface routine ELEIST (called
from FRONT) whose task is to identify element classes and call the class-specific routine for
computation of the element tangent stiffness. The class-specific routines for standard and
F -bar elements are STSTD2 and STFBA2, respectively.

5.6.3. IMPLEMENTING A NEW FINITE ELEMENT

In this section, we provide a summary of the basic path to be followed in order to include a
new finite element into HYPLAS.
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Figure 5.5. Consistent tangent computation. Modular structure.

A new element of an existing class

Assume that we want to include a new element type belonging to an existing element class.
In this case, basic class-related internal force and stiffness computation routines already exist
and do not need to be changed. The implementation of the new element requires coding of
the following new element type-specific procedures:

1. The element data input/setting routine (RSxxxx).

2. The routine for evaluation of shape functions and shape function derivatives (SFxxxx).
These routines have not been discussed above. They are called by SHPFUN which is
used by element classes available in the program. Subroutine SHPFUN is the interface
for shape function/shape function derivatives computation. It identifies the element type
and calls the corresponding element type-specific shape function/derivative routine
(refer to the source code of subroutine SFT3 or SFQ4). New classes of element that
do not use this structure will not require shape function routines coded in this way.

In addition, a new element-type identification parameter has to be added to the include file
ELEMENTS.INC. For the interested reader a good exercise could be to include, say, the
nine-noded Lagrangian isoparametric quadrilateral.



OVERVIEW OF THE PROGRAM STRUCTURE 131

A new element class

Obviously, this will require more work than to include an element of an existing class. In
addition to the above procedures, we need to code new element class-specific stiffness and
internal force evaluation routines. This is the most demanding part. Also, a new element-
class identification parameter has to be added to file ELEMENTS.INC, and calls to the new
routines have to be included in the element interfaces ELEIIF and ELEIST.

5.7. Material models: implementation and management

Material models (or types) are also grouped into classes. Material types and classes are
identified by identification parameters defined in the include file MATERIAL.INC. This
file is the material database of HYPLAS. Grouping materials into classes is not absolutely
necessary for modularity but becomes convenient particularly in the finite strain regime when,
for instance, a number of models may require identical transformation of the basic kinematic
variable (F∆) before the essential state updating procedure can be applied. A typical example
is the class of isotropic elastoplasticity models implemented in the program (which also
includes the linear elastic model). The identification parameter of this class is HYPEPL (see
file MATERIAL.INC). Under finite strains, all materials of this class are logarithmic strain-
based extensions of the corresponding infinitesimal models (the linear elastic model, for
instance, turns into the Hencky material). The Hencky material is discussed in Chapter 13
and the finite elastoplasticity models are described in Chapter 14. In this case, the actual
stress updating requires the computation of a logarithmic strain measure which is obtained
for all models by performing identical operations on the basic kinematic variable, F∆. It
then turns out conveniently – it avoids excessive repetition of code – to group all such models
into a single material class and to perform the common extra kinematic operations before the
actual material type-related procedure (which is unique for each model) starts.

5.7.1. MATERIAL PROPERTIES. MATERIAL-SPECIFIC DATA INPUT

Integer and real material properties are stored, respectively, in the arrays

IPROPS and RPROPS,

of COMMON block MATERL (see include file GLBDBASE.INC). The data stored in these arrays
include all parameters required by the continuum constitutive model and, if required, may
also contain other parameters related to the specific numerical algorithm adopted to integrate
the constitutive equations of the model. Examples of integer and real material properties are:

• Real material properties. Usual properties such as Young’s modulus, Poisson’s ratio,
parameters defining hardening curves of elastoplastic materials, etc.

• Integer material properties. Number of points defining a piecewise linear hardening
curve for elastoplastic materials, number of terms in the series defining an Ogden-type
finite strain hyperelasticity strain energy function, etc.

The situation here is analogous to the storage of element properties discussed in Section 5.6.1.
Each group of elements defined by the user in the input data file is assigned one material type
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with one set of material properties. The material properties of a generic group IGRUP are
stored in the columns

IPROPS( ,IGRUP) and RPROPS( ,IGRUP),

of the material properties arrays.

Material-specific data input routines

In the program, material-specific data are read from the input data file in material-specific
subroutines; that is, each material type has its own self-contained subprogram that reads all
material model/algorithm-related data and stores them in arrays IPROPS and RPROPS. The
routines that execute this task are named following the convention:

RDxxxx.

For example, all data for the von Mises piecewise linear isotropic hardening model are read
and set in subroutine RDVM. For the Ogden hyperelastic model, the corresponding routine is
RDOGD.

The material interface for data input

Calls to all material-specific input data routines are controlled by the material interface
routine

MATIRD

(MATerial Interface routine for Reading and setting material-specific Data). The interface
routine identifies the material type in question and calls the appropriate input routine.

5.7.2. STATE VARIABLES AND OTHER GAUSS POINT QUANTITIES.
MATERIAL-SPECIFIC STATE UPDATING ROUTINES

All variables that define the state of the material at the Gauss point level are stored in the
arrays of COMMON block STATE (defined in file GLBDBASE.INC). These include the stress
components (stored in array STRSG), general real state variables (stored in RSTAVA), the
Gauss point thickness (array THKGP) as well as the arrays RALGVA and LALGVA which store,
respectively, real and logical algorithmic variables.

Array RSTAVA may store any state variable (other than the stress components) needed by
the state updating procedure and/or required for output purposes. Typical real state variables
are internal variables of the model, strain components, etc. The algorithmic variables stored in
RALGVA and LALGVA are variables related to the constitutive integration algorithm employed
to update the state of the material. Simple examples of real algorithmic variables are the
incremental plastic multipliers associated with elastoplastic algorithms. A logical algorithmic
variable can be, for instance, a flag telling us whether the material point is in elastic or
elastoplastic regime. The Gauss point thickness stored in THKGP is a variable only in large
strain analysis under plane stress.
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The arrays of COMMON block STATE store both current and last converged values of the
corresponding variables. The array positions having the last index equal to 1, such as

STRSG( , ,1)

for the Gauss point stresses, store the current values. Positions with the last index equal to 2,
such as

STRSG( , ,2),

contain the last equilibrium converged values.

Material-specific state updating procedure

Here, we described in more detail the structure of the material level layer of Figure 5.4.
Let us recall that, within the overall incremental finite element scheme, each material model
implementation is defined by incremental constitutive functions, σ̂ and α̂, such that the state
{σn+1, αn+1} at a Gauss point is symbolically represented as

σn+1 = σ̂(αn, ∆ε)

αn+1 = α̂(αn, ∆ε).
(5.14)

In the finite strain case, the above functions are defined in terms of the incremental
deformation gradient, F∆, rather than ∆ε. For path-dependent constitutive models, the
format of the incremental functions depends not only on the material model in question but
also on the algorithm used to integrate its constitutive equations.

In the HYPLAS program, each material model implementation has a material-specific state-
updating procedure that defines a pair of functions {σ̂, α̂}. The state-updating procedures
(subroutines) are named according to the rule

SUxxxx.

For the von Mises elastoplastic model, for instance, we have the subroutines SUVM (general
case) and SUVMPS (plane stress algorithm).

The material interface for state updating

The management of calls to material-specific state-updating subroutines is carried out by the
material interface routine

MATISU

(MATerial Interface for State-Updating routine calls). This routine identifies the material
class and type, performs extra class-specific kinematic operations (if necessary) and then
calls the material type-specific routine SUxxxx.

5.7.3. MATERIAL-SPECIFIC SWITCHING/INITIALISING ROUTINES

The nature of the variables stored in the arrays of COMMON block STATE depends on the
material model and algorithm in question. To keep the modularity of material models,
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it is thus convenient to perform the operations of initialisation of variables as well as
switching between current and previous converged values in material-specific routines. The
switching/initialising subroutines are named as

SWxxxx.

For the von Mises and Ogden models we have, respectively, the routines SWVM and SWOGD.

The material interface for switching/initialisation

All calls to material-specific switching/initialisation routines are made from the single
material interface routine

MATISW

(MATerial Interface for SWitching/initialisation of data).

5.7.4. MATERIAL-SPECIFIC TANGENT COMPUTATION ROUTINES

The call tree for computation of material-related tangent operators is illustrated in Figure 5.5
(material level). In line with the material modularity discussed in the above, the computation
of the consistent tangent operators (4.81) and (4.98), required in the assemblage of element
tangent stiffness matrices, is also carried out in material-specific routines. The name conven-
tion adopted for such routines is

CTxxxx

for computation of infinitesimal consistent tangent operators (defined by (4.81)), and

CSTxxx

for consistent spatial tangent moduli (defined by (4.98)) needed in finite strain analyses. In
this case, the material-specific routine for the von Mises model is named CTVM. The Ogden
hyperelastic model uses subroutine CSTOGD.

The material interface for tangent computation

A material interface routine is also used to call the tangent operator computation subroutines.
It identifies the material and calls the appropriate tangent computation routine. The MATerial
Interface for Consistent Tangent computation is named

MATICT.

5.7.5. MATERIAL-SPECIFIC RESULTS OUTPUT ROUTINES

Finally, we describe the last material-related operation: the output of material-specific data to
a results file. Whenever required, all variables other than the stress components and principal
stresses (which are common to all material models) are written to the results file by material-
specific routines.

The reason for adoption of material-specific routines in the output phase is simple:
variables that are important for certain material models may be meaningless for other models.
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For instance, the von Mises effective stress is important for metals but may be of no relevance
for concrete failure models. Thus, the use of material-specific routines at this stage is
convenient in order to print out only relevant results and keep, at the same time, a clean
and modular structure. These routines are named in HYPLAS according to the convention

ORxxxx.

The output routine for the von Mises model, for instance, is named ORVM.

Material interface for results output

Again, a material interface routine is used to control calls to material-specific routines. The
MATerial Interface to Output Results is the subroutine

MATIOR.

5.7.6. IMPLEMENTING A NEW MATERIAL MODEL

Within the modular structure described above, the incorporation of a new material
model/algorithm into HYPLAS, requires the following basic steps:

1. Add new entries to the materials database. Add a new material-type identification
parameter to the materials database (include file MATERIAL.INC). A new material
class identification parameter needs to be added too, only if the new material belongs
to a newly defined class. The maximum dimensioning parameters of file MATE-
RIAL.INC have to be increased accordingly if the new material model requires more
storage space.

2. Write new material-specific routines. The developer needs to code five material-specific
routines. The crucial material-defining routines are

2.1 The state updating procedure, SUxxxx. For path-dependent materials this is a
numerical algorithm for integration of the corresponding constitutive equations.

2.2 The routine for computation of the associated consistent tangent operator,CTxxxx
(CSTxxx in finite strains).

2.3 The routine for switching and initialising material-related variables, SWxxxx.

Most of the programming work is concentrated in items 2.1 and 2.2. In addition, the
following auxiliary routines are required:

2.4 The routine for material data input RDxxxx.

2.5 The routine for output of material-related results ORxxxx.

3. Add new calls to the material interface routines. Finally, calls to the above routines
have to be added to the corresponding material interfaces: MATISU, MATICT, MATISW,
MATIRD and MATIOR.

Note that changes to the existing code are needed only in the material database file
MATERIAL.INC and in the above material interface routines.





Part Two
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6 THE MATHEMATICAL THEORY
OF PLASTICITY

THE mathematical theory of plasticity provides a general framework for the continuum
constitutive description of the behaviour of an important class of materials. Basically,

the theory of plasticity is concerned with solids that, after being subjected to a loading
programme, may sustain permanent (or plastic) deformations when completely unloaded.
In particular, this theory is restricted to the description of materials (and conditions) for
which the permanent deformations do not depend on the rate of application of loads and is
often referred to as rate-independent plasticity. Materials whose behaviour can be adequately
described by the theory of plasticity are called plastic (or rate-independent plastic) materials.
A large number of engineering materials, such as metals, concrete, rocks, clays and soils
in general, may be modelled as plastic under a wide range of circumstances of practical
interest. The origins of the theory of plasticity can be traced back to the middle of the
nineteenth century and, following the substantial development that took place, particularly in
the first half of the twentieth century, this theory is today established on sound mathematical
foundations and is regarded as one of the most successful phenomenological constitutive
models of solid materials.

The present chapter reviews the mathematical theory of plasticity. The theory presented
here is restricted to infinitesimal deformations and provides the basis for the numerical
simulation of the behaviour of elastoplastic solids to be discussed in Chapter 7. We remark
that only the most important concepts and mathematical expressions are reviewed. Attention
is focused on the description of mathematical models of elastoplastic materials and, in
particular, issues such as limit analysis and slip-line field theory are not addressed. For a
more comprehensive treatment of the theory of plasticity, the reader is referred to Hill (1950),
Prager (1959), Lubliner (1990) and Jirásek and Bažant (2002). A more mathematically
oriented approach to the subject is presented by Halphen and Nguyen (1975), Duvaut and
Lions (1976), Matthies (1979), Suquet (1981) and Han and Reddy (1999).

This chapter is organised as follows. In Section 6.1, aspects of the phenomenological
behaviour of materials classed as plastic are discussed and the main properties are pointed
out in the analysis of a simple uniaxial tension experiment. The discussion is followed, in
Section 6.2, by the formulation of a mathematical model of the uniaxial experiment. The
uniaxial model, though simple, embodies all the essential concepts of the mathematical
theory of plasticity and provides the foundation for the general multidimensional model
established in Section 6.3. The remainder of the chapter focuses on the detailed description
of the plasticity models most commonly used in engineering analysis: the models of
Tresca, von Mises, Mohr–Coulomb and Drucker–Prager. The corresponding yield criteria are
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described in Section 6.4. Plastic flow rules and hardening laws are addressed, respectively, in
Sections 6.5 and 6.6.

6.1. Phenomenological aspects

In spite of their qualitatively distinct mechanical responses, materials as contrasting as metals
and soils share some important features of their phenomenological behaviour that make
them amenable to modelling by means of the theory of plasticity. To illustrate such common
features, a uniaxial tension experiment with a metallic bar is discussed in what follows.

Typically, uniaxial tension tests with ductile metals produce stress–strain curves of the
type shown in Figure 6.1. In the schematic diagram of Figure 6.1, where the axial stress,
σ, is plotted against the axial strain, ε, a load programme has been considered in which the
bar is initially subjected to a monotonic increase in axial stress from zero to a prescribed
value, σ0. The bar is then unloaded back to an unstressed state and subsequently reloaded
to a higher stress level σ1. The stress–strain curve follows the path O0Y0Z0O1Y1Z1 shown.
In this path, the initial line segment O0Y0 is virtually straight and, if the bar is unloaded
from point Y0 (or before it is reached), it returns to the original unstressed state O0. Thus, in
segment O0Y0 the behaviour of the material is regarded as linear elastic. Beyond Y0, the slope
of the stress–strain curve changes dramatically and if the stress (or strain) loading is reversed
at, say, point Z0, the bar returns to an unstressed state via path Z0O1. The new unstressed
state, O1, differs from the initial unstressed state, O0, in that a permanent change in the shape
of the bar is observed. This shape change is represented in the graph by the permanent (or
plastic) axial strain εp. Monotonic reloading of the bar to a stress level σ1 will follow the
path O1Y1Z1. Similarly to the initial elastic segment O0Y0, the portion O1Y1 is also virtually
straight and unloading from Y1 (or before Y1 is reached) will bring the stress–strain state back
to the unstressed configuration O1, with no further plastic straining of the bar. Therefore,
the behaviour of the material in the segment O1Y1 may also be regarded as linear elastic.
Here, it is important to emphasise that, even though some discrepancy between unloading
and reloading curves (such as lines Z0O1 and O1Y1) is observed in typical experiments, the
actual difference between them is in fact much smaller than that shown in the diagram of
Figure 6.1. Again, loading beyond an elastic limit (point Y1 in this case) will cause further
increase in plastic deformation.

Some important phenomenological properties can be identified in the above described
uniaxial test. They are enumerated below:

1. The existence of an elastic domain, i.e. a range of stresses within which the behaviour
of the material can be considered as purely elastic, without evolution of permanent
(plastic) strains. The elastic domain is delimited by the so-called yield stress. In
Figure 6.1, segments O0Y0 and O1Y1 define the elastic domain at two different states.
The associated yield stresses correspond to points Y0 and Y1.

2. If the material is further loaded at the yield stress, then plastic yielding (or plastic flow),
i.e. evolution of plastic strains, takes place.

3. Accompanying the evolution of the plastic strain, an evolution of the yield stress itself
is also observed (note that the yield stresses corresponding to points Y0 and Y1 are
different). This phenomenon is known as hardening.
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Figure 6.1. Uniaxial tension experiment with ductile metals.

It is emphasised that the above properties can be observed not only in metals but also in
a wide variety of materials such as concrete, rocks, soils and many others. Obviously, the
microscopic mechanisms that give rise to these common phenomenological characteristics
can be completely distinct for different types of material. It is also important to note that,
according to the type of material, different experimental procedures may be required for
the verification of such properties. For instance, in materials such as soils, which typically
cannot resist tensile stresses, uniaxial tension tests do not make physical sense. In this case,
experiments such as triaxial shear tests, in which the sides of the specimen are subjected to a
confining hydrostatic pressure prior to the application of longitudinal compression, are more
appropriate.

The object of the mathematical theory of plasticity is to provide continuum constitutive
models capable of describing (qualitatively and quantitavely) with sufficient accuracy the
phenomenological behaviour of materials that possess the characteristics discussed in the
above.

6.2. One-dimensional constitutive model

A simple mathematical model of the uniaxial experiment discussed in the previous section is
formulated in what follows. In spite of its simplicity the one-dimensional constitutive model
contains all the essential features that form the basis of the mathematical theory of plasticity.

At the outset, the original stress–strain curve of Figure 6.1, that resulted from the loading
programme described in the previous section, is approximated by the idealised version
shown in Figure 6.2. The assumptions involved in the approximation are summarised in the
following. Firstly, the difference between unloading and reloading curves (segments Z0O1
and O1Y1 of Figure 6.1) is ignored and points Z0 and Y1, that correspond respectively to
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Figure 6.2. Uniaxial tension experiment. Mathematical model.

the beginning of unloading and the onset of plastic yielding upon subsequent reloading, are
assumed to coincide. The transition between the elastic region and the elastoplastic regime
is now clearly marked by a non-smooth change of slope (points Y0 and Y1). During plastic
yielding, the stress–strain curve always follows the path defined by O0Y0Y1Z1. This path is
normally referred to as the virgin curve and is obtained by a continuous monotonic loading
from the initial unstressed state O0.

Under the above assumptions, after being monotonically loaded from the initial unstressed
state to the stress level σ0, the behaviour of the bar between states O1 and Y1 is considered to
be linear elastic, with constant plastic strain, εp, and yield limit, σ0. Thus, within the segment
O1Y1, the uniaxial stress corresponding to a configuration with total strain ε is given by

σ = E (ε − εp), (6.1)

where E denotes the Young’s modulus of the material of the bar. Note that the difference
between the total strain and the current plastic strain, ε − εp, is fully reversible; that is,
upon complete unloading of the bar, ε − εp is fully recovered without further evolution of
plastic strains. This motivates the additive decomposition of the axial strain described in the
following section.

6.2.1. ELASTOPLASTIC DECOMPOSITION OF THE AXIAL STRAIN

One of the chief hypotheses underlying the small strain theory of plasticity is the decompo-
sition of the total strain, ε, into the sum of an elastic (or reversible) component, εe, and a
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plastic (or permanent) component, εp,

ε = εe + εp, (6.2)

where the elastic strain has been defined as

εe = ε − εp. (6.3)

6.2.2. THE ELASTIC UNIAXIAL CONSTITUTIVE LAW

Following the above definition of the elastic axial strain, the constitutive law for the axial
stress can be expressed as

σ = E εe. (6.4)

The next step in the definition of the uniaxial constitutive model is to derive formulae
that express mathematically the fundamental phenomenological properties enumerated in
Section 6.1. The items 1 and 2 of Section 6.1 are associated with the formulation of a yield
criterion and a plastic flow rule, whereas item 3 requires the formulation of a hardening law.
These are described in the following.

6.2.3. THE YIELD FUNCTION AND THE YIELD CRITERION

The existence of an elastic domain delimited by a yield stress has been pointed out in item 1
of Section 6.1. With the introduction of a yield function, Φ, of the form

Φ(σ, σy) = |σ| − σy, (6.5)

the elastic domain at a state with uniaxial yield stress σy can be defined in the one-
dimensional plasticity model as the set

E = {σ | Φ(σ, σy) < 0}, (6.6)

or, equivalently, the elastic domain is the set of stresses σ that satisfy

|σ| < σy. (6.7)

Generalising the results of the uniaxial tension test discussed, it has been assumed in the
above that the yield stress in compression is identical to that in tension. The corresponding
idealised elastic domain is illustrated in Figure 6.3.

It should be noted that, at any stage, no stress level is allowed above the current yield
stress, i.e. plastically admissible stresses lie either in the elastic domain or on its boundary
(the yield limit). Thus, any admissible stress must satisfy the restriction

Φ(σ, σy) ≤ 0. (6.8)

For stress levels within the elastic domain, only elastic straining may occur, whereas on its
boundary (at the yield stress), either elastic unloading or plastic yielding (or plastic loading)
takes place. This yield criterion can be expressed by

If Φ(σ, σy) < 0 =⇒ ε̇p = 0,

If Φ(σ, σy) = 0 =⇒
{

ε̇p = 0 for elastic unloading,

ε̇p 
= 0 for plastic loading.

(6.9)
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Figure 6.3. Uniaxial model. Elastic domain.

6.2.4. THE PLASTIC FLOW RULE. LOADING/UNLOADING CONDITIONS

Expressions (6.9) above have defined a criterion for plastic yielding, i.e. they have set the
conditions under which plastic straining may occur. By noting in Figure 6.3 that, upon
plastic loading, the plastic strain rate ε̇p is positive (stretching) under tension (positive σ) and
negative (compressive) under compression (negative σ), the plastic flow rule for the uniaxial
model can be formally established as

ε̇p = γ̇ sign(σ), (6.10)

where sign is the signum function defined as

sign(a) =

{
+1 if a ≥ 0

−1 if a < 0
(6.11)

for any scalar a and the scalar γ̇ is termed the plastic multiplier. The plastic multiplier is
non-negative,

γ̇ ≥ 0, (6.12)

and satisfies the complementarity condition

Φ γ̇ = 0. (6.13)

The constitutive equations (6.10) to (6.13) imply that, as stated in the yield criterion (6.9), the
plastic strain rate vanishes within the elastic domain, i.e.

Φ < 0 =⇒ γ̇ = 0 =⇒ ε̇p = 0, (6.14)

and plastic flow (ε̇p 
= 0) may occur only when the stress level σ coincides with the current
yield stress

|σ| = σy =⇒ Φ = 0 =⇒ γ̇ ≥ 0. (6.15)
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Expressions (6.8), (6.12) and (6.13) define the so-called loading/unloading conditions of
the elasticplastic model; that is, the constraints

Φ ≤ 0, γ̇ ≥ 0, γ̇Φ = 0, (6.16)

establish when plastic flow may occur.

6.2.5. THE HARDENING LAW

Finally, the complete characterisation of the uniaxial model is achieved with the introduction
of the hardening law. As remarked in item 3 of Section 6.1, an evolution of the yield stress
accompanies the evolution of the plastic strain. This phenomenon, known as hardening, can
be incorporated into the uniaxial model simply by assuming that, in the definition (6.5) of Φ,
the yield stress σy is a given function

σy = σy(ε̄p) (6.17)

of the accumulated axial plastic strain, ε̄p. The accumulated axial plastic strain is defined as

ε̄p ≡
∫ t

0

|ε̇p| dt, (6.18)

thus ensuring that both tensile and compressive plastic straining contribute to ε̄p. Clearly, in
a monotonic tensile test we have

ε̄p = εp, (6.19)

whereas in a monotonic compressive uniaxial test,

ε̄p = −εp. (6.20)

The curve defined by the hardening function σy(ε̄p) is usually referred to as the hardening
curve (Figure 6.4).

From the definition of ε̄p, it follows that its evolution law is given by

˙̄εp = |ε̇p|, (6.21)

which, in view of the plastic flow rule, is equivalent to

˙̄εp = γ̇. (6.22)

6.2.6. SUMMARY OF THE MODEL

The overall one-dimensional plasticity model is defined by the constitutive equa-
tions (6.2), (6.4), (6.5), (6.10), (6.16), (6.17), and (6.22). The model is summarised in Box 6.1.
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Figure 6.4. One-dimensional model. Hardening curve.

Box 6.1. One-dimensional elastoplastic constitutive model.

1. Elastoplastic split of the axial strain

ε = εe + εp

2. Uniaxial elastic law
σ = E εe

3. Yield function
Φ(σ, σy) = |σ| − σy

4. Plastic flow rule
ε̇p = γ̇ sign(σ)

5. Hardening law
σy = σy(ε̄p)

˙̄εp = γ̇

6. Loading/unloading criterion

Φ ≤ 0, γ̇ ≥ 0, γ̇Φ = 0

6.2.7. DETERMINATION OF THE PLASTIC MULTIPLIER

So far, in the uniaxial plasticity model introduced above, the plastic multiplier, γ̇, was left
indeterminate during plastic yielding. Indeed, expressions (6.12) and (6.13) just tell us that γ̇
vanishes during elastic straining but may assume any non-negative value during plastic flow.
In order to eliminate this indetermination, it should be noted firstly that, during plastic flow,
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the value of the yield function remains constant

Φ = 0, (6.23)

as the absolute value of the current stress always coincides with the current yield stress.
Therefore, the following additional complementarity condition may be established:

Φ̇ γ̇ = 0 (6.24)

which implies that the rate of Φ vanishes whenever plastic yielding occurs (γ̇ 
= 0),

Φ̇ = 0, (6.25)

and, during elastic straining, (γ̇ = 0), Φ̇ may assume any value. Equation (6.25) is called the
consistency condition. By taking the time derivative of the yield function (6.5), one obtains

Φ̇ = sign(σ) σ̇ − H ˙̄εp, (6.26)

where H is called the hardening modulus, or hardening slope, and is defined as (refer to
Figure 6.4)

H = H(ε̄p) =
dσy

dε̄p
. (6.27)

Under plastic yielding, equation (6.25) holds so that one has the following expression for the
stress rate

sign(σ) σ̇ = H ˙̄εp. (6.28)

From the elastic law, it follows that

σ̇ = E(ε̇ − ε̇p). (6.29)

Finally, by combining the above expression with (6.22), (6.28) and (6.10), the plastic
multiplier, γ̇, is uniquely determined during plastic yielding as

γ̇ =
E

H + E
sign(σ) ε̇ =

E

H + E
|ε̇|. (6.30)

6.2.8. THE ELASTOPLASTIC TANGENT MODULUS

Let us now return to the stress–strain curve of Figure 6.2. Plastic flow at a generic yield limit
produces the following tangent relation between strain and stress

σ̇ = Eep ε̇, (6.31)

where Eep is called the elastoplastic tangent modulus. By combining expressions (6.31),
(6.29), the flow rule (6.10) and (6.30) the following expression is obtained for the elastoplastic
tangent modulus

Eep =
E H

E + H
. (6.32)

Equivalently, the hardening modulus, H , can be expressed in terms of the elastic modulus
and the elastoplastic modulus as

H =
Eep

1 − Eep/E
. (6.33)
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6.3. General elastoplastic constitutive model

A mathematical model of a uniaxial tension experiment with a ductile metal has been
described in the previous section. As already mentioned, the one-dimensional equations
contain all basic components of a general elastoplastic constitutive model:

• the elastoplastic strain decomposition;

• an elastic law;

• a yield criterion, stated with the use of a yield function;

• a plastic flow rule defining the evolution of the plastic strain; and

• a hardening law, characterising the evolution of the yield limit.

The generalisation of these concepts for application in two- and three-dimensional situations
is described in this section.

6.3.1. ADDITIVE DECOMPOSITION OF THE STRAIN TENSOR

Following the decomposition of the uniaxial strain given in the previous section, the
corresponding generalisation is obtained by splitting the strain tensor, ε, into the sum of
an elastic component, εe, and a plastic component, εp; that is,

ε = εe + εp. (6.34)

The tensors εe and εp are known, respectively, as the elastic strain tensor and the plastic
strain tensor. The corresponding rate form of the additive split reads

ε̇ = ε̇e + ε̇p. (6.35)

Note that (6.35) together with the given initial condition

ε(t0) = εe(t0) + εp(t0) (6.36)

at a (pseudo-)time t0 is equivalent to (6.34).

6.3.2. THE FREE ENERGY POTENTIAL AND THE ELASTIC LAW

The formulation of general dissipative models of solids within the framework of thermody-
namics with an internal variable has been addressed in Section 3.5 of Chapter 3. Recall that
the free energy potential plays a crucial role in the derivation of the model and provides the
constitutive law for stress. The starting point of the theories of plasticity treated in this book
is the assumption that the free energy, ψ, is a function

ψ(ε, εp, α),

of the total strain, the plastic strain (taken as an internal variable) and a set α of internal
variables associated with the phenomenon of hardening. It is usual to assume that the free
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energy can be split as

ψ(ε, εp, α) = ψe(ε − εp) + ψp(α)
= ψe(εe) + ψp(α) (6.37)

into a sum of an elastic contribution, ψe, whose dependence upon strains and internal
variables appears only through the elastic strain, and a contribution due to hardening, ψp.

Following the above expression for the free energy, the Clausius–Duhem inequality reads(
σ − ρ̄

∂ψe

∂εe

)
: ε̇e + σ : ε̇p − A ∗ α̇ ≥ 0, (6.38)

where

A ≡ ρ̄ ∂ψp/∂α (6.39)

is the hardening thermodynamical force and we note that −σ is the thermodynamical force
associated with the plastic strain while the symbol * indicates the appropriate product
between A and α̇. The above inequality implies a general elastic law of the form

σ = ρ̄
∂ψe

∂εe
, (6.40)

so that the requirement of non-negative dissipation can be reduced to

Υp(σ, A; ε̇p, α̇) ≥ 0, (6.41)

where the function Υp, defined by

Υp(σ, A; ε̇p, α̇) ≡ σ : ε̇p − A ∗ α̇, (6.42)

is called the plastic dissipation function.
This chapter is focused on materials whose elastic behaviour is linear (as in the uniaxial

model of the previous section) and isotropic. In this case, the elastic contribution to the free
energy is given by

ρ̄ ψe(εe) = 1
2 εe : De : εe

= G εe
d : εe

d + 1
2 K (εe

v)2 (6.43)

where De is the standard isotropic elasticity tensor and G and K are, respectively the
shear and bulk moduli. The tensor εe

d is the deviatoric component of the elastic strain and
εe

v ≡ tr[εe] is the volumetric elastic strain. Thus, the general counterpart of uniaxial elastic
law (6.4) is given by

σ = De : εe

= 2G εe
d + K εe

v I. (6.44)
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6.3.3. THE YIELD CRITERION AND THE YIELD SURFACE

Recall that in the uniaxial yield criterion it was established that plastic flow may occur when
the uniaxial stress attains a critical value. This principle could be expressed by means of a
yield function which is negative when only elastic deformations are possible and reaches
zero when plastic flow is imminent. Extension of this concept to the three-dimensional case
is obtained by stating that plastic flow may occur only when

Φ(σ, A) = 0, (6.45)

where the scalar yield function, Φ, is now a function of the stress tensor and a set A of
hardening thermodynamical forces. Analogously to the uniaxial case, a yield function defines
the elastic domain as the set

E = {σ | Φ(σ, A) < 0} (6.46)

of stresses for which plastic yielding is not possible. Any stress lying in the elastic domain
or on its boundary is said to be plastically admissible. We then define the set of plastically
admissible stresses (or plastically admissible domain) as

Ē = {σ | Φ(σ, A) ≤ 0}. (6.47)

The yield locus, i.e. the set of stresses for which plastic yielding may occur, is the boundary
of the elastic domain, where Φ(σ, A) = 0. The yield locus in this case is represented by a
hypersurface in the space of stresses. This hypersurface is termed the yield surface and is
defined as

Y = {σ | Φ(σ, A) = 0}. (6.48)

6.3.4. PLASTIC FLOW RULE AND HARDENING LAW

The complete characterisation of the general plasticity model requires the definition of the
evolution laws for the internal variables, i.e. the variables associated with the dissipative
phenomena. In the present case, the internal variables are the plastic strain tensor and the
set α of hardening variables. The following plastic flow rule and hardening law are then
postulated

ε̇p = γ̇ N (6.49)

α̇ = γ̇ H, (6.50)

where the tensor
N = N(σ, A) (6.51)

is termed the flow vector and the function

H = H(σ, A) (6.52)

is the generalised hardening modulus which defines the evolution of the hardening variables.
The evolution equations (6.49) and (6.50) are complemented by the loading/unloading
conditions

Φ ≤ 0, γ̇ ≥ 0, Φγ̇ = 0, (6.53)

that define when evolution of plastic strains and internal variables (γ̇ 
= 0) may occur.
For convenience, the general plasticity model resulting from the above equations is listed

in Box 6.2.
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Box 6.2. A general elastoplastic constitutive model.

1. Additive decomposition of the strain tensor

ε = εe + εp

or
ε̇ = ε̇e + ε̇p, ε(t0) = εe(t0) + εp(t0)

2. Free-energy function
ψ = ψ(εe, α)

where α is a set of hardening internal variables

3. Constitutive equation for σ and hardening thermodynamic forces A

σ = ρ̄
∂ψ

∂εe
, A = ρ̄

∂ψ

∂α

4. Yield function
Φ = Φ(σ, A)

5. Plastic flow rule and hardening law

ε̇p = γ̇ N(σ, A)

α̇ = γ̇ H(σ, A)

6. Loading/unloading criterion

Φ ≤ 0, γ̇ ≥ 0, γ̇Φ = 0

6.3.5. FLOW RULES DERIVED FROM A FLOW POTENTIAL

In the formulation of multidimensional plasticity models, it is often convenient to define the
flow rule (and possibly the hardening law) in terms of a flow (or plastic) potential. The starting
point of such an approach is to postulate the existence of a flow potential with general form

Ψ = Ψ(σ, A) (6.54)

from which the flow vector, N, is obtained as

N ≡ ∂Ψ
∂σ

. (6.55)

If the hardening law is assumed to be derived from the same potential, then we have in
addition

H ≡− ∂Ψ
∂A

. (6.56)

When such an approach is adopted, the plastic potential, Ψ, is required to be a non-negative
convex function of both σ and A and zero-valued at the origin,

Ψ(0, 0) = 0. (6.57)
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These restrictions ensure that the dissipation inequality (6.41) is satisfied a priori by the
evolution equations (6.49) and (6.50).

Associative flow rule

As we shall see later, many plasticity models, particularly for ductile metals, have their yield
function, Φ, as a flow potential, i.e.

Ψ ≡ Φ. (6.58)

Such models are called associative (or associated) plasticity models. The issue of associativ-
ity will be further discussed in Section 6.5.1.

6.3.6. THE PLASTIC MULTIPLIER

Here we extend to the multidimensional case the procedure for the determination of the plastic
multiplier, γ̇, described in Section 6.2.7 for the one-dimensional plasticity model. Following
the same arguments employed in Section 6.2.7, the starting point in the determination of γ̇ is
the consideration of the additional complementarity equation

Φ̇ γ̇ = 0, (6.59)

which implies the consistency condition

Φ̇ = 0 (6.60)

under plastic yielding (when γ̇ 
= 0). By differentiating the yield function with respect to time,
we obtain

Φ̇ =
∂Φ
∂σ

: σ̇ +
∂Φ
∂A

∗ Ȧ. (6.61)

By taking into account the additive split of the strain tensor, the elastic law and the plastic
flow rule (6.49), we promptly find the obvious rate form

σ̇ = De : (ε̇ − ε̇p) = De : (ε̇ − γ̇ N ). (6.62)

This, together with the definition of A in terms of the free-energy potential (refer to
expression (6.39)) and the evolution law (6.50), allow us to write (6.61) equivalently as

Φ̇ =
∂Φ
∂σ

: De : (ε̇ − ε̇p) +
∂Φ
∂A

∗ ρ̄
∂2ψp

∂α2
∗ α̇.

=
∂Φ
∂σ

: De : (ε̇ − γ̇ N ) + γ̇
∂Φ
∂A

∗ ρ̄
∂2ψp

∂α2
∗ H. (6.63)

Finally, the above expression and the consistency condition (6.60) lead to the following closed
formula for the plastic multiplier

γ̇ =
∂Φ/∂σ : De : ε̇

∂Φ/∂σ : De : N − ∂Φ/∂A ∗ ρ̄∂2ψp/∂α2 ∗ H
. (6.64)
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6.3.7. RELATION TO THE GENERAL CONTINUUM CONSTITUTIVE THEORY

At this point, we should emphasise that the general rate-independent plasticity model
described above can under some conditions be shown to be a particular instance of the general
constitutive theory postulated in Section 3.5.2, starting page 71. The link between the two
theories can be clearly demonstrated when rate-independent plasticity is obtained as a limit
case of rate-dependent plasticity (or viscoplasticity).

However, since the theory of elasto-viscoplasticity is introduced only in Chapter 11,
we find it convenient to carry on focusing on rate-independent plasticity and postpone the
demonstration until that chapter. Those wishing to see now the link between rate-independent
plasticity and the general constitutive theory are referred to Section 11.4.3, starting on
page 452. We remark, though, that the concept of subdifferential, introduced below in
Section 6.3.9, is fundamental to the demonstration. Readers not yet familiar with this concept
are advised to read through Section 6.3.9 before moving to Section 11.4.3.

6.3.8. RATE FORM AND THE ELASTOPLASTIC TANGENT OPERATOR

In the elastic regime, the rate constitutive equation for stress reads simply

σ̇ = De : ε̇. (6.65)

Under plastic flow, the corresponding rate relation can be obtained by introducing expres-
sion (6.64) into (6.62). The rate equation reads

σ̇ = Dep : ε̇, (6.66)

where Dep is the elastoplastic tangent modulus given by

Dep = De − (De : N) ⊗ (De : ∂Φ/∂σ)
∂Φ/∂σ : De : N − ∂Φ/∂A ∗ ρ̄∂2ψp/∂α2 ∗ H

. (6.67)

In obtaining the above expression, we have made use of the fact that the symmetry (refer to
equation (2.87), page 29) of the elasticity tensor implies

∂Φ/∂σ : De : ε̇ = De : ∂Φ/∂σ : ε̇. (6.68)

The fourth-order tensor Dep is the multidimensional generalisation of the scalar modulus
Eep associated with the slope of the uniaxial stress–strain curve under plastic flow. In the
computational plasticity literature, Dep is frequently referred to as the continuum elastoplastic
tangent operator.

Remark 6.1 (The symmetry of Dep). Note that if the plastic flow rule is associative, i.e.
if N ≡ ∂Φ/∂σ, then the continuum elastoplastic tangent operator is symmetric. For models
with non-associative plastic flow, Dep is generally unsymmetric.

6.3.9. NON-SMOOTH POTENTIALS AND THE SUBDIFFERENTIAL

It should be noted that expressions (6.55) and (6.56) only make sense if the potential Ψ
is differentiable. When that happens, the flow vector, N, can be interpreted as a vector
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normal to the iso-surfaces of function Ψ in the space of stresses (with fixed A). A schematic
representation of N in this case is shown in Figure 6.5. The generalised modulus, H, can be
interpreted in a completely analogous way.

The requirement of differentiability of the flow potential is, however, too restrictive and
many practical plasticity models are based on the use of a non-differentiable Ψ. Specific
examples are given later in this chapter. For a more comprehensive account of such theories
the reader is referred to Duvaut and Lions (1976), Eve et al. (1990) and Han and Reddy
(1999). In such cases, the function Ψ is called a pseudo-potential or generalised potential
and the formulation of the evolution laws for the internal variables can be dealt with by
introducing the concept of subdifferential sets, which generalises the classical definition of
derivative.†

Subgradients and the subdifferential

Let us consider a scalar function y : R n → R. The subdifferential of y at a point x̄ is the set

∂y(x̄) = {s ∈ R n | y(x) − y(x̄) ≥ s · (x − x̄), ∀ x ∈ R n}. (6.69)

If the set ∂y is not empty at x̄, the function y is said to be subdifferentiable at x̄. The elements
of ∂y are called subgradients of y. If the function y is differentiable, then the subdifferential
contains a unique subgradient which coincides with the derivative of y,

∂y =
{

dy

dx

}
. (6.70)

A schematic illustration of the concept of subdifferential is shown in Figure 6.6 for n = 1.
In this case, when y is subdifferentiable (but not necessarily differentiable) at a point x̄, the
subdifferential at that point is composed of all slopes s lying between the slopes on the right
and left of x̄ (the two one-sided derivatives of y at x̄).

†The concept of subdifferential sets is exploited extensively in convex analysis. The reader is referred to
Rockafellar (1970), Part V, for a detailed account of the theory of subdifferentiable functions.
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Figure 6.6. The subdifferential of a convex function.

Plastic flow with subdifferentiable flow potentials

Assume now that the (pseudo-) potential Ψ is a subdifferentiable function of σ and A. At
points where Ψ is non-differentiable in σ, the isosurfaces of Ψ in the space of stresses contain
a singularity (corner) where the normal direction is not uniquely defined. A typical situation is
schematically illustrated in Figure 6.7 where two distinct normals, N1 and N2, are assumed
to exist. In this case, the subdifferential of Ψ with respect to σ, denoted ∂σΨ, is the set of
vectors contained in the cone defined by all linear combinations (with positive coefficients)
of N1 and N2. The generalisation of the plastic flow rule (6.49) is obtained by replacing
expression (6.55) for the flow vector with

N ∈ ∂σΨ, (6.71)

i.e. the flow vector N is now assumed to be a subgradient of Ψ. Analogously, the evolution
law (6.50) for α can be generalised with the replacement of the definition (6.56) by

H ∈ −∂AΨ. (6.72)

At this point, it should be remarked that differentiability of Ψ with respect to the stress
tensor is violated for some very basic plasticity models, such as the Tresca, Mohr–Coulomb
and Drucker–Prager theories to be seen later. Therefore, the concepts of subgradient and
subdifferential sets introduced above are important in the formulation of evolution laws
for εp.

An alternative definition of the plastic flow rule with non-smooth potentials, which
incorporates a wide class of models, is obtained as follows. Firstly assume that a finite
number, n, of distinct normals (N1, N2, . . . , Nn) is defined at a generic singular point of an
isosurface of Ψ. In this case, any subgradient of Ψ can be written as a linear combination

c1N1 + c2N2 + · · · + cnNn,
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with non-negative coefficients c1, c2, . . . , cn.‡ Based on this observation, the flow rule (6.49)
can be generalised as

ε̇p =
n∑

i=1

γ̇i Ni, (6.73)

with all n plastic multipliers required to be non-negative

γ̇i ≥ 0, i = 1, . . . , n. (6.74)

The generalisation of the plastic flow law, in this format, was originally proposed by Koiter
(1953).

Multisurface models

The above concepts are particularly useful in defining evolution laws for multisurface
plasticity models. In a generic multisurface model, the elastic domain is bound by a set of
n surfaces in the space of stresses which intersect in a non-smooth fashion. In this case, n
yield functions (Φi, i = 1, . . . , n) are defined so that each bounding surface is given by an
equation

Φi(σ, A) = 0. (6.75)

The elastic domain in this case reads

E = {σ | Φi(σ, A) < 0, i = 1, . . . , n}, (6.76)

and the yield surface, i.e. the boundary of E, is the set of all stresses such that Φi(σ, A) = 0
for at least one i and Φj(σ, A) ≤ 0 for all other indices j 
= i.

‡It should be emphasised that this representation is not valid for certain types of singularity where the
corresponding subdifferential set cannot be generated by a finite number of vectors.
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Assuming associativity (Ψ ≡ Φ), the situation discussed previously, where the subgradient
of the flow potential is a linear combination of a finite number of normals, is recovered. Thus,
the plastic flow rule can be written in the general form (6.73) with the normals being defined
here as

Ni =
∂Φi

∂σ
. (6.77)

In the present case, the standard loading/unloading criterion (6.53) is replaced by the
generalisation

Φi ≤ 0, γ̇i ≥ 0, Φiγ̇i = 0, (6.78)

which must hold for each i = 1, . . . , n. Note that summation on repeated indices is not
implied in the above law.

6.4. Classical yield criteria

The general constitutive model for elastoplastic materials has been established in the previous
section. There, the yield criterion has been stated in its general form, without reference to any
particular criteria. In this section, some of the most common yield criteria used in engineering
practice are described in detail; namely, the criteria of Tresca, von Mises, Mohr–Coulomb and
Drucker–Prager.

6.4.1. THE TRESCA YIELD CRITERION

This criterion was proposed by Tresca (1868) to describe plastic yielding in metals. The
Tresca yield criterion assumes that plastic yielding begins when the maximum shear stress
reaches a critical value.

Recall the spectral representation of the stress tensor,

σ =
3∑

i=1

σi ei ⊗ ei, (6.79)

where σi are the principal stresses and ei the associated unit eigenvectors, and let σmax and
σmin be, respectively, the maximum and minimum principal stresses

σmax = max(σ1, σ2, σ3);
σmin = min(σ1, σ2, σ3).

(6.80)

The maximum shear stress, τmax, is given by

τmax = 1
2 (σmax − σmin). (6.81)

According to the Tresca criterion, the onset of plastic yielding is defined by the condition

1
2 (σmax − σmin) = τy(α), (6.82)

where τy is the shear yield stress, here assumed to be a function of a hardening internal
variable, α, to be defined later. The shear yield stress is the yield limit under a state of pure
shear.
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In view of (6.82), the yield function associated with the Tresca yield criterion can be
represented as

Φ(σ) = 1
2 (σmax − σmin) − τy(α), (6.83)

with the onset of yielding characterised by Φ = 0. Alternatively, the Tresca yield function
may be defined as

Φ(σ) = (σmax − σmin) − σy(α), (6.84)

where σy is the uniaxial yield stress
σy = 2 τy , (6.85)

that is, it is the stress level at which plastic yielding begins under uniaxial stress conditions.
That σy is indeed the uniaxial yield stress for the Tresca theory can be established by noting
that, when plastic yielding begins under uniaxial stress conditions, we have

σmax = σy, σmin = 0. (6.86)

The substitution of the above into (6.82) gives (6.85). The elastic domain for the Tresca
criterion can be defined as

E = {σ | Φ(σ, σy) < 0}. (6.87)

Pressure-insensitivity

Due to its definition exclusively in terms of shear stress, the Tresca criterion is pressure
insensitive, that is, the hydrostatic pressure component,

p ≡ 1
3 tr[σ] = 1

3 (σ1 + σ2 + σ3), (6.88)

of the stress tensor does not affect yielding. Indeed, note that the superposition of an arbitrary
pressure, p∗, on the stress tensor does not affect the value of the Tresca yield function

Φ(σ + p∗I ) = Φ(σ). (6.89)

We remark that the von Mises criterion described in Section 6.4.2 below is also pressure-
insensitive. This property is particularly relevant in the modelling of metals as, for these
materials, the influence of the hydrostatic stress on yielding is usually negligible in practice.

Isotropy

One very important aspect of the Tresca criterion is its isotropy (a property shared by the
von Mises, Mohr–Coulomb and Drucker–Prager criteria described in the following sections).

Note that, since Φ in (6.83) or (6.84) is defined as a function of the principal stresses,
the Tresca yield function is an isotropic function of the stress tensor (refer to Section A.1,
page 731, for the definition of isotropic scalar functions of a symmetric tensor), i.e. it satisfies

Φ(σ) = Φ(QσQT ) (6.90)

for all rotations Q; that is, rotations of the state of stress do not affect the value of the yield
function.

At this point, it is convenient to introduce the following definition: A plastic yield criterion
is said to be isotropic if it is defined in terms of an isotropic yield function of the stress tensor.
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Graphical representation

Since any isotropic scalar function of a symmetric tensor can be described as a function of
the principal values of its argument, it follows that any iso-surface (i.e. any subset of the
function domain with fixed function value) of such functions can be graphically represented
as a surface in the space of principal values of the argument. This allows, in particular, the
yield surface (refer to expression (6.48), page 150) of any isotropic yield criterion to be
represented in a particularly simple and useful format as a three-dimensional surface in the
space of principal stresses.

σ3

−      p

σ1

σ2

Tresca

von Mises

√3

Figure 6.8. The Tresca and von Mises yield surfaces in principal stress space.
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Figure 6.9. (a) The π-plane in principal stress space and, (b) the π-plane representation of the Tresca
and von Mises yield surfaces.
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In principal stress space, the Tresca yield surface, i.e. the set of stresses for which Φ = 0,
is graphically represented by the surface of an infinite hexagonal prism with axis coinciding
with the hydrostatic line (also known as the space diagonal), defined by σ1 = σ2 = σ3. This
is illustrated in Figure 6.8. The elastic domain (for which Φ < 0) corresponds to the interior
of the prism. Due to the assumed insensitivity to pressure, a further simplification in the
representation of the yield surface is possible in this case. The Tresca yield surface may
be represented, without loss of generality, by its projection on the subspace of stresses
with zero hydrostatic pressure component (σ1 + σ2 + σ3 = 0). This subspace is called the
deviatoric plane, also referred to as the π-plane. It is graphically illustrated in Figure 6.9(a).
Figure 6.9(b) shows the π-plane projection of the Tresca yield surface.

Multisurface representation

Equivalently to the above representation, the Tresca yield criterion can be expressed by means
of the following six yield functions

Φ1(σ, σy) = σ1 − σ3 − σy

Φ2(σ, σy) = σ2 − σ3 − σy

Φ3(σ, σy) = σ2 − σ1 − σy

Φ4(σ, σy) = σ3 − σ1 − σy

Φ5(σ, σy) = σ3 − σ2 − σy

Φ6(σ, σy) = σ1 − σ2 − σy,

(6.91)

so that, for fixed σy , the equation
Φi(σ, σy) = 0 (6.92)

corresponds to a plane in the space of principal stresses for each i = 1, . . . , 6 (Figure 6.10).
In the multisurface representation, the elastic domain for a given σy can be defined as

E = {σ | Φi(σ, σy) < 0, i = 1, . . . , 6}. (6.93)

Definitions (6.87) and (6.93) are completely equivalent. The yield surface – the boundary of
E – is defined in this case as the set of stresses for which Φi(σ, σy) = 0 for at least one i with
Φj(σ, σy) ≤ 0 for j 
= i.

Invariant representation

Alternatively to the representations discussed above, it is also possible to describe the yield
locus of the Tresca criterion in terms of stress invariants. In the invariant representation,
proposed by Nayak and Zienkiewicz (1972) (see also Owen and Hinton 1980, and Crisfield
1997), the yield function assumes the format

Φ = 2
√

J2 cos θ − σy , (6.94)

where J2 = J2(s) is the invariant of the stress deviator, s, defined by

J2 ≡−I2(s) = 1
2 tr[s2] = 1

2 s : s = 1
2 ‖s‖

2. (6.95)
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Figure 6.10. The Tresca criterion. Multisurface representation in principal stress space.

Recall that the stress deviator is given by

s ≡ σ − 1
3 (trσ)I. (6.96)

The Lode angle, θ, is a function of the deviatoric stress defined as

θ ≡ 1
3 sin−1

(−3
√

3 J3

2J
3
2
2

)
, (6.97)

where J3 is the third principal invariant of stress deviator§

J3 ≡ I3(s) ≡ det s = 1
3 tr(s)3. (6.98)

The Lode angle is the angle, on the deviatoric plane, between s and the nearest pure shear
line (a pure shear line is graphically represented in Figure 6.11). It satisfies

−π

6
≤ θ ≤ π

6
. (6.99)

Despite being used often in computational plasticity, the above invariant representation results
in rather cumbersome algorithms for integration of the evolution equations of the Tresca
model. This is essentially due to the high degree of nonlinearity introduced by the trigono-
metric function involved in the definition of the Lode angle. The multisurface representation,
on the other hand, is found by the authors to provide an optimal parametrisation of the
Tresca surface which results in a simpler numerical algorithm and will be adopted in the
computational implementation of the model addressed in Chapter 8.

§The equivalence between the two rightmost terms in (6.98) is established by summing the characteristic
equation (2.73) (page 27) for i = 1, 2, 3 and taking into account the fact that I1(s) = 0 (s is a traceless tensor)
and that tr(S )3 =

∑
i s3

i for any symmetric tensor S.
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6.4.2. THE VON MISES YIELD CRITERION

Also appropriate to describe plastic yielding in metals, this criterion was proposed by
von Mises (1913). According to the von Mises criterion, plastic yielding begins when
the J2 stress deviator invariant reaches a critical value. This condition is mathematically
represented by the equation

J2 = R(α), (6.100)

where R is the critical value, here assumed to be a function of a hardening internal variable,
α, to be defined later.

The physical interpretation of the von Mises criterion is given in the following. Since the
elastic behaviour of the materials described in this chapter is assumed to be linear elastic, the
stored elastic strain-energy at the generic state defined by the stress σ can be decomposed as
the sum

ψe = ψe
d + ψe

v, (6.101)

of a distortional contribution,

ρ̄ ψe
d =

1
2 G

s : s =
1
G

J2, (6.102)

and a volumetric contribution,

ρ̄ ψe
v =

1
K

p2, (6.103)

where G and K are, respectively, the shear and bulk modulus. In view of (6.102), the
von Mises criterion is equivalent to stating that plastic yielding begins when the distortional
elastic strain-energy reaches a critical value. The corresponding critical value of the
distortional energy is

1
G

R.

It should be noted that, as in the Tresca criterion, the pressure component of the stress tensor
does not take part in the definition of the von Mises criterion and only the deviatoric stress
can influence plastic yielding. Thus, the von Mises criterion is also pressure-insensitive.

In a state of pure shear, i.e. a state with stress tensor

[σ] =


0 τ 0
τ 0 0
0 0 0


, (6.104)

we have, s = σ and
J2 = τ2. (6.105)

Thus, a yield function for the von Mises criterion can be defined as

Φ(σ) =
√

J2(s(σ)) − τy , (6.106)

where τy ≡
√

R is the shear yield stress. Let us now consider a state of uniaxial stress:

[σ] =


σ 0 0

0 0 0
0 0 0


. (6.107)
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In this case, we have

[s] =



2
3σ 0 0
0 − 13σ 0
0 0 − 13σ


 (6.108)

and
J2 = 1

3σ
2. (6.109)

The above expression for the J2-invariant suggests the following alternative definition of the
von Mises yield function:

Φ(σ) = q(σ) − σy, (6.110)

where σy ≡
√

3R is the uniaxial yield stress and

q(σ) ≡
√

3 J2(s(σ)) (6.111)

is termed the von Mises effective or equivalent stress. The uniaxial and shear yield stresses
for the von Mises criterion are related by

σy =
√

3 τy. (6.112)

Note that this relation differs from that of the Tresca criterion given by (6.85). Obviously, due
to its definition in terms of an invariant of the stress tensor, the von Mises yield function is an
isotropic function of σ.

The von Mises and Tresca criteria may be set to agree with one another in either uniaxial
stress or pure shear states. If they are set by using the yield functions (6.84) and (6.110) so
that both predict the same uniaxial yield stress σy , then, under pure shear, the von Mises
criterion will predict a yield stress 2/

√
3 (≈ 1.155) times that given by the Tresca criterion.

On the other hand, if both criteria are made to coincide under pure shear (expressions (6.83)
and (6.106) with the same τy), then, in uniaxial stress states, the von Mises criterion will
predict yielding at a stress level

√
3/2 (≈ 0.866) times the level predicted by Tresca’s law.

The yield surface (Φ = 0) associated with the von Mises criterion is represented, in the
space of principal stresses, by the surface of an infinite circular cylinder, the axis of which
coincides with the hydrostatic axis. The von Mises surface is illustrated in Figure 6.8 where
it has been set to match the Tresca surface (shown in the same figure) under uniaxial stress.
The corresponding π-plane representation is shown in Figure 6.9(b). The von Mises circle
intersects the vertices of the Tresca hexagon. The yield surfaces for the von Mises and
Tresca criteria set to coincide in shear is shown in Figure 6.11. In this case, the von Mises
circle is tangent to the sides of the Tresca hexagon. It is remarked that, for many metals,
experimentally determined yield surfaces fall between the von Mises and Tresca surfaces.
A more general model, which includes both the Tresca and the von Mises yield surfaces as
particular cases (and, in addition, allows for anisotropy of the yield surface), is described in
Section 10.3.4 (starting page 427).

6.4.3. THE MOHR–COULOMB YIELD CRITERION

The criteria presented so far are pressure-insensitive and adequate to describe metals. For
materials such as soils, rocks and concrete, whose behaviour is generally characterised by
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Figure 6.11. Yield surfaces for the Tresca and von Mises criteria coinciding in pure shear.

a strong dependence of the yield limit on the hydrostatic pressure, appropriate description
of plastic yielding requires the introduction of pressure-sensitivity. A classical example of
a pressure-sensitive law is given by the Mohr–Coulomb yield criterion described in the
following.

The Mohr–Coulomb criterion is based on the assumption that the phenomenon of
macroscopic plastic yielding is, essentially, the result of frictional sliding between material
particles. Generalising Coulomb’s friction law, this criterion states that plastic yielding begins
when, on a plane in the body, the shearing stress, τ , and the normal stress, σn, reach the
critical combination

τ = c − σn tan φ, (6.113)

where c is the cohesion and φ is the angle of internal friction or frictional angle. In the above,
the normal stress, σn, was assumed tensile positive.

The yield locus of the Mohr–Coulomb criterion is the set of all stress states such that there
exists a plane in which (6.113) holds. The Mohr–Coulomb yield locus can be easily visualised
in the Mohr plane representation shown in Figure 6.12. It is the set of all stresses whose largest
Mohr circle, i.e. the circle associated with the maximum and minimum principal stresses
(σmax and σmin, respectively), is tangent to the critical line defined by τ = c − σn tanφ.
The elastic domain for the Mohr–Coulomb law is the set of stresses whose all three Mohr
circles are below the critical line. From Figure 6.12, the yield condition (6.113) is found to
be equivalent to the following form in terms of principal stresses

σmax − σmin
2

cos φ = c −
(

σmax + σmin
2

+
σmax − σmin

2
sin φ

)
tan φ, (6.114)

which, rearranged, gives

(σmax − σmin) + (σmax + σmin) sin φ = 2 c cos φ. (6.115)

In view of (6.115), a yield function expressed in terms of the principal stresses can be
immediately defined for the Mohr–Coulomb criterion as

Φ(σ, c) = (σmax − σmin) + (σmax + σmin) sin φ − 2 c cos φ. (6.116)
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Figure 6.12. The Mohr–Coulomb criterion. Mohr plane representation.

Due to its definition in terms of principal stresses, this yield function is an isotropic function
of σ. The corresponding yield surface (Φ = 0) is a hexagonal pyramid aligned with the
hydrostatic axis and whose apex is located at

p = c cot φ (6.117)

on the tensile side of the hydrostatic axis. The Mohr–Coulomb surface is illustrated in
Figure 6.13. Its pyramidal shape, as opposed to the prismatic shape of the Tresca surface, is
a consequence of the pressure-sensitivity of the Mohr–Coulomb criterion. It should be noted,
however, that both criteria coincide in the absence of internal friction, i.e. when φ = 0. As no
stress state is allowed on the outside of the yield surface, the apex of the pyramid (point A in
the figure) defines the limit of resistance of the material to tensile pressures. Limited strength
under tensile pressure is a typical characteristic of materials such as concrete, rock and soils,
to which the Mohr–Coulomb criterion is most applicable.

Multisurface representation

Analogously to the multisurface representation of the Tresca criterion, the Mohr–Coulomb
criterion can also be expressed by means of six functions:

Φ1(σ, c) = σ1 − σ3 + (σ1 + σ3) sin φ − 2 c cos φ

Φ2(σ, c) = σ2 − σ3 + (σ2 + σ3) sin φ − 2 c cos φ

Φ3(σ, c) = σ2 − σ1 + (σ2 + σ1) sin φ − 2 c cos φ

Φ4(σ, c) = σ3 − σ1 + (σ3 + σ1) sin φ − 2 c cos φ

Φ5(σ, c) = σ3 − σ2 + (σ3 + σ2) sin φ − 2 c cos φ

Φ6(σ, c) = σ1 − σ2 + (σ1 + σ2) sin φ − 2 c cos φ,

(6.118)

whose roots, Φi(σ, c) = 0 (for fixed c), define six planes in the principal stress space.
Each plane contains one face of the Mohr–Coulomb pyramid represented in Figure 6.13.



166 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APPLICATIONS

− σ3 p
Φ = 0

− σ
1

− σ2A

√3

3 c co
t φ

√

Figure 6.13. The Mohr–Coulomb yield surface in principal stress space.

The definition of the elastic domain and the yield surface in the multisurface representation
is completely analogous to that of the Tresca criterion.

Invariant representation

Analogously to the invariant representation (6.94) of the Tresca criterion, the Mohr–Coulomb
yield function can be expressed as (Owen and Hinton 1980, and Crisfield 1997):

Φ =
(

cos θ − 1√
3

sin θ sin φ

)√
J2(s) + p(σ) sin φ − c cos φ, (6.119)

where the Lode angle, θ, is defined in (6.97). As for the Tresca model, in spite of its
frequent use in computational plasticity, the invariant representation of the Mohr–Coulomb
surface renders more complex numerical algorithms so that the multisurface representation is
preferred in the computational implementation of the model described in Chapter 8.

6.4.4. THE DRUCKER–PRAGER YIELD CRITERION

This criterion has been proposed by Drucker and Prager (1952) as a smooth approximation to
the Mohr–Coulomb law. It consists of a modification of the von Mises criterion in which an
extra term is included to introduce pressure-sensitivity. The Drucker–Prager criterion states
that plastic yielding begins when the J2 invariant of the deviatoric stress and the hydrostatic
stress, p, reach a critical combination. The onset of plastic yielding occurs when the equation√

J2(s) + η p = c̄, (6.120)

is satisfied, where η and c̄ are material parameters. Represented in the principal stress space,
the yield locus of this criterion is a circular cone whose axis is the hydrostatic line. For η = 0,
the von Mises cylinder is recovered. The Drucker–Prager cone is illustrated in Figure 6.14.
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Figure 6.14. The Drucker–Prager yield surface in principal stress space.

In order to approximate the Mohr–Coulomb yield surface, it is convenient to define the
Drucker–Prager yield function as

Φ(σ, c) =
√

J2(s(σ)) + η p(σ) − ξ c, (6.121)

where c is the cohesion and the parameters η and ξ are chosen according to the required
approximation to the Mohr–Coulomb criterion. Note that the isotropy of the Mohr–Coulomb
yield function follows from the fact that it is defined in terms of invariants of the stress
tensor (J2(s) and p). Two of the most common approximations used are obtained by making
the yield surfaces of the Drucker–Prager and Mohr–Coulomb criteria coincident either at
the outer or inner edges of the Mohr–Coulomb surface. Coincidence at the outer edges is
obtained when

η =
6 sin φ√

3 (3 − sin φ)
, ξ =

6 cos φ√
3 (3 − sin φ)

, (6.122)

whereas, coincidence at the inner edges is given by the choice

η =
6 sin φ√

3 (3 + sin φ)
, ξ =

6 cos φ√
3 (3 + sin φ)

. (6.123)

The outer and inner cones are known, respectively, as the compression cone and the
extension cone. The inner cone matches the Mohr–Coulomb criterion in uniaxial tension and
biaxial compression. The outer edge approximation matches the Mohr–Coulomb surface in
uniaxial compression and biaxial tension. The π-plane section of both surfaces is shown in
Figure 6.15. Another popular Drucker–Prager approximation to the Mohr–Coulomb criterion
is obtained by forcing both criteria to predict identical collapse loads under plane strain
conditions. In this case (the reader is referred to Section 4.7 of Chen and Mizuno (1990) for



168 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APPLICATIONS

derivation) the constants η and ξ read

η =
3 tan φ√

9 + 12 tan2 φ
, ξ =

3√
9 + 12 tan2 φ

. (6.124)

For all three sets of parameters above, the apex of the approximating Drucker–Prager cone
coincides with the apex of the corresponding Mohr–Coulomb yield surface. It should be
emphasised here that any of the above approximations to the Mohr–Coulomb criterion can
give a poor description of the material behaviour for certain states of stress. Thus, according
to the dominant stress state in a particular problem to be analysed, other approximations may
be more appropriate. For instance, under plane stress, which can be assumed in the analysis
of structures such as concrete walls, it may be convenient to use an approximation such that
both criteria match under, say, uniaxial tensile and uniaxial compressive stress states. For
the Mohr–Coulomb criterion to fit a given uniaxial tensile strength, f ′

t , and a given uniaxial
compressive strength, f ′

c, the parameters φ and c have to be chosen as

φ = sin−1
(

f ′
c − f ′

t

f ′
c + f ′

t

)
, c =

f ′
c f ′

t

f ′
c − f ′

t

tan φ. (6.125)

The corresponding Drucker–Prager cone (Figure 6.16) that predicts the same uniaxial failure
loads is obtained by setting

η =
3 sin φ√

3
, ξ =

2 cos φ√
3

. (6.126)

Its apex no longer coincides with the apex of the original Mohr–Coulomb pyramid. For
problems where the failure mechanism is indeed dominated by uniaxial tension/compression,
the above approximation should produce reasonable results. However, if for a particular
problem, failure occurs under biaxial compression instead (with stresses near point f ′

bc

of Figure 6.16), then the above approximation will largely overestimate the limit load,
particularly for high ratios f ′

c/f ′
t which are typical for concrete. Under such a condition,

a different approximation (such as the inner cone that matches point f ′
bc) needs to be adopted

to produce sensible predictions. Another useful approximation for plane stress, where the
Drucker–Prager cone coincides with the Mohr–Coulomb surface in biaxial tension (point
f ′

bt) and biaxial compression (point f ′
bc), is obtained by setting

η =
3 sin φ

2
√

3
, ξ =

2 cos φ√
3

. (6.127)

Drucker–Prager approximations to the Mohr–Coulomb criterion are thoroughly discussed by
Chen (1982), Chen and Mizuno (1990) and Zienkiewicz et al. (1978).

6.5. Plastic flow rules

6.5.1. ASSOCIATIVE AND NON-ASSOCIATIVE PLASTICITY

It has already been said that a plasticity model is classed as associative if the yield function,
Φ, is taken as the flow potential, i.e.

Ψ = Φ. (6.128)
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Any other choice of flow potential characterises a non-associative (or non-associated)
plasticity model.

In associative models, the evolution equations for the plastic strain and hardening variables
are given by

ε̇p = γ̇
∂Φ
∂σ

, (6.129)

and

α̇ = −γ̇
∂Φ
∂A

. (6.130)

Associativity implies that the plastic strain rate is a tensor normal to the yield surface in the
space of stresses. In the generalised case of non-smooth yield surfaces, the flow vector is a
subgradient of the yield function, i.e. we have

ε̇p = γ̇N ; N ∈ ∂σΦ. (6.131)

In non-associative models, the plastic strain rate is not normal to the yield surface in general.

6.5.2. ASSOCIATIVE LAWS AND THE PRINCIPLE OF MAXIMUM PLASTIC
DISSIPATION

It can be shown that the associative laws are a consequence of the principle of maximum
plastic dissipation. Before stating the principle of maximum plastic dissipation, recall that
for a state defined by a hardening force A, the admissible stress states are those that satisfy
Φ(σ, A) ≤ 0. Thus, it makes sense to define

A = {(σ, A) | Φ(σ, A) ≤ 0} (6.132)

as the set of all admissible pairs (combinations) of stress and hardening force. The principle
of maximum dissipation postulates that among all admissible pairs (σ∗, A∗) ∈ A, the actual
state (σ, A) maximises the dissipation function (6.42) for a given plastic strain rate, ε̇p, and
rate α̇ of hardening internal variables. The principle of maximum plastic dissipation requires
that, for given (ε̇p, α̇),

Υp(σ, A; ε̇p, α̇) ≥ Υp(σ∗, A∗; ε̇p, α̇), ∀ (σ∗, A∗) ∈ A. (6.133)

In other words, the actual state (σ, A) of stress and hardening force is a solution to the
following constrained optimisation problem:

maximise Υp(σ∗, A∗, ε̇p, α̇)

subject to Φ(σ∗, A∗) ≤ 0.
(6.134)

The Kuhn–Tucker optimality conditions (Luenberger, 1973, Chapter 10) for this optimisation
problem are precisely the associative plastic flow rule (6.129), the associative hardening
rule (6.130) and the loading/unloading conditions

Φ(σ, A) ≤ 0, γ̇ ≥ 0, Φ(σ, A)γ̇ = 0. (6.135)
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Remark 6.2. The postulate of maximum plastic dissipation, and the corresponding asso-
ciative laws, are not universal. Based on physical considerations, maximum dissipation
has been shown to hold in crystal plasticity and is particularly successful when applied to
the description of metals. Nevertheless, for many materials, particularly soils and granular
materials in general, associative laws frequently do not correspond to experimental evidence.
In such cases, the maximum dissipation postulate is clearly not applicable and the use of
non-associative laws is essential.

6.5.3. CLASSICAL FLOW RULES

The Prandtl–Reuss equations

The Prandtl–Reuss plasticity law is the flow rule obtained by taking the von Mises yield
function (6.110) as the flow potential. The corresponding flow vector is given by

N ≡ ∂Φ
∂σ

=
∂

∂σ
[
√

3 J2(s)] =
√
3
2

s

||s|| , (6.136)

and the flow rule results in
ε̇p = γ̇

√
3
2

s

||s|| . (6.137)

Here, it should be noted that the Prandtl–Reuss flow vector is the derivative of an isotropic
scalar function of a symmetric tensor – the von Mises yield function. Thus (refer to
Section A.1.2, page 732, where the derivative of isotropic functions of this type is discussed),
N and σ are coaxial, i.e. the principal directions of N coincide with those of σ. Due to the
pressure-insensitivity of the von Mises yield function, the plastic flow vector is deviatoric.
The Prandtl–Reuss flow vector is a tensor parallel to the deviatoric projection s of the stress
tensor. Its principal stress representation is depicted in Figure 6.17. The Prandtl–Reuss rule
is usually employed in conjunction with the von Mises criterion and the resulting plasticity
model is referred to as the von Mises associative model or, simply, the von Mises model.

Associative Tresca

The associative Tresca flow rule utilises the yield function (6.84) as the flow potential. Since
Φ here is also an isotropic function of σ, the rate of plastic strain has the same principal
directions as σ. The Tresca yield function is differentiable when the three principal stresses
are distinct (σ1 
= σ2 
= σ3) and non-differentiable when two principal stresses coincide (at
the edges of the Tresca hexagonal prism). Hence, the Tresca associative plastic flow rule is
generally expressed as

ε̇p = γ̇N, (6.138)

where N is a subgradient of the Tresca function

N ∈ ∂σΦ. (6.139)

Its multisurface-based representation reads

ε̇p =
6∑

i=1

γ̇iN i =
6∑

i=1

γ̇i ∂Φi

∂σ
, (6.140)
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Figure 6.17. The Prandtl–Reuss flow vector.

with the yield functions Φi defined by (6.91). Each vector N i is normal to the plane defined
by Φi = 0.

The above flow rule can be alternatively expressed as follows. Firstly assume, without loss
of generality, that the principal stresses are ordered as σ1 ≥ σ2 ≥ σ3, so that the discussion
can be concentrated on the sextant of the π-plane illustrated in Figure 6.18. Three different
possibilities have to be considered in this sextant:

(a) yielding at a stress state on the side (main plane) of the Tresca hexagon (Φ1 = 0, Φ2 < 0
and Φ6 < 0);

(b) yielding from the right corner, R (Φ1 = 0, Φ6 = 0 and Φ2 < 0); and

(c) Yielding from the left corner, L (Φ1 = 0, Φ2 = 0 and Φ6 < 0).

When the stress is on the side of the hexagon, only one multiplier may be non-zero and the
plastic flow rule reads

ε̇p = γ̇ N a, (6.141)

where the flow vector is the normal to the plane Φ1 = 0, given by

N a ≡ N 1 =
∂Φ1
∂σ

=
∂

∂σ
(σ1 − σ3)

= e1 ⊗ e1 − e3 ⊗ e3, (6.142)

with ei denoting the eigenvector of σ associated with the principal stress σi. In deriving the
last right-hand side of (6.142), use has been made of the expression (A.27) of page 736 for
the derivative of an eigenvalue of a symmetric tensor.

At the right and left corners of the hexagon, where two planes intersect, two multipliers
may be non-zero. Thus, the plastic flow equation is

ε̇p = γ̇a N a + γ̇b N b. (6.143)
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Figure 6.18. The associative Tresca flow rule.

The vector N a is the normal to the plane Φ1 = 0, already defined. In the right corner
(repeated minimum principal stress), the second vector, N b, is normal to the plane Φ6 = 0
and is obtained analogously to (6.142) as

N b ≡ N 6 = e1 ⊗ e1 − e2 ⊗ e2. (6.144)

In the left corner (repeated maximum principal stress), N b, is normal to the plane Φ2 = 0,

N b ≡ N 2 = e2 ⊗ e2 − e3 ⊗ e3. (6.145)

It should be noted that, as for the Prandtl–Reuss rule, the plastic flow predicted by the
associative Tresca law is volume-preserving. Indeed, note that, in the above, we have trivially

tr N a = tr N b = 0. (6.146)

This is due to the pressure-insensitivity of the Tresca yield function.

Associative and non-associative Mohr–Coulomb

In the associative Mohr–Coulomb law, the Mohr–Coulomb yield function (6.116) is adopted
as the flow potential. Its multisurface representation is based on the yield functions (6.118).
The flow rule, which requires consideration of the intersections between the yield surfaces,
is derived in a manner analogous to the Tresca law described above. However, it should be
noted that in addition to the edge singularities, the present surface has an extra singularity in
its apex (Figure 6.13). Plastic yielding may then take place from a face, from an edge or from
the apex of the Mohr–Coulomb pyramid.

Again, in the derivation of the flow rules at faces and edges, it is convenient to assume
that the principal stresses are ordered as σ1 ≥ σ2 ≥ σ3 so that, without loss of generality, the
analysis can be reduced to a single sextant of a cross-section of the Mohr–Coulomb pyramid
as illustrated in Figure 6.19. The situation is identical to Tresca’s (Figure 6.18) except that
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Figure 6.19. The Mohr–Coulomb flow rule; (a) faces and edges, and (b) apex.

the normal vectors N a and N b are no longer deviatoric, i.e. they have a non-zero component
along the hydrostatic axis (the vectors shown in Figure 6.19 are deviatoric projections of the
actual normals). For plastic yielding from the face, the flow rule is given by

ε̇p = γ̇ N a, (6.147)

where N a is normal to the plane Φ1 = 0,

N a =
∂Φ1
∂σ

=
∂

∂σ
[σ1 − σ3 + (σ1 + σ3) sin φ]

= (1 + sin φ)e1 ⊗ e1 − (1 − sin φ)e3 ⊗ e3. (6.148)

At the corners, the above flow rule is replaced by

ε̇p = γ̇a N a + γ̇b N b. (6.149)

At the right (extension) corner, R, the second vector, N b, is normal to the plane Φ6 = 0 and
is given by

N b = (1 + sin φ) e1 ⊗ e1 − (1 − sin φ) e2 ⊗ e2, (6.150)

whereas, at the left (compression) corner, L, the tensor N b is normal to the plane Φ2 = 0,

N b = (1 + sin φ) e2 ⊗ e2 − (1 − sin φ) e3 ⊗ e3. (6.151)

At the apex of the Mohr–Coulomb surface, all six planes intersect and, therefore, six
normals are defined and up to six plastic multipliers may be non-zero. This situation is
schematically illustrated in Figure 6.19(b). The plastic strain rate tensor lies within the
pyramid defined by the six normals:

ε̇p =
6∑

i=1

γ̇i N i. (6.152)
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It is important to note that, due to the pressure sensitivity of the Mohr–Coulomb criterion,
the associative Mohr–Coulomb rule predicts a non-zero volumetric plastic straining. This is in
contrast to the Prandtl–Reuss and associative Tresca laws. The volumetric component of the
plastic strain rate in the associative Mohr–Coulomb law can be obtained by expanding (6.152)
in principal stress space taking into account the definitions of Ni. This gives


ε̇p
1

ε̇p
2

ε̇p
3


=


α 0 β β 0 α

0 α α 0 β β
β β 0 α α 0






γ̇1

γ̇2

γ̇3

γ̇4

γ̇5

γ̇6


, (6.153)

where
α ≡ 1 + sin φ, β ≡−1 + sin φ. (6.154)

The above trivially yields

ε̇p
v ≡ ε̇p

1 + ε̇p
2 + ε̇p

3 = 2 sin φ

6∑
i=1

γ̇i. (6.155)

As all γ̇i’s are non-negative, the volumetric plastic strain rate is positive and, therefore,
dilatant. The phenomenon of dilatancy during plastic flow is observed for many materi-
als, particularly geomaterials. However, the dilatancy predicted by the associative Mohr–
Coulomb law is often excessive. To overcome this problem, it is necessary to use a non-
associated flow rule in conjunction with the Mohr–Coulomb criterion. The non-associated
Mohr–Coulomb law adopts, as flow potential, a Mohr–Coulomb yield function with the
frictional angle φ replaced by a different (smaller) angle ψ. The angle ψ is called the dilatancy
angle and the amount of dilation predicted is proportional to its sine. Note that for ψ = 0, the
plastic flow becomes purely deviatoric and the flow rule reduces to the associative Tresca law.

Associative and non-associative Drucker–Prager

The associative Drucker–Prager model employs as flow potential the yield function defined
by (6.121). To derive the corresponding flow rule, one should note first that the Drucker–
Prager function is singular at the apex of the yield surface and is smooth anywhere else.
Thus, two situations need to be considered:

(a) plastic yielding at (smooth portion of) the cone surface; and

(b) plastic yielding at the apex.

At the cone surface, where the Drucker–Prager yield function is differentiable, the flow
vector is obtained by simply differentiating (6.121) which gives (Figure 6.20(a))

N =
1

2
√

J2(s)
s +

η

3
I, (6.156)
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Figure 6.20. The Drucker–Prager flow vector; (a) cone surface, and (b) apex.

where η is given by (6.122)1, (6.123)1 or (6.124)1, according to the chosen approximation to
the Mohr–Coulomb surface. The flow rule is then

ε̇p = γ̇ N. (6.157)

The deviatoric/volumetric decomposition of the Drucker–Prager flow vector gives

Nd =
1

2
√

J2(s)
s, Nv = η. (6.158)

At the apex singularity, the flow vector is an element of the subdifferential of the yield
function (6.121):

N ∈ ∂σΦ. (6.159)

It lies within the complementary cone to the Drucker–Prager yield surface, i.e. the cone
whose wall is normal to the Drucker–Prager cone illustrated in Figure 6.20(b). From standard
properties of subdifferentials (Rockafellar, 1970; Rockafellar and Wets, 1998) it can be
established that the deviatoric/volumetric split of N in this case is given by

Nd ∈ ∂σΦd, Nv = η, (6.160)

where Φd ≡
√

J2(s). Expressions (6.157), (6.158) and (6.160) result in the following rate of
(dilatant) volumetric plastic strain for the associative Drucker–Prager flow rule:

ε̇p
v = γ̇ η. (6.161)

This expression is analogous to (6.155).
Similarly to the associative Mohr–Coulomb flow rule, the often excessive dilatancy

predicted by the associated rule in the present case is avoided by using a non-associated
law. The non-associative Drucker–Prager law is obtained by adopting, as the flow potential,
a Drucker–Prager yield function with the frictional angle φ replaced by a dilatancy angle
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ψ < φ; that is, we define
Ψ(σ, c) =

√
J2(s(σ)) + η̄ p, (6.162)

where η̄ is obtained by replacing φ with ψ in the definition of η given by (6.122)1, (6.123)1
or (6.124)1. In other words,

η̄ =
6 sin ψ√

3 (3 − sin ψ)
, (6.163)

when the outer cone approximation to the Mohr–Coulomb criterion is employed. When the
inner cone approximation is used,

η̄ =
6 sin ψ√

3 (3 + sin ψ)
, (6.164)

whereas, for the plane strain match,

η̄ =
3 tan ψ√

9 + 12 tan2 ψ
. (6.165)

The non-associated Drucker–Prager flow vector differs from its associated counterpart
only in the volumetric component which, for the non-associated case, reads

Nv = η̄. (6.166)

If the dilatancy angle of the non-associative potential is chosen as ψ = 0, then the volumetric
component, Nv, vanishes and the flow rule reduces to the Prandtl–Reuss law that predicts
volume-preserving plastic flow (refer to Figure 6.20(a)).

6.6. Hardening laws

The phenomenon of hardening has been identified in the uniaxial experiment described in
Section 6.1. Essentially, hardening is characterised by a dependence of yield stress level
upon the history of plastic straining to which the body has been subjected. In the uniaxial
model, formulated in Section 6.2, this phenomenon has been incorporated by allowing
the uniaxial yield stress to vary (as a function of the axial accumulated plastic strain)
during plastic flow. In the two- and three-dimensional situations, hardening is represented
by changes in the hardening thermodynamical force, A, during plastic yielding. These
changes may, in general, affect the size, shape and orientation of the yield surface, defined by
Φ(σ, A) = 0.

6.6.1. PERFECT PLASTICITY

A material model is said to be perfectly plastic if no hardening is allowed, that is, the yield
stress level does not depend in any way on the degree of plastification. In this case, the yield
surface remains fixed regardless of any deformation process the material may experience
and, in a uniaxial test, the elastoplastic modulus, Eep, vanishes. In the von Mises, Tresca,
Drucker–Prager and Mohr–Coulomb models described above, perfect plasticity corresponds
to a constant uniaxial yield stress, σy (or constant cohesion, c). Figure 6.21 shows the stress–
strain curve of a typical uniaxial cyclic (tension–compression) test with a perfectly plastic
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Figure 6.21. Perfect plasticity. Uniaxial test and π-plane representation.

von Mises model along with the corresponding π-plane representation of the yield surface.
Perfectly plastic models are particularly suitable for the analysis of the stability of structures
and soils and are widely employed in engineering practice for the determination of limit loads
and safety factors.

6.6.2. ISOTROPIC HARDENING

A plasticity model is said to be isotropic hardening if the evolution of the yield surface is
such that, at any state of hardening, it corresponds to a uniform (isotropic) expansion of the
initial yield surface, without translation. The uniaxial model described in Section 6.2 is a
typical example of an isotropic hardening model. For that model, the elastic domain expands
equally in tension and compression during plastic flow. For a multiaxial plasticity model
with a von Mises yield surface, isotropic hardening corresponds to the increase in radius of
the von Mises cylinder in principal stress space. This, together with a typical stress–strain
curve for a uniaxial cyclic test for an isotropic hardening von Mises model is illustrated in
Figure 6.22.

The choice of a suitable set (denoted α in Section 6.3) of hardening internal variables
must be obviously dependent on the specific characteristics of the material considered. In
metal plasticity, for instance, the hardening internal variable is intrinsically connected with
the density of dislocations in the crystallographic microstructure that causes an isotropic
increase in resistance to plastic flow. In the constitutive description of isotropic hardening,
the set α normally contains a single scalar variable, which determines the size of the yield
surface. Two approaches, strain hardening and work hardening, are particularly popular in
the treatment of isotropic hardening and are suitable for modelling the behaviour of a wide
range of materials. These are described below.

Strain hardening

In this case the hardening internal state variable is some suitably chosen scalar measure of
strain. A typical example is the von Mises effective plastic strain, also referred to as the
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Figure 6.22. Isotropic hardening. Uniaxial test and π-plane representation.

von Mises equivalent or accumulated plastic strain, defined as

ε̄ p ≡
∫ t

0

√
2
3 ε̇p : ε̇p dt =

∫ t

0

√
2
3 ||ε̇

p|| dt. (6.167)

The above definition generalises the accumulated axial plastic strain (6.18) (page 145) of the
one-dimensional model to the multiaxially strained case. Its rate evolution equation reads

˙̄εp =
√
2
3 ε̇p : ε̇p =

√
2
3 ||ε̇

p||, (6.168)

or, equivalently, in view of the Prandtl–Reuss flow equation (6.137),

˙̄εp = γ̇. (6.169)

Accordingly, a von Mises isotropic strain-hardening model is obtained by letting the uniaxial
yield stress be a function of the accumulated plastic strain:

σy = σy(ε̄p). (6.170)

This function defines the strain-hardening curve (or strain-hardening function) that can be
obtained, for instance, from a uniaxial tensile test.

Behaviour under uniaxial stress conditions

Under uniaxial stress conditions the von Mises model with isotropic strain hardening
reproduces the behaviour of the one-dimensional plasticity model discussed in Section 6.2
and summarised in Box 6.1 (page 146). This is demonstrated in the following. Let us assume
that both models share the same Young’s modulus, E, and hardening function σy = σy(ε̄p).
Clearly, the two models have identical uniaxial elastic behaviour and initial yield stress.
Hence, we only need to show next that their behaviour under plastic yielding is also identical.
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Under a uniaxial stress state with axial stress σ and axial stress rate σ̇ in the direction of the
base vector e1, the matrix representations of the stress tensor and the stress rate tensor in the
three-dimensional model are given by

[σ] = σ


1 0 0
0 0 0
0 0 0


, [σ̇] = σ̇


1 0 0
0 0 0
0 0 0


. (6.171)

The corresponding stress deviator reads

[s] = 2
3σ


1 0 0

0 − 12 0
0 0 − 12


. (6.172)

In this case, the Prandtl–Reuss flow equation (6.137) gives

[ε̇p] = ε̇p


1 0 0

0 − 12 0
0 0 − 12


, (6.173)

where
ε̇p = γ̇ sign(σ) (6.174)

is the axial plastic strain rate. Note that the above expression coincides with the one-
dimensional plastic flow rule (6.10). Now, we recall the consistency condition (6.60), which
must be satisfied under plastic flow. In the present case, by taking the derivatives of the
von Mises yield function (6.110), with σy defined by (6.170), we obtain

Φ̇ = N : σ̇ − H ˙̄εp = 0, (6.175)

where N ≡ ∂Φ/∂σ is the Prandtl–Reuss flow vector (6.136) and H = H(ε̄p) is the hard-
ening modulus defined in (6.27). To conclude the demonstration, we combine (6.175)
with (6.136), (6.171)2 and (6.172) to recover (6.28) and, then, following the same arguments
as in the one-dimensional case we find that, under uniaxial stress conditions, the isotropic
strain hardening von Mises model predicts the tangential axial stress–strain relation

σ̇ =
EH

E + H
ε̇, (6.176)

which is identical to equation (6.31) of the one-dimensional model.

Work hardening

In work-hardening models, the variable defining the state of hardening is the dissipated plastic
work,¶ wp, defined by

wp ≡
∫ t

0

σ : ε̇p dt. (6.177)

¶The term work hardening is adopted by many authors as a synonym for the phenomenon of hardening in general.
Materials that harden, i.e. materials whose yield stress level depends on the history of strains, are frequently referred
to as work-hardening materials. In this text, however, the term work hardening is reserved for plasticity models in
which the dissipated plastic work is taken as the state variable associated with hardening.
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In a uniaxial test, for instance (Figure 6.23), the total work w necessary to deform the material
up to point P is given by the total area under the corresponding stress–strain curve. Part of this
work, we, is stored in the form of elastic energy and is fully recovered upon elastic unloading.
The remaining (shaded) area, wp, is the plastic work. It corresponds to the energy dissipated
by the plastic mechanisms and cannot be recovered. From the definition of wp, its evolution
equation is given by

ẇp = σ : ε̇p. (6.178)

An isotropic work-hardening von Mises model is obtained by postulating

σy = σy(wp). (6.179)

This defines the work-hardening curve (or work-hardening function).

Equivalence between strain and work hardening

Under some circumstances, the strain-hardening and work-hardening descriptions are equiv-
alent. This is shown in the following for the von Mises model with associative flow
rule (6.137).

The substitution of (6.137) into (6.178), together with the identity
√

3/2‖s‖ = σy valid
for the von Mises model under plastic flow, gives

ẇp = σy ˙̄εp, (6.180)

or, equivalently,
dwp

dε̄p
= σy. (6.181)

As σy is strictly positive (σy > 0), the above differential relation implies that the mapping
between wp and ε̄p is one-to-one and, therefore, invertible so that

wp = wp(ε̄p) (6.182)

and
ε̄p = ε̄p(wp). (6.183)
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This allows any given strain-hardening function of the type (6.170) to be expressed as an
equivalent work-hardening function,

σy(ε̄p) = σ̃y(wp) ≡ σy(ε̄p(wp)), (6.184)

and any given work-hardening function of the type (6.179) to be expressed as an equivalent
strain-hardening function,

σy(wp) = σ̂y(ε̄p) ≡ σy(wp(ε̄p)). (6.185)

Expressions (6.184) and (6.185) establish the equivalence between the strain and work-
hardening descriptions for the von Mises model with associative flow rule.

Linear and nonlinear hardening

A model is said to be linear hardening if the strain-hardening function (6.170) is linear, i.e.
if it can be expressed as

σy(ε̄p) = σy0 + Hε̄p, (6.186)

with constant σy0 and H . The constant σy0 is the initial yield stress, i.e. the uniaxial yield
stress at the initial (virgin) state of the material, and H is called the linear isotropic hardening
modulus. Any other hardening model is said to be nonlinear hardening. Note that perfect
plasticity (defined in Section 6.6.1) is obtained if we set H = 0 in (6.186).

It should also be noted that a linear work-hardening function corresponds in general to an
equivalent nonlinear strain-hardening function (i.e. a nonlinear hardening model). This can
be easily established by observing that (6.181) defines a nonlinear relation between wp and
ε̄p if σy is not a constant.

6.6.3. THERMODYNAMICAL ASPECTS. ASSOCIATIVE ISOTROPIC HARDENING

Within the formalism of thermodynamics with internal variables, the above isotropic strain-
hardening law corresponds to the assumption that the plastic contribution, ψp, to the free
energy (recall expression (6.37), page 149) is a function of a single scalar argument – the
accumulated plastic strain. That is, the set α of hardening variables is defined as

α ≡ {ε̄p} (6.187)

and
ψp = ψp(ε̄p). (6.188)

The set of hardening thermodynamic forces in this case specialises as

A ≡ {κ}, (6.189)

where the scalar thermodynamic force, κ, associated to isotropic hardening is defined by

κ ≡ ρ̄
∂ψp

∂ε̄p
= κ(ε̄p). (6.190)
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The hardening curve is postulated in terms of κ as

σy(ε̄p) ≡ σy0 + κ(ε̄p). (6.191)

If the state of hardening is defined in terms of cohesion (or shear yield stress), c (or τy)
replaces σy in (6.191). Note that the hardening modulus H , initially defined in (6.27),
represents the rate of change of the hardening thermodynamic force with respect to the
hardening internal variable, i.e.

H(ε̄p) ≡ ∂σy

∂ε̄p
=

∂κ

∂ε̄p
. (6.192)

For the strain-hardening von Mises model the evolution law (6.168) and (6.169) for the
internal variable, ε̄p, follows from the hypothesis of associativity, that relies on the choice of
the yield function as the plastic potential. The associative evolution equation for ε̄p in this
case is a specialisation of (6.130); that is, we have

˙̄εp = γ̇H = γ̇. (6.193)

The associative generalised modulus H is given by

H = − ∂Φ
∂A

≡−∂Φ
∂κ

= 1, (6.194)

where Φ is the von Mises yield function (6.110). A hardening law defined by means of the
associativity hypothesis is called an associative hardening law. Any other hardening rule is
said to be non-associative.

Multisurface models with associative hardening

Analogously to the associative plastic flow rule definition (6.73), (6.77) and (6.78), associa-
tive hardening for multisurface plasticity models can be defined by postulating the following
generic evolution equation for the accumulated plastic strain:

˙̄εp = −
n∑

i=1

γ̇i ∂Φi

∂κ
. (6.195)

Note that, here, the accumulated plastic strain, ε̄p, is being defined by evolution equa-
tion (6.195). Its actual physical meaning depends on the specific format of the functions
Φi and is generally different from that of (6.167) adopted for the von Mises model.

A simple example of associative isotropic hardening law of the type (6.195) is obtained
for the Tresca model. Here, we refer to the plastic flow equations (6.141) and (6.143),
defined respectively on the side (smooth portion) and corner of the Tresca yield surface.
The corresponding associative evolution equations that define the accumulated plastic strain
ε̄p are

˙̄εp = −γ̇
∂Φ1
∂κ

= γ̇ (6.196)

and
˙̄εp = −γ̇a ∂Φ1

∂κ
− γ̇b ∂Φ6

∂κ
= γ̇a + γ̇b, (6.197)
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respectively, where functions Φ1 and Φ6 are defined by (6.91) with σy related to κ
through (6.191).

For Mohr–Coulomb plasticity, one of the possibilities in defining a hardening law is to
assume the cohesion, c, that takes part of the yield function (6.116) or (6.121) to be a function
of the hardening internal variable:

c = c(ε̄p). (6.198)

This type of hardening description is often used in practice in the modelling of soils – for
which cohesion is a fundamental strength parameter. This assumption will be adopted in
the computer implementation of Mohr–Coulomb and Drucker–Prager models described in
Chapter 8. If hardening associativity is also assumed, then similarly to (6.191) we define

c(ε̄p) = c0 + κ(ε̄p), (6.199)

and the internal variable ε̄p – the accumulated plastic strain for associative Mohr–Coulomb
hardening – is defined by the corresponding particularisation of general evolution law (6.195).
This gives the general expression

˙̄εp = 2 cos φ

6∑
i=1

γ̇i. (6.200)

When flow takes place at the smooth portion of a Mohr–Coulomb pyramid face, this is
reduced to

˙̄εp = 2 cos φ γ̇. (6.201)

At the corners (refer to the plastic flow equation (6.149)), we have

˙̄εp = 2 cos φ (γ̇a + γ̇b). (6.202)

Note that if it is insisted to adopt the von Mises accumulated plastic strain rate defini-
tion (6.167) in conjunction, say, with the Tresca model with associative plastic flow, (6.141)
to (6.143), the evolution equation for ε̄p will result in

˙̄εp =
√
2
3 ε̇p : ε̇p = 2√

3
γ̇ (6.203)

for flow from the smooth portions of the Tresca surface, and

˙̄εp =
√
2
3 ε̇p : ε̇p = 2√

3

√
(γ̇a)2 + γ̇aγ̇b + (γ̇b)2, (6.204)

for flow from a corner. In this case, the isotropic hardening law is non-associative in spite of
the associativity of the plastic flow rule.

Drucker–Prager associative hardening

Associative hardening for Drucker–Prager plasticity is obtained by combining assump-
tion (6.199) and the yield function definition (6.121) with the general associative evolution
law (6.130) for the hardening internal variable. The accumulated plastic strain in this case is
then defined by the evolution equation

˙̄εp = −γ̇
∂Φ
∂κ

= γ̇ ξ. (6.205)
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Other hardening models

Further refinements to capture hardening behaviour more accurately can be incorporated in
Mohr–Coulomb based plasticity models by assuming, in addition, the frictional angle to be a
function, for example, of the accumulated plastic strain:

φ = φ(ε̄p). (6.206)

For Drucker–Prager-based models, the above would correspond to having

η = η(ε̄p), ξ = ξ(ε̄p). (6.207)

The direction of plastic flow is generally affected by the history of plastic straining in
materials such as soils and rocks. This phenomenon can be accounted for in non-associative
flow Mohr–Coulomb type models by letting the dilatancy angle, ψ, be a function of the
hardening internal variable. For Drucker–Prager-based models, this can be obtained by having
the parameter η̄ as a function of the hardening variable.

6.6.4. KINEMATIC HARDENING. THE BAUSCHINGER EFFECT

When the yield surfaces preserve their shape and size but translate in the stress space as a
rigid body, kinematic hardening is said to take place. It is frequently observed in experiments
that, after being loaded (and hardened) in one direction, many materials show a decreased
resistance to plastic yielding in the opposite direction (Lemaitre and Chaboche, 1990). This
phenomenon is known as the Bauschinger effect and can be modelled with the introduction
of kinematic hardening. A number of constitutive models have been proposed to describe
elastoplastic behaviour under cyclic loading conditions (Lemaitre and Chaboche, 1990; Mróz,
1967; Skrzypek, 1993). The typical result of a uniaxial cyclic test showing the Bauschinger
effect is illustrated in Figure 6.24. The evolution of a kinematically hardening von Mises-type
yield surface (in the deviatoric plane) used to model the phenomenon is shown alongside. The
yield function for the kinematically hardening model is given by

Φ(σ, β) =
√

3 J2(η(σ, β)) − σy , (6.208)

where
η(σ, β) ≡ s(σ) − β (6.209)

is the relative stress tensor, defined as the difference between the stress deviator and the
symmetric deviatoric (stress-like) tensor, β, known as the back-stress tensor. Note that, by
definition, the relative stress is deviatoric. The back-stress tensor is the thermodynamical
force associated with kinematic hardening and represents the translation (Figure 6.24) of the
yield surface in the space of stresses. The constant σy in (6.208) defines the radius of the yield
surface. When β = 0, we have η = s and the yield surface defined by Φ = 0 is the isotropic
von Mises yield surface with uniaxial yield stress σy .

It is important to observe that, unlike the isotropically hardening von Mises model, the
yield function Φ defined by (6.208) is not an isotropic function of the stress tensor for
kinematically hardened states (β 
= 0). The function (6.208) is an isotropic function of the
relative stress, η. Analogously to expression (6.208), it is possible to introduce kinematic
hardening in other plasticity models simply by replacing σ with a relative stress measure,
defined as the difference σ − β, in the definition of the corresponding yield function.
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Figure 6.24. Kinematic hardening and the Bauschinger effect. Uniaxial test and π-plane representation.
Loading in one direction results in decreased resistance to plastic yielding in the opposite direction.

Plastic flow rule with kinematic hardening

The von Mises model with kinematic hardening is used in conjunction with an associative
flow rule. The flow vector in this case reads

N ≡ ∂Φ
∂σ

=
√
3
2

η

‖η‖ (6.210)

and we have the following plastic strain rate equation:

ε̇p = γ̇ N = γ̇
√
3
2

η

‖η‖ . (6.211)

This rule extends the Prandtl–Reuss equation to account for kinematic hardening. Note that
the plastic flow is in the direction of the (deviatoric) relative stress, η, and coincides with the
Prandtl–Reuss equation if β = 0.

Prager’s linear kinematic hardening

To complete the definition of the kinematic hardening plasticity model, evolution equations
for β are required. One of the most commonly used laws is Prager’s linear kinematic
hardening rule, where the rate evolution equation for β is given by

β̇ = 2
3H ε̇p = γ̇

√
2
3 H

η

‖η‖ . (6.212)

The material constant H is the linear kinematic hardening modulus.

Behaviour under monotonic uniaxial stress loading

For monotonic loading under uniaxial stress conditions, the stress–strain behaviour of the
model defined by equations (6.208), with constant σy = σy0, (6.211) and (6.212) and initial
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state of hardening defined by β = 0 is identical to the behaviour of the purely isotropic
hardening von Mises model with linear hardening curve (6.186) and initial state of hardening
ε̄p = 0. It is assumed in this statement that both models share the same Young’s modulus, E.
Under the above conditions, it is clear that both models have the same elastic behaviour and
uniaxial yield stress, σy0. To show that their plastic behaviour also coincides, let us consider
again a uniaxial test with loading in the direction of the base vector e1. In this case, the
stress, stress rate and stress deviator tensors have the matrix representations given in (6.171)
and (6.172). Now note that the integration of the rate equation (6.212) with initial condition
β = 0 (i.e. η = s) and s as in (6.172) gives a back-stress tensor of the form

[β] = β


1 0 0
0 − 1

2 0
0 0 − 12


, (6.213)

where β is the axial back-stress component. With the above, we obtain for the relative stress
tensor

[η] = η


1 0 0
0 − 12 0
0 0 − 12


, (6.214)

where
η = 2

3σ − β (6.215)

is the axial relative stress. From (6.212) and (6.214) we obtain

[β̇] = 2
3Hε̇p


1 0 0

0 − 12 0
0 0 − 12


, (6.216)

where ε̇p is the axial plastic strain rate given by

ε̇p = γ̇ sign(η). (6.217)

Now, by recalling (6.60) and specialising (6.61) for the present case we have that, under
plastic yielding, the following consistency condition must be satisfied:

Φ̇ =
∂Φ
∂σ

: σ̇ +
∂Φ
∂β

: β̇ = 0. (6.218)

After some straightforward tensor algebra, taking into account (6.171)2 and the above
expressions for β̇, β, the definition of η, and the identity

∂Φ
∂β

= −∂Φ
∂σ

= −
√

3
2

η

‖η‖ , (6.219)

equation (6.218) yields
σ̇ = Hε̇p. (6.220)

Then, with the introduction of the elastoplastic split of the axial strain rate, together with the
equation

σ̇ = Eε̇e, (6.221)
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of the linear elastic model under uniaxial stress conditions, into (6.220), we obtain

σ̇ =
EH

E + H
ε̇, (6.222)

which coincides with the stress rate equation (6.176) of the von Mises isotropic strain-
hardening model with constant H . To complete the demonstration, let us assume that the
uniaxial loading is monotonic, i.e. we have either ε̇ > 0 or ε̇ < 0 throughout the entire loading
process. In this case, the integration of (6.222) having the initial yield stress (σy0 for both
models) as the initial condition produces the same stress–strain curve as the isotropic model.

Armstrong–Frederick hardening

A refinement upon the linear kinematic hardening law proposed by Armstrong and Frederick
(1966) is obtained by introducing an extra term in the above expression (refer to Lemaitre
and Chaboche (1990), Chapter 5, or Jirásek and Bažant (2002), Chapter 20, for details) with
the evolution of β given by

β̇ =
2
3

H ε̇p − γ̇ b β

= γ̇

(
2
3
H

∂Φ
∂σ

− b β

)
, (6.223)

where b is a material constant. The extra term −γ̇ b β introduces the effect of saturation in the
kinematic hardening rule. In the case of the von Mises criterion, the saturation corresponds to
a maximum limit value for the norm of β, at which the material behaves as perfectly plastic.

Nonlinear extension to Prager’s rule

Another possible improvement upon Prager’s linear kinematic hardening rule is the introduc-
tion of nonlinearity by replacing the constant kinematic hardening modulus, H , of (6.212)
with a generic function of the accumulated plastic strain, ε̄p,

β̇ =
2
3
H(ε̄p) ε̇p = γ̇

2
3
H(ε̄p)

∂Φ
∂σ

. (6.224)

In this case, a scalar function

β̄ ≡ β̄(ε̄p), (6.225)

such that

H(ε̄p) =
dβ̄

dε̄p
, (6.226)

defines the kinematic hardening curve. This curve can be obtained from simple uniaxial tests
in a manner analogous to the determination of the hardening curve for the purely isotropic
hardening model.
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Thermodynamical aspects of kinematic hardening

From the thermodynamical viewpoint, the above kinematic hardening laws follow from the
assumption that the plastic contribution, ψp, to the free energy is a function of a second-order
tensor-valued internal variable, X ,

ψp = ψp(X). (6.227)

The variable X is related to self-equilibrated residual stresses that remain after elastic
unloading. These stresses may increase or decrease resistance to plastic slip according to
the direction considered. The kinematic hardening thermodynamical force – the back-stress
tensor, β – is then defined as the derivative

β ≡ ∂ψp

∂X
. (6.228)

For the Armstrong–Frederick kinematic hardening law (6.223), for instance, we have

ψp(X) =
a

2
X : X, (6.229)

where the material constant a has been defined as

a ≡ 2
3 H. (6.230)

The back-stress tensor (6.228) is then a scalar multiple of X , given by

β = a X. (6.231)

The evolution law for the internal variable X is obtained by postulating a flow potential

Ψ ≡ Φ +
b

2a
β : β, (6.232)

and assuming normal dissipativity

Ẋ ≡−γ̇
∂Ψ
∂β

= −γ̇

(
∂Φ
∂β

+
b

a
β

)
. (6.233)

Obviously (since Ψ 
= Φ), this evolution law is non-associative. The equivalence between the
above equation and (6.223) can be established by taking into account (6.231) and the fact that,
since Φ is obtained from a non-kinematic hardening yield function by replacing the argument
σ with σ − β, we have

∂Φ
∂β

= −∂Φ
∂σ

. (6.234)

6.6.5. MIXED ISOTROPIC/KINEMATIC HARDENING

Rather than purely isotropic or purely kinematic hardening, real-life materials show in general
a combination of both; that is, under plastic straining, the yield surface expands/shrinks
and translates simultaneously in stress space. Thus, more realistic plasticity models can be
obtained by combining the above laws for isotropic and kinematic hardening.
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Figure 6.25. Mixed hardening. Uniaxial test with load reversal.

For example, a relatively simple von Mises-based model with mixed isotropic/kinematic
hardening can be devised by adopting the yield function (6.208) and allowing σy to be a
function of ε̄p. If the nonlinear rule defined by (6.224) and (6.225) is adopted, the hardening
behaviour of the model is determined by the curves

σy = σy(ε̄p), β̄ = β̄(ε̄p), (6.235)

which can be obtained from relatively simple uniaxial tests with load reversal (see schematic
illustration of Figure 6.25). At each point ε̄p, the kinematic hardening stress, β̄, is the
kinematic contribution to overall hardening.

A more refined mixed hardening model can be devised by coupling the Armstrong–
Frederick law (6.223) with the von Mises-type yield function (6.208) where σy , as in (6.235)1,
is a function of the accumulated plastic strain. A model including mixed hardening of
this type is discussed in Section 12.3 (starting on page 478) in the context of damage
mechanics.



7 FINITE ELEMENTS IN
SMALL-STRAIN PLASTICITY
PROBLEMS

IN the previous chapter, the mathematical theory of plasticity has been reviewed. A general
small-strain elastoplastic constitutive model has been established within the formalism of

thermodynamics with internal variables and the most popular theories, namely, the von Mises,
Tresca, Mohr–Coulomb and Drucker–Prager models, have been described in detail.

Obviously, due to the mathematical complexity of such constitutive theories, an exact
solution to boundary value problems of practical engineering interest can only be obtained
under very simplified conditions. The existing analytical solutions are normally restricted
to perfectly plastic models and are used for the determination of limit loads and steady
plastic flow of bodies with simple geometries (Chakrabarty, 1987; Hill, 1950; Lubliner,
1990; Prager, 1959; Skrzypek, 1993). The analysis of the behaviour of elastoplastic structures
and soils under more realistic conditions requires the adoption of an adequate numerical
framework capable of producing approximate solutions within reasonable accuracy. As
pointed out in Chapter 4, the approximate solution to such problems is addressed in this
book within the context of the Finite Element Method. In fact, the Finite Element Method is
by far the most commonly adopted procedure for the solution of elastoplastic problems. Since
the first reported applications of finite elements in plasticity in the mid-1960s, a substantial
development of the related numerical techniques has occurred. Today, the Finite Element
Method is regarded as the most powerful and reliable tool for the analysis of solid mechanics
problems involving elastoplastic materials and is adopted by the vast majority of commercial
software packages for elastoplastic stress analysis.

This chapter describes in detail the numerical/computational procedures necessary for
the implicit finite element solution of small strain plasticity problems within the framework
of Chapter 4. For the sake of generality, the methodologies presented in this chapter are
initially derived taking the general plasticity model introduced in Chapter 6 (summarised
in Box 6.2, page 151) as the underlying constitutive model. Practical application of the
theory and procedures introduced, including a complete description of the algorithms and
corresponding FORTRAN subroutines of the HYPLAS program, is then made to the particular
case of the von Mises model with nonlinear isotropic hardening. The choice of this model
is motivated here by the simplicity of its computational implementation. A set of numerical
examples is also presented. Further application of the theory is made at the end of the chapter
to a mixed isotropic/kinematic hardening version of the von Mises model. This model is also
included in the HYPLAS program. Application to the Tresca, Mohr–Coulomb and Drucker–
Prager models is left for Chapter 8.

Computational Methods for Plasticity: Theory and Applications EA de Souza Neto, D Perić and DRJ Owen
c© 2008 John Wiley & Sons, Ltd
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7.1. Preliminary implementation aspects

At this point, it is convenient to recall that, within the modular structure of the HYPLAS
program (refer to Section 5.7, from page 131), each material model implementation is
defined by a set of five material-specific routines. Each one of these routines is called by
a corresponding material interface subroutine that is common to all models. There are two
most fundamental material-specific operations:

1. The state update procedure which, in the case of elastoplastic materials, requires the
formulation of a scheme for numerical integration of the rate elastoplastic evolution
equations. Within a (pseudo-) time increment [tn, tn+1], the state update procedure
gives the stresses σn+1 and the internal variables αn+1 at the end of the increment as
a function of the internal variables αn at the beginning of the increment and the strains
εn+1 at the end of the increment:

σn+1 = σ̂(αn, εn+1), (7.1)

αn+1 = α̂(αn, εn+1). (7.2)

The incremental constitutive functions σ̂ and α̂ are defined by the integration algorithm
adopted and the stress delivered by σ̂ is used to assemble the element internal force
vector

f inte =
ngausp∑

i=1

ji wi BT
i σn+1|i. (7.3)

2. The computation of the associated consistent tangent modulus

D ≡ ∂σ̂

∂εn+1
, (7.4)

to be used whenever the evaluation of a new tangent stiffness matrix is required by
the selected iterative scheme for solution of the nonlinear finite element equilibrium
equations. The element tangent stiffness matrix is computed as

K(e)T =
ngausp∑

i=1

wi ji BT
i Di Bi. (7.5)

These are the primary procedures that effectively define a particular constitutive
model/algorithm in the program.

This chapter will focus precisely on the two topics listed above, specialised to the case
of elastoplastic materials. Following the nomenclature established in Chapter 5 (refer to
the call trees of Figures 5.4 and 5.5 respectively on pages 126 and 130), the computational
implementation of the state update algorithms and tangent moduli addressed in the present
chapter appears at the lowest layer of the material level in the computation of the element
internal force vector and tangent stiffness matrix.
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7.2. General numerical integration algorithm for elastoplastic
constitutive equations

The importance of the state-updating procedure within the overall finite element scheme has
been stressed in Chapter 4. In the case of path-dependent materials, such as elastoplastic
materials, the updating scheme usually requires the formulation of a numerical algorithm for
integration of the corresponding rate constitutive equations. This requirement stems from the
fact that analytical solutions to the initial value problem defined by the elastoplastic equations
are generally not known for complex strain paths. An important point that one should bear
in mind regarding the formulation of state-updating procedures is that the accuracy of the
overall finite element scheme depends crucially on the accuracy of the particular numerical
algorithm adopted. This section describes a numerical procedure for integration of the general
elastoplastic model of Section 6.3. The strategy presented here is later specialised and applied
to the von Mises model in Section 7.3. Specialisation to the other basic plasticity models
of Chapter 6, i.e. the Tresca, Mohr–Coulomb and Drucker–Prager models, is presented in
Chapter 8 and its plane stress implementation is addressed in Chapter 9. Further applications
of the algorithms described in the present chapter are made in Chapter 10, in the context
of advanced plasticity models, and in Chapter 12, where the numerical implementation of
damage mechanics models is discussed.

7.2.1. THE ELASTOPLASTIC CONSTITUTIVE INITIAL VALUE PROBLEM

Consider a point p of a body B with constitutive behaviour described by the general
elastoplastic model of Box 6.2 (page 151). Assume that at a given (pseudo-)time t0 the elastic
strain, εe(t0), the plastic strain tensor, εp(t0), and all elements of the set α(t0) of hardening
internal variables are known at point p. Furthermore, let the motion of B be prescribed
between t0 and a subsequent instant, T . Clearly, the prescribed motion defines the history
of the strain tensor, ε(t), at the material point of interest between instants t0 and T . The basic
elastoplastic constitutive initial value problem at point p is stated in the following.

Problem 7.1 (The elastoplastic constitutive initial value problem). Given the initial values
εe(t0) and α(t0) and given the history of the strain tensor, ε(t), t ∈ [t0, T ], find the functions
εe(t), α(t) and γ̇(t) for the elastic strain, hardening internal variables set and plastic
multiplier that satisfy the reduced general elastoplastic constitutive equations

ε̇e(t) = ε̇(t) − γ̇(t) N(σ(t), A(t))

α̇(t) = γ̇(t) H(σ(t), A(t))
(7.6)

γ̇(t) ≥ 0, Φ(σ(t), A(t)) ≤ 0, γ̇(t) Φ(σ(t), A(t)) = 0 (7.7)

for each instant t ∈ [t0, T ], with

σ(t) = ρ̄
∂ψ

∂εe

∣∣∣∣
t

, A(t) = ρ̄
∂ψ

∂α

∣∣∣∣
t

. (7.8)

Remark 7.1. We refer to the system of differential equations (7.6) as reduced in that it
is obtained from the model of Box 6.2 by incorporating the plastic flow equation into the
additive strain rate decomposition. In this way, the plastic strain does not appear explicitly in
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the system and the only unknowns are the elastic strain, the set of hardening internal variables
and the plastic multiplier. Note that with the solution εe(t) of Problem 7.1 at hand, the history
of the plastic strain tensor is obtained from the trivial relation

εp(t) = ε(t) − εe(t), (7.9)

so that the history of all variables involved in the definition of the elastoplastic model of
Box 6.2 is determined.

As already mentioned, exact solutions to Problem 7.1, when yield functions and flow rules
such as the ones described in the previous chapter are adopted, may only be obtained for
very simple prescribed strain histories. Even in such cases, the derivation of the analytical
solutions is normally cumbersome. For complex deformation paths, which are more likely to
occur in realistic engineering problems, analytical solutions are not available in general and
the adoption of a numerical technique to find an approximate solution becomes absolutely
essential. A general framework for the numerical solution of the constitutive initial value
problem of elastoplasticity is described below.

7.2.2. EULER DISCRETISATION: THE INCREMENTAL CONSTITUTIVE PROBLEM

The starting point here is the adoption of an Euler scheme to discretise equations (7.6)
and (7.7). For simplicity we shall choose to adopt a backward (or fully implicit) Euler
scheme.† Accordingly, for integration within a generic (pseudo-)time interval [tn, tn+1], we
replace all rate quantities in (7.7)–(7.6) with corresponding incremental values within the
considered interval and the functions N, H and Φ with their values at the end of the interval,
tn+1. The resulting discrete version of Problem 7.1 is stated in the following.

Problem 7.2 (The incremental elastoplastic constitutive problem). Given the values εe
n

and αn, of the elastic strain and internal variables set at the beginning of the pseudo-time
interval [tn, tn+1], and given the prescribed incremental strain ∆ε for this interval, solve the
following system of algebraic equations

εe
n+1 = εe

n + ∆ε − ∆γ N(σn+1, An+1)

αn+1 = αn + ∆γ H(σn+1, An+1)
(7.10)

for the unknowns εe
n+1, αn+1 and ∆γ, subjected to the constraints

∆γ ≥ 0, Φ(σn+1, An+1) ≤ 0, ∆γ Φ(σn+1, An+1) = 0, (7.11)

where

σn+1 = ρ̄
∂ψ

∂εe

∣∣∣∣
n+1

, An+1 = ρ̄
∂ψ

∂α

∣∣∣∣
n+1

. (7.12)

In the above, we have adopted the obvious notation

∆(·) ≡ (·)n+1 − (·)n, (7.13)

†Other Euler-based schemes can be equally adopted. These will be discussed later in Section 7.2.7.
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with (·)n and (·)n+1 denoting the value of (·) respectively at tn and tn+1. The increment ∆γ
will be called the incremental plastic multiplier. Note that once the solution εe

n+1 has been
obtained, the plastic strain at tn+1 can be calculated as

εp
n+1 = εp

n + ∆ε − ∆εe, (7.14)

so that all variables of the model are known at the end of the interval [tn, tn+1].

Solution of the incremental problem

Due to the presence of the discrete complementarity condition (7.11), the solution of the
incremental elastoplastic problem (7.10)–(7.12) does not follow directly the conventional
procedure for standard initial value problems (i.e. initial value problems without equations of
the type (7.7)). Nevertheless, as we shall see, the solution scheme in the present case remains
rather simple with the discrete complementarity condition giving rise to a two-step algorithm
derived in the following.

Firstly, note that (7.11)1 allows only for the two (mutually exclusive) possibilities
enumerated below:

1. Null incremental plastic multiplier,

∆γ = 0. (7.15)

In this case there is no plastic flow or evolution of internal variables within the
considered interval [tn, tn+1], i.e. the step is purely elastic. The constraint (7.11)3 is
automatically satisfied, εe

n+1 and αn+1 are given by

εe
n+1 = εe

n + ∆ε

αn+1 = αn
(7.16)

and, in addition, the constraint

Φ(σn+1, An+1) ≤ 0, (7.17)

must hold, where σn+1 and An+1 are functions of εe
n+1 and An+1 defined through

the potential relations (7.12).

2. Strictly positive plastic multiplier,

∆γ > 0. (7.18)

In this case, εe
n+1, αn+1 and ∆γ satisfy

εe
n+1 = εe

n + ∆ε − ∆γ N(σn+1, An+1)

αn+1 = αn + ∆γ H(σn+1, An+1)
(7.19)

and (7.11)2 combined with (7.11)3 result in the constraint

Φ(σn+1, An+1) = 0. (7.20)
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In summary, we have just seen that any solution to Problem 7.2 is either given by (7.16),
in which case it must satisfy constraint (7.17), or it is a solution of the algebraic system of
equations (7.19)–(7.20), subjected to the constraint (7.18); that is, only one of two possible
sets of equations provides a solution to Problem 7.2. It remains now to devise a procedure
whereby the correct solution can be chosen. This is next described in detail.

7.2.3. THE ELASTIC PREDICTOR/PLASTIC CORRECTOR ALGORITHM

The nature of the above problem motivates the establishment of a (conceptually very simple)
two-step algorithm in which the two possible sets of equations are employed sequentially and
the final solution is selected as the only valid one. The strategy adopted is the following:

(a) The Elastic Trial Step.
Firstly, we assume that the first of the above two situations (∆γ = 0) occurs; that is,
we assume that the step [tn, tn+1] is elastic. The solution given by (7.16), which is not
necessarily the actual solution to Problem 7.2, will be called the elastic trial solution,
and will be denoted

εe trial
n+1 = εe

n + ∆ε

αtrialn+1 = αn.
(7.21)

The corresponding stress and hardening force will be called the elastic trial stress and
elastic trial hardening force, given by

σtrialn+1 = ρ̄
∂ψ

∂εe

∣∣∣∣trial
n+1

, Atrialn+1 = ρ̄
∂ψ

∂α

∣∣∣∣trial
n+1

. (7.22)

The above variables are collectively called the elastic trial state. Now note that, to be
the actual solution, the elastic trial state has, in addition, to satisfy (7.17). We then
proceed as follows. If

Φtrial ≡ Φ(σtrialn+1, Atrialn+1) ≤ 0, (7.23)

that is, if the elastic trial state lies within the elastic domain or on the yield surface, it
is accepted as a solution to Problem 7.2. In this case, we update

(·)n+1 := (·)trialn+1 (7.24)

and the algorithm is terminated. Otherwise, the elastic trial state is not plastically
admissible and a solution to Problem 7.2 must be obtained from the plastic corrector
step described below.

(b) The Plastic Corrector Step (or Return-Mapping Algorithm).
The only option left now is to solve the system (7.19)–(7.20) of algebraic equations
subject to the constraint (7.18). Using the elastic trial state definition above, we rewrite
the algebraic system equivalently as

εe
n+1 = εe trial

n+1 − ∆γ N(σn+1, An+1)

αn+1 = αtrialn+1 + ∆γ H(σn+1, An+1)

Φ(σn+1, An+1) = 0,

(7.25)
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Figure 7.1. General return mapping schemes. Geometric interpretation: (a) hardening plasticity; and
(b) perfect plasticity.

which are, of course, complemented with the potential relations (7.12). The plastic
corrector stage of the algorithm then consists in finding a solution εe

n+1, αn+1 and ∆γ
for (7.25) that satisfies

∆γ > 0. (7.26)

Remark 7.2. The procedure of item (b) above possesses an appealing geometric interpreta-
tion as illustrated in Figure 7.1. Consider the yield surface at the elastic trial state. The elastic
trial stress, σtrialn+1, in this case lies outside the plastically admissible domain (i.e. neither in
the elastic domain nor on the yield surface). Upon solution of the algebraic system (7.25),
equation (7.25)3, which is commonly referred to as the plastic consistency equation, ensures
that the stress, σn+1, at the end of the interval [tn, tn+1] lies on the updated yield surface; that
is, the elastic trial stress returns to the yield surface so that plastic consistency is re-established
in the updated state. In the case of perfect plasticity, σtrialn+1 returns to a fixed surface. Due to
this interpretation the procedure of item (b) is referred to as the return mapping algorithm
and (7.25) are called the return mapping equations. The first algorithm of this type appears
to have been the radial return method proposed in the pioneering work of Wilkins (1964).

Summary of the overall procedure

In summary, the application of an Euler difference scheme to find an approximate solution
of the constitutive initial value problem of elastoplasticity – Problem 7.1 – has resulted in a
numerical algorithm that involves two steps: the elastic predictor, in which the evolution
problem is solved as if the material were purely elastic within the interval considered,
followed by the return mapping, which accounts for plastic flow and enforces plastic
admissibility. The return mapping procedure is executed only if the elastic trial state violates
plastic admissibility. The schematic diagram of Figure 7.2 shows the main steps in the
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elastoplastic constitutive initial
value problem (Problem 7.1)

incremental elastoplastic 
 constitutive problem (Problem 7.2)

Euler pseudo-time
discretisation

solution
procedure

ELASTIC PREDICTOR PLASTIC CORRECTOR
(RETURN MAPPING ALGORITHM)

Figure 7.2. From the initial value problem of elastoplasticity to the elastic predictor/return-mapping
integration algorithm. Schematic diagram.

derivation of the overall integration algorithm. The algorithm described above has been
obtained by adopting, in particular, the backward Euler scheme to discretise elastoplastic
constitutive equations and is, therefore, termed the backward, fully implicit or simply implicit
elastic predictor/return mapping scheme. This algorithm is conveniently summarised in
Box 7.1 in pseudo-code format. We remark that different discretisation schemes may be used
instead, each one resulting in a different return mapping algorithm, but all having the same
elastic predictor step. Alternatives to the backward Euler-based algorithm will be discussed
in Section 7.2.7.

7.2.4. SOLUTION OF THE RETURN-MAPPING EQUATIONS

Let us now focus on the solution of the return mapping equations. It should be noted that the
algebraic system (7.25) is generally nonlinear and, in addition, has to be solved subjected to
the constraint (7.26). The procedure commonly adopted in practice is quite simple. Firstly,
the algebraic system (7.25) is solved on its own, i.e. without regard for the constraint
equation (7.26), by some iterative procedure. If the found solution satisfies (7.26), then it
is accepted as a solution to Problem 7.2. Note that if no solution exists with strictly positive
incremental plastic multiplier, then Problem 7.2 does not have a solution.

As far as the iterative procedure for the solution of the return-mapping equations is con-
cerned, the standard Newton–Raphson scheme is often an optimal choice and will be adopted
exclusively throughout this book (and in the elastoplastic implementations of the HYPLAS
program). This choice is motivated mainly by the quadratic rates of convergence achieved
by this method which, as a general rule, results in very computationally efficient return
mapping procedures. Alternative techniques, such as quasi-Newton procedures in general,
could be used instead. The main argument in favour of these methods is normally based on



FINITE ELEMENTS IN SMALL-STRAIN PLASTICITY PROBLEMS 199

Box 7.1. Fully implicit elastic predictor/return-mapping algorithm for numerical
integration of general elastoplastic constitutive equations.

(i) Elastic predictor. Given ∆ε and the state variables at tn, evaluate the elastic trial
state

εe trial
n+1 = εe

n + ∆ε

αtrial
n+1 = αn

σtrial
n+1 = ρ̄

∂ψ

∂εe

∣∣∣∣
trial

n+1

, Atrial
n+1 = ρ̄

∂ψ

∂α

∣∣∣∣
trial

n+1

(ii) Check plastic admissibility

IF Φ(σtrial
n+1, A

trial
n+1) ≤ 0

THEN set (·)n+1 = (·)trialn+1 and EXIT

(iii) Return mapping. Solve the system


εe
n+1 − εe trial

n+1 + ∆γ Nn+1

αn+1 − αtrial
n+1 − ∆γ Hn+1

Φ(σn+1, An+1)


 =




0

0

0




for εe
n+1, αn+1 and ∆γ, with

σn+1 = ρ̄
∂ψ

∂εe

∣∣∣∣
n+1

, An+1 = ρ̄
∂ψ

∂α

∣∣∣∣
n+1

(iv) EXIT

the fact that, in contrast to the Newton–Raphson algorithm, they do not require the exact
gradients of the associated residual functions (defined by the left-hand side of the equations
of item (iii) of Box 7.1) and, for complex material models, the derivation and computational
implementation of residual gradients may prove a tedious exercise if performed manually.
However, this argument is substantially weakened by considering that currently available
symbolic manipulation software packages, such as MATHEMATICA R© (Wolfram, 1991),
can handle the closed-form calculation of derivatives quite easily, making the derivation
and computational implementation of residual gradients a relatively straightforward task,
even for complex plasticity models. Added to this is the fact that the relative ease of quasi-
Newton procedures comes at the expense of lower rates of convergence and, generally, less
efficiency in the return-mapping procedure (and poorer performance of the overall finite
element scheme). Also, as will be seen later, the return-mapping residual derivatives are
needed to compute the consistent tangent operator, used to assemble the tangent stiffness
matrix. Thus, if the full Newton–Raphson scheme is adopted to solve the global finite element
equilibrium equations, the return mapping residual derivatives will have to be computed
anyway.

Remark 7.3. One aspect of the return-mapping scheme deserves particular attention. It might
happen that the corresponding nonlinear system of algebraic equations has a solution with
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∆γ < 0. Since ∆γ is required to be positive, such a solution is physically meaningless and
must be disregarded if the Newton–Raphson algorithm converges to it. Fortunately, numerical
experience shows that such a situation is not usual and, in particular, does not occur for the
basic plasticity models implemented in this chapter and in Chapter 8 for the normal range of
material parameters. It may occur, however, for complex constitutive models. In such cases,
a strategy must be developed to ensure that the converged incremental plastic multiplier is
positive. This issue is discussed in Chapter 12 in the context of damage mechanics plasticity
models. Another important consideration is that, for some plasticity models, the degree of
nonlinearity of the return-mapping equations is so high that the convergence radius of the
Newton scheme becomes substantially reduced. In such cases, procedures such as line-
searches (as suggested by Dutko et al. 1993 and described in Chapter 10 for the Barlat–
Lian anisotropic plasticity model) can be incorporated into the standard Newton–Raphson
algorithm in order to expand its radius of convergence. The use of improved initial guesses in
the Newton–Raphson iterations may also prove effective in ensuring convergence for highly
nonlinear models (refer to Chapter 12). Another alternative can be the use of a sub-stepping
scheme (Huerta et al., 1999). This approach consists of dividing the total strain increment ∆ε
into a number m of sub-increments

∆ε = ∆ε1 + ∆ε2 + · · · + ∆εm,

and then applying the integration algorithm sequentially m times to reach the approximate
state at tn+1. Each strain sub-increment ∆εi, i = 1, . . . , m, has to be sufficiently small to
ensure convergence of the Newton–Raphson iterations. More recently, Armero and Pérez-
Foguet (2002) and Pérez-Foguet and Armero (2002) have explored the closest point projec-
tion interpretation (Section 7.2.5 below) and the associated variational structure of the return-
mapping equations to devise globally convergent root-finding algorithms (i.e. algorithms that
converge regardless of the initial guess) based on a combination of the Newton–Raphson
scheme and constrained line-search procedures.

7.2.5. CLOSEST POINT PROJECTION INTERPRETATION

For materials with linear elastic response, i.e. materials for which the stress is given by

σ = De : εe, (7.27)

with constant elasticity tensor, De, equation (7.25)1 can be rewritten equivalently in terms of
stresses as

σn+1 = σtrialn+1 − ∆γ De : Nn+1. (7.28)

In this case, the updated stress, σn+1, obtained by the implicit return mapping (Figure 7.3)
is the projection of the trial stress σtrialn+1 onto the updated yield surface along the direction of
the tensor

De : Nn+1.

For perfectly plastic materials with associative flow rule, the implicit return mapping can be
interpreted as a closest point projection of the trial stress onto the set

A = {σ | Φ(σ) ≤ 0} (7.29)
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Figure 7.3. The fully implicit return mapping. Geometric interpretation for materials with linear elastic
response.

of plastically admissible stresses. With the energy norm defined by

‖σ‖De ≡
√

σ : [De]−1 : σ, (7.30)

and the associated measure of distance between two generic stress states given by

d(σa, σb) ≡ ‖σa − σb‖De , (7.31)

the updated stress is the admissible stress that lies closest to the elastic trial stress, i.e.

σn+1 = arg
{

min
σ∈A

[d(σ, σtrialn+1)]
}
. (7.32)

The interpretation of the implicit return mapping as a closest point projection of the trial stress
remains valid for linearly hardening materials provided that a suitable definition of distance
in the space of stress and hardening forces is introduced (see Simo et al. (1988b) for details).

7.2.6. ALTERNATIVE JUSTIFICATION: OPERATOR SPLIT METHOD

An interesting alternative justification for the elastic predictor/return mapping scheme for
elastoplasticity is provided by Simo and Hughes (1987). These authors arrive at the elastic
predictor/return mapping procedure by exploiting the additive decomposition of the total
strain rate of the elastoplastic constitutive initial value problem within the context of product
formula or operator split numerical algorithms (the reader is referred to Chorin et al. (1978)
for further details on operator split algorithms).

7.2.7. OTHER ELASTIC PREDICTOR/RETURN-MAPPING SCHEMES

It has been mentioned earlier that procedures other than the backward Euler difference
scheme may be used to discretise the elastoplastic constitutive initial value problem (Prob-
lem 7.1). Obviously, the accuracy and stability (the concepts of accuracy and stability
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are reviewed in Section 7.2.10) of the overall elastic predictor/return mapping algorithm
will depend on the particular strategy adopted. Two important families of algorithms for
elastoplasticity, which incorporate the backward (or fully implicit) Euler approach as a
particular case, can be derived by adopting generalised versions of the classical trapezoidal
and midpoint rules in the discretisation of Problem 7.1. These procedures have been proposed
by Ortiz and Popov (1985). Another popular scheme is the so-called cutting plane algorithm
proposed by Simo and Ortiz (1985) (see also Ortiz and Simo 1986). These procedures
are described below. It should be emphasised that in all cases discussed here the use of a
different discretisation rule will affect only the return mapping part of the overall integration
algorithm (item (iii) of Box 7.1). The elastic predictor stage, as previously described, remains
unchanged.

The generalised trapezoidal return mapping

A generalisation of the classical trapezoidal rule and application to the numerical approxima-
tion of the elastoplastic constitutive problem results in a family of return mapping algorithms
whose general expression for the associated algebraic system of nonlinear equations is
given by

εe
n+1 = εe trial

n+1 − ∆γ [(1 − θ)Nn + θNn+1]

αn+1 = αn + ∆γ [(1 − θ)Hn + θHn+1]

Φ(σn+1, An+1) = 0,

(7.33)

where, of course, it is implicitly understood that constraint (7.26) is satisfied. Individual
members of this family of algorithms are defined by the prescribed parameter θ, which must
lie within the interval

0 ≤ θ ≤ 1. (7.34)

The incremental flow vector, in the present case given by

(1 − θ)Nn + θNn+1,

is a linear combination of the flow vectors at times tn and tn+1. The corresponding discrete
plastic flow equation is

εp
n+1 = εp

n + ∆γ [(1 − θ)Nn + θNn+1]. (7.35)

The geometric interpretation of the generalised trapezoidal return algorithm in the space
of stresses is shown in Figure 7.4 for materials with linear elastic response. In this case,
expression (7.33)1 may be equivalently written in terms of stresses as

σn+1 = σtrialn+1 − ∆γ De : [(1 − θ)Nn + θNn+1], (7.36)

so that the updated stress can be interpreted as the projection of the trial stress onto the
updated yield surface along the direction

De : [(1 − θ)Nn + θNn+1].

It is important to note that the previously described fully implicit return mapping is recovered
by choosing θ = 1 in the generalised trapezoidal rule. The choice θ = 0 corresponds to a fully
explicit return mapping.
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Figure 7.4. The generalised trapezoidal return mapping. Geometric interpretation for materials with
linear elastic response.

The generalised midpoint return mapping

A generalisation of the midpoint rule for integration of the elastoplastic constitutive initial
value problem gives the following return mapping equations

εe
n+1 = εe trial

n+1 − ∆γ Nn+θ

αn+1 = αn + ∆γ Hn+θ

Φ(σn+1, An+1) = 0,

(7.37)

where
Nn+θ = N(σn+θ, An+θ)

Hn+θ = H(σn+θ, An+θ),
(7.38)

with the generalised midpoint state defined by the variables

σn+θ = (1 − θ)σn+1 + θ σn

An+θ = (1 − θ)An + θ An+1.
(7.39)

The parameter θ is, again, a prescribed constant within the interval 0 ≤ θ ≤ 1. In the present
case, the discrete plastic flow rule reads

εp
n+1 = εp

n + ∆γ Nn+θ. (7.40)

Note that the generalised midpoint rule coincides with the generalised trapezoidal rule (7.33)
for θ = 1 and θ = 0, which correspond, respectively, to the fully implicit and fully explicit
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Figure 7.5. The generalised midpoint return mapping. Geometric interpretation for materials with linear
elastic response.

return mappings. The geometric interpretation of the generalised midpoint return algorithm
is given in Figure 7.5 for materials with linear elastic response. The updated stress, in this
case, is given by

σn+1 = σtrialn+1 − ∆γ De : Nn+θ, (7.41)

and corresponds to the projection of the elastic trial stress, σtrialn+1, onto the updated yield
surface at tn+1 along the direction of

De : Nn+θ.

A possible variation of the above generalised midpoint rule is obtained by replacing the
consistency condition (7.37)3 with the alternative

Φ(σn+θ, An+θ) = 0. (7.42)

In this case, plastic consistency is enforced upon the generalised midpoint, rather than the
updated, state. This version of the generalised return mapping is discussed in detail by Simo
and Govindjee (1991) who highlight, in particular, the fact that in this case the symmetry
of the associated consistent tangent operators‡ is ensured for fully associative models – a
property not generally preserved by the family of algorithms based on (7.37)3, as noted by
Ortiz and Martin (1989).

Remark 7.4. As for the fully implicit return mapping, both generalised trapezoidal and
midpoint return-mapping algorithms, defined respectively by (7.33) and (7.37), require the

‡Consistent tangent operators for return-mapping schemes will be discussed in Section 7.4. In particular, a
discussion on the possible symmetry of such operators is provided in Section 7.4.6.
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solution of a (generally nonlinear) system of equations for any prescribed parameter θ. As
before, an efficient scheme is normally obtained by adopting the quadratically convergent
Newton–Raphson method. It is interesting to note that, for the fully explicit member of these
families of algorithms (θ = 0), the return-mapping equations can be substantially simplified.
In this case, all terms, with the exception of ∆γ, on the right-hand side of (7.37) are known
values at tn. Therefore, the original system variables, εe

n+1 and αn+1 become functions
solely of the incremental multiplier ∆γ and so does σn+1 and An+1. The return-mapping
equations in this case can then be reduced to a single scalar (generally nonlinear) equation of
the form

Φ̃(∆γ) ≡ Φ(σn+1(∆γ), An+1(∆γ)) = 0, (7.43)

for any elastoplastic model. For certain material models, simplifications of this type are
also possible for θ 
= 0 and are crucially important for the computational efficiency of
the associated return-mapping procedure. This idea is exploited in Section 7.3, where the
derivation of implicit return mapping for the von Mises model is described in detail.

The cutting-plane algorithm

Let us start by observing that the return-mapping equations (7.25)1,2 are a backward Euler
approximation to the initial value problem defined by the differential equation

ε̇e = −γ̇N(σ, A)

α̇ = γ̇H(σ, A),
(7.44)

with initial condition
εe = εe trial

n+1 , αe = αe trial
n+1 . (7.45)

The implicit return-mapping scheme consists in solving the above problem, subject to the
consistency condition (7.25)3, by means of the backward Euler scheme. The cutting-plane
method, which we shall describe below, is an alternative scheme for the numerical solution
of the return-mapping problem.

The first step to derive the cutting-plane algorithm, is to recast the potential relation (7.8)
into the equivalent rate form

σ̇ = De(εe, α) : ε̇e + E(εe, α) ∗ α̇

Ȧ = F(εe, α) ∗ ε̇e + G(εe, α) ∗ α̇,
(7.46)

where ∗ denotes the product of the appropriate type. The above rate constitutive equations
for σ and A are obtained by a straightforward application of the chain rule to (7.8). The
fourth-order tensor De(εe, α) in (7.46)1 is the elastic modulus

De(εe, α) = ρ̄
∂2ψ

∂εe2
, (7.47)

which, in general, is assumed to be a function of εe and α. The operator E(εe, α) denotes
the tangent modulus associated with the hardening response, defined by

E(εe, α) = ρ̄
∂2ψ

∂εe∂α
. (7.48)
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In addition, the tangential operators F and G are defined as

F(εe, α) = ρ̄
∂2ψ

∂α∂εe
(7.49)

and

G(εe, α) = ρ̄
∂2ψ

∂α2
. (7.50)

It should be noted that De is constant for materials whose elastic behaviour is linear. Also,
under the assumption (6.37) (page 149) of decoupling between elasticity and hardening,
the tangent operators E and F vanish and so does the second term on the right-hand side
of (7.46)1 and the first term on the right-hand side of (7.46)2. However, for models in which
elasticity is coupled with dissipative phenomena, such as Lemaitre’s damage theory discussed
in Chapter 12, these terms do not vanish in general.

By combining (7.44) with (7.46) and making use of complementary potential relations
that give

εe = εe(σ, A), α = α(σ, A), (7.51)

we redefine the initial value problem (7.44)–(7.45) equivalently in terms of stress and
hardening force as

σ̇ = γ̇[−De(σ, A) : N(σ, A) + E(σ, A) ∗ H(σ, A)]

Ȧ = γ̇[−F(σ, A) ∗ N(σ, A) + G(σ, A) ∗ H(σ, A)],
(7.52)

with the obvious initial condition

σ = σtrialn+1, A = Atrialn+1. (7.53)

In summary, the return-mapping problem now comprises the initial value problem (7.52)–
(7.53) in conjunction with the plastic consistency constraint

Φ(σn+1, An+1) = 0. (7.54)

Basically, the cutting plane return-mapping algorithm is an iterative procedure for numer-
ical solution of the return-mapping problem whereby the linear approximation to the plastic
consistency equation is solved at each iteration. In a typical cutting-plane iteration, (k), the

plastic consistency equation is linearised§ about the current (known) state, {σ(k)n+1, A
(k)
n+1},

of the stress and hardening force. A new state,

{σ(k+1)n+1 , A
(k+1)
n+1 },

is then obtained as the solution of the linearised equation

Φ(σ(k)n+1, A
(k)
n+1) + N̄

(k)
n+1 : [σ(k+1)n+1 − σ

(k)
n+1]

+ H̄
(k)
n+1 ∗ [A(k+1)n+1 − A

(k)
n+1] = 0,

(7.55)

§Refer to Section 2.6, (from page 38) for the definition of the linearisation of a nonlinear problem.
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where N̄
(k)
n+1 and H̄

(k)
n+1 have been defined as

N̄
(k)
n+1 =

∂Φ
∂σ

∣∣∣∣
σ

(k)
n+1,A

(k)
n+1

, H̄
(k)
n+1 =

∂Φ
∂A

∣∣∣∣
σ

(k)
n+1,A

(k)
n+1

. (7.56)

Note that for fully associative plasticity (Ψ ≡ Φ), N̄ and H̄ coincide, respectively, with the
flow vector, N, and H.

To solve (7.55) we proceed as follows. We discretise the rate constitutive equations (7.52)
using a forward (or explicit) Euler scheme. This gives the formula

σ
(k+1)
n+1 − σ

(k)
n+1 = ∆γ

[
−D

e (k)
n+1 : N (k)

n+1 + E
(k)
n+1 ∗ H

(k)
n+1

]
A
(k+1)
n+1 − A

(k)
n+1 = ∆γ

[
−F
(k)
n+1 ∗ N

(k)
n+1 + G

(k)
n+1 ∗ H

(k)
n+1

]
.

(7.57)

With the substitution of the above equations into (7.55), the following expression is obtained
for ∆γ in closed form

∆γ = Φ(k)n+1

/{
N̄
(k)
n+1 :

[
D

e (k)
n+1 : N (k)

n+1 − E
(k)
n+1 ∗ H

(k)
n+1

]
+ H̄

(k)
n+1 ∗

[
F
(k)
n+1 ∗ N

(k)
n+1 − G

(k)
n+1 ∗ H

(k)
n+1

]}
, (7.58)

and the new state {σ(k+1)n+1 , A
(k+1)
n+1 } is computed by substituting the value obtained for ∆γ

into (7.57).
Starting (with k = 0) from the initial condition of the return-mapping problem

{σ(0)n+1, A
(0)
n+1} = {σtrialn+1, A

trial
n+1}, (7.59)

the repeated application of the above iteration generates a sequence of states

{σ(k)n+1, A
(k)
n+1}, k = 0, 1, 2, . . . .

The cutting-plane iterations continue until the value of the yield function is sufficiently close
to zero, i.e. the iterative process is interrupted at an iteration (k) if the state {σ(k)n+1, A

(k)
n+1}

satisfies the convergence criterion

Φ(σ(k)n+1, A
(k)
n+1) ≤ εtol, (7.60)

where εtol is a prescribed convergence tolerance. The cutting-plane return-mapping algorithm
is summarised in Box 7.2 in pseudo-code format.

Remark 7.5. The geometric interpretation of the cutting-plane algorithm is illustrated in
Figure 7.6. The interpretation here remains valid for materials with a nonlinear elastic
response. In each iteration, the new stress, {σ(k+1)n+1 , A

(k+1)
n+1 }, is obtained by projecting the

current stress, {σ(k)n+1, A
(k)
n+1}, onto a cutting plane defined by the linearised consistency

condition¶. The projection is made along the direction of the tensor

D
e (k)
n+1 : N

(k)
n+1 − E

(k)
n+1 ∗ H

(k)
n+1.

¶Note that the linearised consistency condition (7.55) defines a hyperplane in the space of stresses and hardening
forces.



208 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APPLICATIONS

Box 7.2. Cutting-plane return-mapping algorithm for general elastoplastic models.

(i) Given the elastic trial state, set k = 0 and

σ(0)
n+1 = σtrial

n+1, A(0)
n+1 = Atrial

n+1

(ii) Perform cutting-plane iteration

∆γ = Φ
(k)
n+1

/{
N̄

(k)
n+1 :

[
De (k)

n+1 : N (k)
n+1 − E(k)

n+1 ∗ H (k)
n+1

]
+ H̄

(k)
n+1 ∗

[
F(k)

n+1 ∗ N (k)
n+1 − G(k)

n+1 ∗ H (k)
n+1

]}
σ(k+1)

n+1 = σ(k)
n+1 − ∆γ

[
De (k)

n+1 : N (k)
n+1 − E(k)

n+1 ∗ H (k)
n+1

]
A(k+1)

n+1 = A(k)
n+1 − ∆γ

[
F(k)

n+1 ∗ N (k)
n+1 − G(k)

n+1 ∗ H (k)
n+1

]
(iii) Check convergence

IF Φ(σ(k)
n+1, A

(k)
n+1) ≤ εtol THEN update

σn+1 = σ(k)
n+1; An+1 = A(k)

n+1;

εe
n+1 = εe(σ(k)

n+1, A
(k)
n+1); αn+1 = α(σ(k)

n+1, A
(k)
n+1);

εp
n+1 = εn+1 − εe

n+1; and EXIT

ELSE
set k := k + 1 and GO TO (ii)

In the limit of the iterative process, plastic consistency is restored and the cutting plane is
tangent to the actual yield surface.

Remark 7.6. The iterations of the cutting-plane algorithm converge to the solution Φ = 0 at
quadratic rates. Quadratic rates of convergence are achieved here despite the fact that only
relatively simple function evaluations are performed in each iteration. This is in contrast to the
previously described return-mapping schemes for which the computation of (generally more
complex) residual derivatives is required in order to achieve quadratic rates of convergence.
This makes the cutting-plane algorithm particularly attractive for more complex plasticity
models. However, it is important to emphasise that the incremental stress–strain function

σn+1 = σ̂(αn, εn+1), (7.61)

delivered by the cutting-plane algorithm, is not amenable to linearisation and derivation of a
consistent tangent modulus‖

D =
∂σ̂

∂εn+1
. (7.62)

‖The notion of a consistent tangent modulus for elastoplasticity numerical integration algorithms is introduced
in Section 7.4, to which readers unfamiliar with the concept are referred.
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Figure 7.6. The cutting-plane return mapping. Geometric interpretation.

Within the implicit finite element framework of Chapter 4 (see Section 4.2.5, page 98), the
lack of a consistent tangent modulus represents a serious limitation for it does not allow
the use of the (quadratically convergent) Newton–Raphson algorithm in the solution of the
(global) finite element equilibrium equations. However, in explicit codes, which do not
require the solution of a global system of equilibrium equations, the use of cutting-plane
algorithms could be an attractive option.

7.2.8. PLASTICITY AND DIFFERENTIAL-ALGEBRAIC EQUATIONS

Under continuous plastic loading, the system of equations that characterises the elastoplastic
constitutive problem (Problem 7.1) reduces to

ε̇e(t) = ε̇(t) − γ̇(t) N(σ(t), A(t))

α̇(t) = γ̇(t) H(σ(t), A(t))

Φ(σ(t), A(t)) = 0,

(7.63)

where the potential relations (7.8) can be used to express σ and A as explicit functions
of εe and α. Formally, such a system is classed as a system of differential-algebraic
equations (DAE). These generally contain ordinary differential equations (equations (7.63)1,2
in the present case) complemented by a constraint in the form of algebraic equations
(equation (7.63)3).

A detailed account on numerical methods for DAEs is provided in the textbook by
Ascher and Petzold (1998) (see also Gear (1971) for an early reference on the subject).
The identification of plasticity equations with DAEs allows the use of numerical methods
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devised for this type of equation, as well as the corresponding methods of analysis, in the
treatment of plasticity problems. By exploiting these ideas, Papadopoulos and Taylor (1994)
proposed a two-step backward difference formula of second-order accuracy for von Mises
type plasticity. Results from DAE theory were used by these authors to prove the stability
and accuracy order of their method (here, the concepts of accuracy and stability are briefly
reviewed below in Section 7.2.10). The use of such tools in plasticity is also discussed by
Simo (1998).

7.2.9. ALTERNATIVE MATHEMATICAL PROGRAMMING-BASED ALGORITHMS

The class of elastic predictor/return-mapping algorithms described thus far is by no means
the only possible approach to the formulation of incremental elastoplastic constitutive algo-
rithms. An important class of numerical procedures developed on the basis of mathematical
programming concepts (Bazaraa and Shetty, 1979; Luenberger, 1973) has been proposed by a
number of authors. For details on this class of methods, we refer to the work of Maier (1970),
Martin et al. (1987), Feijóo and Zouain (1988), Zouain et al. (1988, 1992), Caddemi and
Martin (1991), Reddy and Martin (1991), Comi et al. (1991) and Romano et al. (1993). By
exploiting the potential structure that characterises many elastoplasticity models and concepts
of convex analysis, some of these methods reduce the complete initial boundary value
problem to a mathematical programming problem that can be solved by means of standard
numerical algorithms. For other methods of this class, only the elastoplastic constitutive
evolution problem at the Gauss point level is reduced to a mathematical programming
problem.

The effectiveness of such methodologies has been demonstrated in the numerical solution
of a wide range of initial boundary value problems. To the authors’ knowledge, however,
it appears that the relative efficiency of mathematical programming-based algorithms (as
compared to elastic predictor/plastic corrector approaches) has not been assessed so far.

One interesting aspect of formulations such as the one proposed by Feijóo and Zouain
(1988) is the fact that singularities (corners) of multisurface models (e.g. Tresca) do not
require special treatment and are naturally accommodated within the mathematical program-
ming environment. In contrast, even though singular models can be efficiently integrated
within the elastic predictor/return-mapping framework (as we shall see in Chapter 8), extra
complexity is inevitably introduced in the presence of non-smooth corners on the yield
surface.

7.2.10. ACCURACY AND STABILITY CONSIDERATIONS

Accuracy and stability are crucially important aspects of numerical algorithms for the solution
of initial value problems in general. In the present context, the accuracy and stability of the
adopted numerical scheme for integration of the elastoplastic equations at the Gauss point
level is directly associated with the effectiveness and reliability of the overall finite element
solution scheme. Generally speaking, ‘accurate’ finite element solutions to initial boundary
value problems involving elastoplastic materials should not be expected if ‘inaccurate’ state-
update procedures are used at the Gauss point level. In this section, accuracy and stability
properties of the return-mapping schemes described above are discussed. It is emphasised
that no attempt is made here to derive (usually complex) mathematical proofs of the accuracy
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and stability of elastoplastic integration algorithms. Rather, the purpose of this section is to
provide the reader with some results that can be useful in helping to decide which algorithm
to adopt when considering the computational implementation of a particular plasticity model.

The concepts of accuracy order, finite step accuracy and stability

Before proceeding, it is convenient at this point to give a more precise definition of what
accuracy and stability mean in the discussion that follows. The term accuracy will be used
here in two different contexts:

(a) With a mathematically precise definition, the accuracy order of an algorithm is a
measure of how accurately the discretised equations approximate their differential
counterparts within an infinitesimal vicinity of the initial conditions. Let us consider a
typical (well-posed) initial value problem defined by an ordinary differential equation

ẋ(t) = f(x, t) (7.64)

over the generic domain
t ∈ [t0, tf ], (7.65)

subjected to the initial condition
x(t0) = x0, (7.66)

with the superimposed dot denoting differentiation with respect to the independent
variable t. A numerical method for approximate solution of (7.64)–(7.66) is said to be
first-order accurate, or to have consistency of order one) (Gear, 1971), if the update
formula for the approximate value xn+1 of the unknown function x at the end of the
generic step [tn, tn+1 = tn + ∆t] ∈ [t0, tf ] satisfies

d
d∆t

xn+1

∣∣∣∣
∆t=0

= ẋ(tn). (7.67)

The numerical error, i.e. the maximum difference between exact and numerical
solutions (excluding machine round-off errors) within (t0, tf ], produced by first-order
accurate algorithms is proportional to the step size, ∆t, as ∆t → 0. If, in addition to
first-order accuracy, the algorithm satisfies

d2

d∆t2
xn+1

∣∣∣∣
∆t=0

= ẍ(tn), (7.68)

then it is said to be second-order accurate (or to have consistency of order two).
Second-order accurate algorithms produce numerical errors that are proportional to the
square of the step size, ∆t2, as ∆t → 0. In summary, the accuracy order of an algorithm
provides information about its behaviour as the step size ∆t (strain increment size in
the case of elastoplasticity) approaches zero. It gives no indication, however, as to the
actual numerical errors incurred under steps of finite size; that is, for a given finite
step size ∆t, the choice of a method of higher accuracy order rather than one of lower
order does not necessarily produce a more accurate numerical solution. This aspect
of numerical methods for ordinary differential equations is discussed, for instance, by
Gear (1971). Here, we shall address this issue in the following.
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(b) With a more practical (and less precise) definition, the term finite step accuracy will
be adopted here to describe the actual accuracy of particular algorithms under finite
step sizes. In the context of plasticity, finite step accuracy may be measured by means
of numerical experiments in which the state-update algorithm is used to integrate the
elastoplastic equations under a wide range of initial conditions and strain increment
sizes and directions. Finite step accuracy measurements can give important information
on the practical limitations of integration algorithms, especially with regard to the
permissible size of strain increments for which the error remains within reasonable
bounds.

The property of stability of an algorithm for numerical solution of the typical problem (7.64)–
(7.66) relates to how perturbations to the initial condition propagate throughout the stepping
procedure. Generally speaking, an algorithm is said to be stable if the variations in the
numerical solution that result from a perturbation of the initial conditions are bounded within
the domain [t0, tf ]. The reader is referred, for instance, to Ascher and Petzold (1998) for
various definitions of stability in this context. In the case of perfectly plastic models (Ortiz
and Popov, 1985), an elastic predictor/plastic corrector scheme (under plastic yielding) is
said to be stable if given two arbitrary distinct initial stress states at tn, σn and σ∗

n, the
corresponding updated values at tn+1 are bounded by

d(σn+1, σ
∗
n+1) ≤ d(σn, σ∗

n) (7.69)

where d is a measure of distance on the yield surface defined such that for any pair {σa, σb}
of stresses on the yield surface, we have

d(σa, σb) ≡ inf
λ

∫
λ

‖σ′(s)‖ ds, (7.70)

with λ denoting arbitrary paths on the yield surface connecting σa and σb. For unstable
algorithms, on the other hand, perturbations to the initial conditions propagate in an
unbounded manner so that small changes in increment size, or even machine round-off
errors, may produce dramatic changes in the numerical results which completely invalidate
the solution.

The property of stability together with first-order accuracy (or consistency of order one)
of the numerical method, are necessary and sufficient conditions for the numerical solution to
converge to the exact solution as the increment size tends to zero. An algorithm that satisfies
the first-order accuracy and stability requirements is said to be convergent. If an algorithm is
not stable or not (at least) first-order accurate, then it does not converge to the exact solution.

Remarks on the accuracy order and stability of elastoplastic algorithms

A detailed study of the accuracy and stability characteristics of the elastic predictor/return-
mapping algorithms based on the generalised trapezoidal and midpoint rules has been carried
out by Ortiz and Popov (1985). Their analysis has concentrated on perfectly plastic materials
with linear elastic response and possible non-associative flow rule. In spite of the restriction to
perfect plasticity and linear elastic law, their analysis provides a very interesting insight into
the properties of the trapezoidal and midpoint algorithms described in Section 7.2.7 which
allow for general elastic and hardening laws. It is remarked that consideration of general
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nonlinear elastic behaviour and hardening response introduces substantial mathematical
complexity into an analysis of this type and results for such general conditions do not seem
to be currently available.

Essentially, it has been shown by Ortiz and Popov (1985) that all members of the families
of integration algorithms based on the generalised midpoint and trapezoidal rules are (at
least) first-order accurate. Recall that the integration algorithm based on the fully implicit
return mapping, described in Section 7.2.3, is a particular (common) member of both families
(for θ = 1) and, therefore, is also first-order accurate. In addition, second-order accuracy is
attained for the choice θ = 1

2 in both trapezoidal and midpoint algorithms. In summary, as far
as accuracy order is concerned, all trapezoidal and midpoint algorithms satisfy the necessary
condition of first-order accuracy for convergence.

The next step in the analysis of these families of algorithms is the assessment of their
stability properties. The analysis carried out by Ortiz and Popov (1985) shows that the
stability of the generalised trapezoidal algorithms depends strongly on the shape of the yield
surface. For surfaces with constant curvature in the space of stresses, such as the von Mises
surface, unconditional stability is obtained for 12 ≤ θ ≤ 1. With increasing curvature, the
interval for which the generalised trapezoidal algorithms remain unconditionally stable
narrows around θ = 1 (the fully implicit scheme). In the limit, for surfaces with infinite
curvature, such as the Tresca and Mohr–Coulomb surfaces which have sharp corners, the
only unconditionally stable algorithm is the fully implicit. For the algorithms based on the
generalised midpoint rule, on the other hand, stability does not depend on the shape of the
yield surface. These algorithms are unconditionally stable for θ ≥ 1

2 .
It is worth mentioning that a similar analysis of accuracy and stability has been carried out

by Simo and Govindjee (1991) for the version of the generalised midpoint return-mapping
scheme of Section 7.2.7 characterised by the midpoint plastic consistency equation (7.42).
The analysis was focused on materials with an associative hardening and flow rules and,
again, restricted to the case of linear elastic behaviour. Their results are similar to those of
Ortiz and Popov and show that the midpoint algorithms based on the midpoint consistency
condition are second-order accurate for θ = 1

2 and first-order accurate otherwise. In addition,
as for the midpoint schemes based on the fully implicit consistency (7.37)3, their algorithms
are stable for θ ≥ 1

2 .
Attention is now focused on the elastoplastic algorithm based on the cutting-plane return

mapping. Since the sequence of states generated by the cutting-plane return mapping is
obtained by fully linearising the plastic corrector evolution problem (7.44,7.45), it fol-
lows that, as the Backward Euler-based scheme (which also approximates this problem
numerically), the cutting-plane procedure is naturally first-order accurate. The stability of
the cutting-plane algorithm, however, is only conditional. It is pointed out by Simo and
Ortiz (1985) that the elastoplastic algorithm based on the cutting-plane return mapping is
unconditionally stable for materials with associative flow rule.

Finite step accuracy aspects: the iso-error maps

As mentioned previously, the accuracy order of an algorithm gives information about
how well the discretised equations approximate the original differential equations in an
infinitesimal neighbourhood of the initial conditions and, therefore, should be expected to
predict its behaviour only for relatively small increments. Within the context of the fully
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implicit Finite Element Method described in Chapter 4 and adopted in the HYPLAS program, it
is desirable that the state-update procedures employed at the Gauss point level be sufficiently
accurate for strain increments as large as possible in order to ensure that the global finite
element solution remains within reasonable bounds of accuracy for large load increments.
From this point of view, the extension of the accuracy order study to the assessment of the
accuracy of elastoplastic integration algorithms under finite steps becomes crucial.

Systematic finite step accuracy analyses of elastoplastic algorithms have been carried
out firstly by Krieg and Krieg (1977) who investigated the behaviour of procedures for
integration of the von Mises perfectly plastic model. The fully implicit algorithm, which for
this particular model is termed the radial return method, was among the procedures assessed
by these authors. Their assessment was based on the use of iso-error maps. It is remarked
that, since the original application by Krieg and Krieg (1977), iso-error maps have proved
very effective and are currently accepted as the most reliable (if not the only) tool for the
assessment of the finite step accuracy of integration algorithms for elastoplasticity (de Souza
Neto et al., 1994a; Dutko et al., 1993; Fuschi et al., 1992; Ortiz and Popov, 1985; Simo and
Taylor, 1986).

In order to generate a typical iso-error map, consider an arbitrary stress state at a point P on
the yield surface as shown in Figure 7.7(a). Here, the perfectly plastic associative von Mises
model is adopted for illustration, with the yield surface of Figure 7.7(a) represented in the
deviatoric plane. From this point a sequence of strain increments is applied corresponding to
specified normalised elastic trial stress increments of the form

∆σtrial =
∆σT

q
T +

∆σN

q
N, (7.71)

where N and T are, respectively, the unit (in Euclidean norm) normal and tangent vectors to
the yield surface and q is the von Mises equivalent stress at P . As a result of the numerical
integration algorithm, an approximated stress σnum is computed for each increment. Calling
σexact the exact solution of the stress integration problem, the error associated with each
increment is defined as

ERROR =

√
(σexact − σnum) : (σexact − σnum)√

σexact : σexact
. (7.72)

By varying the prescribed increment sizes ∆σT and ∆σN, respectively associated with the
tangential and normal directions to the yield surface, an error field is obtained. The contour
plot of this error field is the iso-error map for P . The iso-error map corresponding to the fully
implicit scheme for integration of the perfectly plastic von Mises model under general stress
state is shown in Figure 7.7(b). For this particular model, the starting point P is immaterial.
It is important to note that, as analytical solutions are generally not available, σexact is taken
as the numerical solution obtained by dividing each strain increment into a sufficiently large
number of subincrements∗∗. To give a general idea of reasonable sub-increment sizes, it is
worth mentioning that one thousand sub-increments have been used to produce the ‘exact’
solutions for the map of Figure 7.7(b). It should be emphasised that the particular increment
directions and error measure employed above are suitable for the von Mises perfectly plastic

∗∗Note that this assumption is valid if the algorithm under study is convergent, i.e. first-order accurate and stable,
for the particular plasticity model considered.
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Figure 7.7. Iso-error map: (a) typical increment directions; and (b) a typical iso-error map.

model, but may not be so for different models. In the case of hardening materials, for instance,
it might be useful to include the error associated with the hardening internal variable in the
definition of the error measure.

Having described the concept of iso-error maps, let us now return to the discussion regard-
ing the properties of the integration algorithms of Sections 7.2.3 and 7.2.7 concentrating on
their finite step accuracy characteristics. A finite step accuracy analysis of the generalised
trapezoidal and midpoint rule integration algorithms, based on iso-error maps, has been
carried out by Ortiz and Popov (1985) in the same paper in which they presented the analysis
of accuracy and stability of these algorithms. The iso-error maps discussed by these authors
were restricted to the perfectly plastic von Mises model – a model for which the generalised
trapezoidal and midpoint algorithms coincide. Essentially, these authors have found that, for
small increments, the best accuracy is obtained with θ = 1

2 . This is in obvious agreement with
the (infinitesimal) accuracy analysis that established second-order accuracy for this particular
choice of θ. With increasing increment size, however, the performance of the second-order
algorithm deteriorates. For reasonably sized increments, likely to occur in real problems, a
choice of θ between 0.7 and 0.8 gives the best accuracy. Also, the fully implicit algorithm
(θ = 1), which will be adopted in the numerical implementation described in the following
sections of this chapter, gives better accuracy than the second-order algorithm. It is worth
remarking that completely analogous results have been found by Fuschi et al. (1992) for the
variant of the midpoint rule based algorithm proposed by Simo and Govindjee (1991).

7.3. Application: integration algorithm for the isotropically hardening
von Mises model

As far as the computer implementation of elastic predictor/return-mapping state-update
procedures is concerned, the von Mises model is the simplest type discussed in this book.
The specialisation of the fully implicit algorithm of Box 7.1 (page 199) to the von Mises
model, featuring the standard associative law and linear elastic behaviour and including
general nonlinear isotropic strain hardening, is described in this section. It is remarked that the
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implicit algorithm is exclusively adopted throughout this book (and in the HYPLAS program)
for integration of elastoplastic models. Its particularisation for the Tresca, Mohr–Coulomb
and Drucker–Prager models is described later, in Chapter 8.

The choice of the fully implicit algorithm here and in the remainder of this book is
essentially motivated by:

(i) its (unconditional) stability which, in conjunction with its first-order accuracy, ensures
that the resulting algorithm is convergent;

(ii) its generally ‘good’ finite step accuracy;

(iii) its suitability for the derivation of associated consistent tangent operators – a property
(not shared by the cutting-plane algorithm) that is absolutely essential for its use in
conjunction with a (quadratically convergent) global Newton–Raphson procedure; and

(iv) its relatively simple computational implementation, as compared to other members
of the families of generalised trapezoidal and midpoint algorithms discussed in
Section 7.2.7.

7.3.1. THE IMPLEMENTED MODEL

The von Mises yield criterion as well as the corresponding associative flow rule and possible
hardening laws have been thoroughly discussed in Chapter 6. Before going further, it is
convenient at this point to list the basic equations used in the present implementation of
the von Mises model. Essentially, the model comprises:

1. A linear elastic law
σ = De : εe, (7.73)

where De is the standard isotropic elasticity tensor.

2. A yield function of the form

Φ(σ, σy) =
√

3 J2(s(σ)) − σy, (7.74)

where
σy = σy(ε̄p) (7.75)

is the uniaxial yield stress – a function of the accumulated plastic strain, ε̄p.

3. A standard associative flow rule

ε̇p = γ̇ N = γ̇
∂Φ
∂σ

, (7.76)

with the (Prandtl–Reuss) flow vector, N, explicitly given by

N ≡ ∂Φ
∂σ

=

√
3
2

s

‖s‖ . (7.77)

4. An associative hardening rule, with the evolution equation for the hardening internal
variable given by

˙̄εp =
√
2
3 ‖ε̇

p‖ = γ̇. (7.78)
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7.3.2. THE IMPLICIT ELASTIC PREDICTOR/RETURN-MAPPING SCHEME

Given the increment of strain
∆ε = εn+1 − εn, (7.79)

corresponding to a typical (pseudo-) time increment [tn, tn+1], and given the state variables
{εe

n, ε̄p
n} at tn, the elastic trial strain and trial accumulated plastic strain are given by

εe trial
n+1 = εe

n + ∆ε

ε̄p trial
n+1 = ε̄p

n.
(7.80)

The corresponding trial stress is computed as

σtrialn+1 = De : εe trial
n+1 , (7.81)

or, equivalently, by applying the hydrostatic/deviatoric decomposition

strialn+1 = 2G εe trial
d n+1, ptrialn+1 = K εe trial

v n+1, (7.82)

where s and p denote, respectively, the deviatoric and hydrostatic stresses, G and K are,
respectively, the shear and bulk moduli and the subscripts d and v in the elastic trial strain
denote, respectively, the deviatoric and volumetric components. The trial yield stress is simply

σtrialy n+1 = σy(ε̄p
n) = σyn. (7.83)

Having computed the elastic trial state, the next step in the algorithm is to check whether
σtrialn+1 lies inside or outside of the trial yield surface:

• If σtrialn+1 lies inside of the trial yield surface, i.e. if

Φ(σtrialn+1, σyn) ≤ 0,

then the process within the interval [tn, tn+1] is purely elastic and the elastic trial state
itself is the solution to the integration problem. In this case,

εe
n+1 = εe trial

n+1

σn+1 = σtrialn+1

ε̄p
n+1 = ε̄p trial

n+1 = ε̄p
n

σy n+1 = σtrialy n+1 = σyn

(7.84)

is updated.

• Otherwise, the process is elastoplastic within the interval [tn, tn+1] and the return-
mapping procedure described below has to be applied.

Recall that the general implicit return-mapping procedure corresponds to solving the
system (7.25) of nonlinear equations. In the present case, direct specialisation of the general
fully implicit return-mapping equations (7.25) to the von Mises model gives the following set
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of nonlinear equations:

εe
n+1 = εe trial

n+1 − ∆γ

√
3
2

sn+1

‖sn+1‖
ε̄p

n+1 = ε̄p
n + ∆γ√

3 J2(sn+1) − σy(ε̄p
n+1) = 0,

(7.85)

which has to be solved for εe
n+1, ε̄p

n+1 and ∆γ and where

sn+1 = sn+1(εe
n+1) = 2G dev[εe

n+1]. (7.86)

After the solution of the above system, the plastic strain tensor can be updated according to
the following formula:

εp
n+1 = εp

n + ∆γ

√
3
2

sn+1

‖sn+1‖
. (7.87)

Single-equation return mapping

It is remarked here that the above system can be substantially simplified. In fact, as shall be
seen in what follows, the return mapping for the von Mises model can be reduced to a single
nonlinear equation having the incremental plastic multiplier ∆γ as the unknown. It should
be emphasised that this reduction in the number of equations is of extreme importance in
order to make the state-update procedure more computationally efficient and, of course, to
improve the performance of the overall finite element scheme. Upon simplification of the
system (7.85), it should be noted firstly that the von Mises flow vector is purely deviatoric so
that the deviatoric/volumetric split of (7.85)1 gives

εe
v n+1 = εe trial

v n+1

εe
d n+1 = εe trial

d n+1 − ∆γ

√
3
2

sn+1

‖sn+1‖
.

(7.88)

Equivalently, in terms of stresses, we have

pn+1 = ptrialn+1

sn+1 = strialn+1 − ∆γ 2G

√
3
2

sn+1

‖sn+1‖
,

(7.89)

that is, the return mapping affects only the deviatoric stress component. The hydrostatic stress,
pn+1, has the value computed in the elastic predictor stage and can, therefore, be eliminated
from the system of equations. Further simplification follows by noting that by rearranging the
deviatoric stress update formula (7.89)2 we obtain(

1 +

√
3
2

∆γ 2G

‖sn+1‖

)
sn+1 = strialn+1

i.e. the trial and updated deviatoric stresses are co-linear. This implies that

sn+1

‖sn+1‖
=

strialn+1

‖strialn+1‖
,
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Figure 7.8. The implicit elastic predictor/return-mapping scheme for the von Mises model. Geometric
interpretation in principal stress space.

so that the flow vectors at the trial and updated states coincide. Substitution of the above
identity into (7.89)2 leads to the following simpler update formula for the deviatoric stress:

sn+1 =
(

1 −
√

3
2

∆γ 2G

‖strialn+1‖

)
strialn+1

=
(

1 − ∆γ 3G

qtrialn+1

)
strialn+1, (7.90)

where qtrialn+1 ≡
√

3 J2(strialn+1) is the elastic trial von Mises effective stress. Note that, since

strialn+1 is a constant tensor in the return mapping, the deviatoric stress, sn+1, is a (linear)
function of ∆γ only in the above update formula. Expression (7.90) implies that, in the
fully implicit algorithm for the von Mises model, the updated deviatoric stress is obtained
by scaling down the trial deviatoric stress by the factor 1 − ∆γ 3G/qtrialn+1. The geometric
representations of this update formula in the principal stress space and deviatoric plane are
illustrated, respectively, in Figures 7.8 and 7.9.

Finally, with substitution of (7.90) and (7.85)2 into the plastic consistency condi-
tion (7.85)3, the system (7.85) of equations of the return mapping for the von Mises model is
reduced to the following scalar (generally nonlinear) equation having the incremental plastic
multiplier, ∆γ, as the only unknown:

Φ̃(∆γ) ≡ qtrialn+1 − 3G ∆γ − σy(ε̄p
n + ∆γ) = 0. (7.91)
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Figure 7.9. The implicit elastic predictor/return-mapping scheme for the von Mises model. Geometric
interpretation in the deviatoric plane.

The above equation is then solved by the Newton–Raphson method and, with its solution ∆γ
at hand, the state variables are updated as follows:

sn+1 =
(

1 − ∆γ 3G

qtrialn+1

)
strialn+1

σn+1 = sn+1 + ptrialn+1 I

εe
n+1 = [De]−1 : σn+1 =

1
2G

sn+1 +
1
3
εe trial
v n+1

ε̄p
n+1 = ε̄p

n + ∆γ.

(7.92)

If required, the plastic strain tensor is updated by means of (7.87).

The overall elastic predictor/return-mapping algorithm for the von Mises model is
summarised in Boxes 7.3 and 7.4. The procedure shown in these boxes is implemented in
subroutine SUVM of the HYPLAS program. This routine is described in detail in Section 7.3.5.

7.3.3. THE INCREMENTAL CONSTITUTIVE FUNCTION FOR THE STRESS

From the update formulae (7.92)1,2 and relations (7.81,7.82) we establish after simple
manipulations that the updated stress tensor, σn+1, can be expressed in terms of ε̄p

n and
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Box 7.3. Fully implicit elastic predictor/return-mapping algorithm for the
von Mises model with nonlinear isotropic hardening.

HYPLAS procedure: SUVM

(i) Elastic predictor. Given ∆ε and the state variables at tn, evaluate the elastic trial state

εe trial
n+1 := εe

n + ∆ε

ε̄p trial
n+1 := ε̄p

n

ptrial
n+1 := K εe trial

v n+1; strial
n+1 := 2G εe trial

d n+1

qtrial
n+1 :=

√
3
2

strial
n+1 : strial

n+1

(ii) Check plastic admissibility

IF qtrial
n+1 − σy(ε̄p trial

n+1 ) ≤ 0

THEN set (·)n+1 := (·)trialn+1 and EXIT

(iii) Return mapping. Solve the equation

Φ̃(∆γ) ≡ qtrial
n+1 − 3G ∆γ − σy(ε̄p

n + ∆γ) = 0

for ∆γ using the Newton–Raphson method – GOTO Box 7.4 – and update the state
variables

pn+1 := ptrial
n+1; sn+1 :=

(
1 − ∆γ 3G

qtrial
n+1

)
strial

n+1

σn+1 := sn+1 + pn+1 I

εe
n+1 = 1

2G
sn+1 + 1

3
εe trial
v n+1 I

ε̄p
n+1 := ε̄p

n + ∆γ

(iv) EXIT

εe trial
n+1 by means of the following incremental constitutive function:

σn+1 = σ̄n+1(ε̄p
n, εe trial

n+1 ) ≡
[
De − Ĥ(Φtrial)

∆γ 6G2

qtrialn+1

Id

]
: εe trial

n+1 , (7.93)

where Ĥ is the Heaviside step function defined as

Ĥ(a) ≡
{

1 if a > 0

0 if a ≤ 0
, for any scalar a, (7.94)

Id is the deviatoric projection tensor defined by (3.94) (page 59),

qtrialn+1 =
√
3
2‖s

trial
n+1‖ = 2G

√
3
2‖ε

e trial
d n+1‖

= qtrialn+1(ε
e trial
n+1 ) ≡ 2G

√
3
2 ‖ Id : εe trial

n+1 ‖, (7.95)
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Box 7.4. The Newton–Raphson algorithm for solution of the return-mapping
equation of the von Mises model.

HYPLAS procedure: SUVM

(i) Initialise iteration counter, k := 0, set initial guess for ∆γ

∆γ(0) := 0

and corresponding residual (yield function value)

Φ̃ := qtrial
n+1 − σy(ε̄p

n)

(ii) Perform Newton–Raphson iteration

H :=
dσy

dε̄p

∣∣∣∣
ε̄

p
n+∆γ

(hardening slope)

d :=
dΦ̃

d∆γ
= −3G − H (residual derivative)

∆γ := ∆γ − Φ̃

d
(new guess for ∆γ)

(iii) Check for convergence

Φ̃ := qtrial
n+1 − 3G ∆γ − σy(ε̄p

n + ∆γ)

IF |Φ̃| ≤ εtol THEN RETURN to Box 7.3

(iv) GOTO (ii)

Φtrial is the value of the yield function at the elastic trial state:

Φtrial = Φtrial(ε̄p
n, εe trial

n+1 ) ≡ qtrialn+1(ε
e trial
n+1 ) − σy(ε̄p

n), (7.96)

and
∆γ = ∆γ(ε̄p

n, εe trial
n+1 ) (7.97)

is the implicit function of εe trial
n+1 and ε̄p

n defined as the solution of the consistency equa-
tion (7.91).

Clearly, (7.93) defines σn+1 as an implicit function of the elastic trial strain and ε̄p
n.

Equivalently, since εe trial
n+1 = εn+1 − εp

n, we may write

σn+1 = σ̂n+1(ε̄p
n, εp

n, εn+1) ≡ σ̄n+1(ε̄p
n, εn+1 − εp

n). (7.98)

For a given state at tn, the functions (7.93) and (7.98) express the updated stress as implicit
functions, respectively, of the elastic trial stress and the total elastic strain at tn+1.

Remark 7.7. The use of incremental algorithmic constitutive functions has been first alluded
to in this book in Chapter 4 in the formulation of incremental boundary value problems
involving path-dependent materials. The reader is referred to expression (4.60) (page 95),
and the text surrounding it for details. The function σ̂ defined in (7.98, 7.93) is the
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particularisation of the generic incremental function (4.60) for the von Mises model with
isotropic strain hardening (for which αn = {ε̄p

n, εp
n}) integrated numerically by the fully

implicit elastic predictor/return-mapping algorithm.

7.3.4. LINEAR ISOTROPIC HARDENING AND PERFECT PLASTICITY: THE
CLOSED-FORM RETURN MAPPING

It should be noted that the only source of nonlinearity in the von Mises return-mapping
equation (7.91) is the hardening curve, defined by the given function σy = σy(ε̄p). For linear
hardening materials, this function is linear and is expressed by

σy(ε̄p) = σ0 + H ε̄p, (7.99)

where σ0 is the initial yield stress of the virgin material and H is the (constant) hardening
modulus. In such cases, (7.91) reads

Φ̃(∆γ) ≡ qtrialn+1 − 3G ∆γ − [σ0 + (ε̄p
n + ∆γ) H ] = 0 (7.100)

and the incremental plastic multiplier can be obtained in closed form as

∆γ =
Φtrial

3G + H
. (7.101)

Thus, for linearly hardening von Mises materials, the above closed expression replaces the
Newton–Raphson algorithm of Box 7.4 in the return-mapping procedure.

In the case of perfect plasticity (H = 0), the expression for ∆γ reads

∆γ =
Φtrial

3G
. (7.102)

The geometric interpretation of the fully implicit algorithm for the perfectly plastic von Mises
model is illustrated in Figure 7.10. In this case, the updated stress is simply the projection of
the elastic trial stress onto the fixed yield surface along its radial direction. It is the closest
point projection of the trial stress onto the yield surface.

d

The explicit incremental constitutive function

Under the assumption of linear hardening, we substitute the explicit formula (7.101) for
∆γ into (7.93) and obtain, after a straightforward manipulation, the following incremental
constitutive function for the updated stress:

σn+1 = σ̄n+1(εe trial
n+1 , ε̄p

n)

≡
[
De − Ĥ(Φtrial)

6G2

3G + H

(
1 − σy(ε̄p

n)
qtrialn+1

)
Id

]
: εe trial

n+1 . (7.103)

In contrast to the general case (7.93), σ̄n+1 in the above definition is an explicit function.
We remark, however, that explicit incremental constitutive functions are obtainable in the
context of implicit integration algorithms only under very special circumstances (such as
linear hardening in the present case). For more realistic models, such functions are usually
implicit.
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Figure 7.10. The perfectly plastic von Mises model. Geometric interpretation of the implicit return-
mapping scheme as the closest point projection algorithm.
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7.3.5. SUBROUTINE SUVM

The FORTRAN implementation of the fully implicit elastic predictor/return-mapping algo-
rithm for the von Mises model is described in detail in this section. This procedure,
summarised in Boxes 7.3 and 7.4, is carried out in subroutine SUVM (State Update procedure
for the Von Mises model). In the HYPLAS program, subroutine SUVM is called by the material
interface MATISU during the computation of the finite element internal force vector.
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In the present implementation, the isotropic hardening curve defined by

σy(ε̄p)

has been assumed to be piecewise linear. This means that any (arbitrarily nonlinear)
hardening curve can be adequately approximated by using a sufficiently large number of
sampling pairs

{ε̄p, σy}
with linear interpolation between adjacent pairs. A piecewise linear approximation, with
nhard sampling points, to a generic hardening curve is illustrated in Figure 7.11. In fact, actual
experimental data for hardening curves are normally obtained as a set of points (σy , ε̄p).
Thus, the present implementation of the von Mises model allows for the experimental data to
be used directly in the definition of the hardening curve.

The FORTRAN source code of SUVM is listed below.

1 SUBROUTINE SUVM
2 1( DGAMA ,IPROPS ,LALGVA ,NTYPE ,RPROPS ,

3 2 RSTAVA ,STRAT ,STRES )

4 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

5 PARAMETER(IPHARD=4 ,MSTRE=4)

6 LOGICAL IFPLAS, LALGVA(2), SUFAIL
7 DIMENSION
8 1 IPROPS(*) ,RPROPS(*) ,RSTAVA(MSTRE+1) ,

9 2 STRAT(MSTRE) ,STRES(MSTRE)
10 DIMENSION
11 1 EET(MSTRE)
12 DATA
13 1 R0 ,RP5 ,R1 ,R2 ,R3 ,TOL /

14 2 0.0D0,0.5D0,1.0D0,2.0D0,3.0D0,1.D-06/

15 DATA MXITER / 50 /
16 C***********************************************************************
17 C STATE UPDATE PROCEDURE FOR THE VON MISES ELASTO-PLASTIC MATERIAL MODEL
18 C WITH NON-LINEAR (PIECEWISE LINEAR) ISOTROPIC HARDENING:
19 C IMPLICIT ELASTIC PREDICTOR/RETURN MAPPING ALGORITHM (BOXES 7.3-4).
20 C PLANE STRAIN AND AXISYMMETRIC IMPLEMENTATIONS.
21 C***********************************************************************
22 C Stop program if neither plane strain nor axisymmetric state

23 IF(NTYPE.NE.2.AND.NTYPE.NE.3)CALL ERRPRT(’EI0013’)
24 C Initialise some algorithmic and internal variables

25 DGAMA=R0
26 IFPLAS=.FALSE.
27 SUFAIL=.FALSE.
28 EPBARN=RSTAVA(MSTRE+1)
29 C Set some material properties

30 YOUNG=RPROPS(2)
31 POISS=RPROPS(3)
32 NHARD=IPROPS(3)
33 C Shear and bulk moduli and other necessary constants

34 GMODU=YOUNG/(R2*(R1+POISS))
35 BULK=YOUNG/(R3*(R1-R2*POISS))
36 R2G=R2*GMODU
37 R3G=R3*GMODU
38 C Elastic predictor: Compute elastic trial state

39 C ----------------------------------------------
40 C Volumetric strain and pressure stress

41 EEV=STRAT(1)+STRAT(2)+STRAT(4)
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42 P=BULK*EEV
43 C Elastic trial deviatoric strain
44 EEVD3=EEV/R3
45 EET(1)=STRAT(1)-EEVD3

46 EET(2)=STRAT(2)-EEVD3

47 EET(4)=STRAT(4)-EEVD3
48 C Convert engineering shear component into physical component

49 EET(3)=STRAT(3)/R2
50 C Compute trial effective stress and uniaxial yield stress

51 VARJ2T=R2G*R2G*(EET(3)*EET(3)+RP5*(EET(1)*EET(1)+
52 1 EET(2)*EET(2)+EET(4)*EET(4)))

53 QTRIAL=SQRT(R3*VARJ2T)

54 SIGMAY=PLFUN(EPBARN,NHARD,RPROPS(IPHARD))
55 C Check for plastic admissibility

56 C -------------------------------
57 PHI=QTRIAL-SIGMAY

58 IF(PHI/SIGMAY.GT.TOL)THEN
59 C Plastic step: Apply return mapping - use Newton-Raphson algorithm

60 C to solve the return mapping equation (Box 7.4)

61 C -------------------------------------------------------------------
62 IFPLAS=.TRUE.
63 EPBAR=EPBARN
64 DO 10 NRITER=1,MXITER
65 C Compute residual derivative

66 DENOM=-R3G-DPLFUN(EPBAR,NHARD,RPROPS(IPHARD))
67 C Compute Newton-Raphson increment and update variable DGAMA

68 DDGAMA=-PHI/DENOM
69 DGAMA=DGAMA+DDGAMA
70 C Compute new residual

71 EPBAR=EPBAR+DDGAMA
72 SIGMAY=PLFUN(EPBAR,NHARD,RPROPS(IPHARD))
73 PHI=QTRIAL-R3G*DGAMA-SIGMAY
74 C Check convergence

75 RESNOR=ABS(PHI/SIGMAY)
76 IF(RESNOR.LE.TOL)THEN
77 C update accumulated plastic strain

78 RSTAVA(MSTRE+1)=EPBAR
79 C update stress components

80 FACTOR=R2G*(R1-R3G*DGAMA/QTRIAL)

81 STRES(1)=FACTOR*EET(1)+P

82 STRES(2)=FACTOR*EET(2)+P
83 STRES(3)=FACTOR*EET(3)

84 STRES(4)=FACTOR*EET(4)+P

85 C compute converged elastic (engineering) strain components

86 FACTOR=FACTOR/R2G
87 RSTAVA(1)=FACTOR*EET(1)+EEVD3

88 RSTAVA(2)=FACTOR*EET(2)+EEVD3
89 RSTAVA(3)=FACTOR*EET(3)*R2

90 RSTAVA(4)=FACTOR*EET(4)+EEVD3
91 GOTO 999
92 ENDIF
93 10 CONTINUE
94 C reset failure flag and print warning message if the algorithm fails

95 SUFAIL=.TRUE.
96 CALL ERRPRT(’WE0004’)
97 ELSE
98 C Elastic step: Update stress using linear elastic law

99 C ----------------------------------------------------
100 STRES(1)=R2G*EET(1)+P
101 STRES(2)=R2G*EET(2)+P
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102 STRES(3)=R2G*EET(3)

103 STRES(4)=R2G*EET(4)+P
104 C elastic engineering strain

105 RSTAVA(1)=STRAT(1)

106 RSTAVA(2)=STRAT(2)

107 RSTAVA(3)=STRAT(3)

108 RSTAVA(4)=STRAT(4)
109 ENDIF
110 999 CONTINUE
111 C Update some algorithmic variables before exit

112 LALGVA(1)=IFPLAS

113 LALGVA(2)=SUFAIL
114 RETURN
115 END

The arguments of SUVM

← DGAMA [∆γ]. The incremental plastic multiplier. If the increment is elastic, it returns
as 0. Otherwise, it is obtained as the solution of the return-mapping equation (7.91).

→ IPROPS. Array of integer material properties. IPROPS(3) contains the number of
sampling points for the piecewise linear hardening curve, NHARD, and is the only integer
material property required by the present subroutine. IPROPS(3) is set in subroutine
RDVM during the input phase of HYPLAS.

← LALGVA. Array of logical algorithmic flags or variables. For the von Mises model it
contains the plastic yielding flag, IFPLAS, and the state update failure flag SUFAIL. If
the step is elastic, the plastic yielding flag returns as .FALSE., otherwise its return value
is .TRUE.. The state update failure flag returns as .TRUE. only if the Newton scheme of
the return-mapping algorithm fails to converge. In this case, the state variables are not
updated in SUVM and a warning message is sent (by calling subroutine ERRPRT) to the
results file and standard output. When the state update procedure fails (for any material
model), increment cutting is activated in the main program; that is, the calculations for
the current load increment are aborted and restarted with a smaller increment.

→ NTYPE. Stress state type flag.

→ RPROPS. Array of real material properties. It contains the elastic properties (Young’s
modulus, E, and Poisson’s ratio, ν) and the pairs {iε̄p, iσy}, i = 1, . . . , nhard, of
sampling points along the hardening curve (see illustration of Figure 7.11):

RPROPS = [E, ν, 1ε̄p, 1σy, 2ε̄p, 2σy, . . . . . . , nhard ε̄p, nhardσy].

Array RPROPS is set in subroutine RDVM during the input phase of HYPLAS.

↔ RSTAVA [εe, ε̄p]. Array of state variables other than the stress components. For the
present material model implementation, this array contains the elastic strain (returned
as the updated value εe

n+1) and the equivalent plastic strain (last converged solution
value ε̄p

n on entry, updated value ε̄p
n+1 on exit). The last converged elastic strain, εe

n,
is used in subroutine MATISU to compute the elastic trial strain before the present
subroutine is called.
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→ STRAT [εe trial
n+1 ]. Array containing the elastic trial (engineering) strains. It is computed

as shown in item (i) of Box 7.3 in subroutine MATISU. The calculation of array STRAT in
MATISU is common to all elastoplastic material models of the class whose identification
parameter is HYPEPL.

← STRES [σn+1]. Array containing the updated stress tensor components.

Some local variables and arrays of SUVM

• EET [εe trial
d n+1]. Array of elastic trial deviatoric strain components.

• EEV [εe trial
v n+1]. Elastic trial volumetric strain. Equals the actual elastic volumetric strain

for the present model.

• MXITER. Maximum number of iterations allowed in the Newton–Raphson procedure
for solution of the return-mapping equation.

• NRITER. Iteration counter for the Newton–Raphson algorithm.

• TOL [εtol]. Convergence tolerance for the Newton–Raphson algorithm.

Most remaining local variables of SUVM have been named so as to resemble the corresponding
notation of Section 7.3.2. Thus, the operations carried out in SUVM can be easily identified
with those indicated in Boxes 7.3 and 7.4.

Some function calls from SUVM

• DPLFUN. This function computes the derivative of a piecewise linear function. Used in
SUVM to compute the slope of the hardening curve, H .

• PLFUN. Piecewise linear function defined by a set of pairs (x, f(x)). Used in SUVM as
the hardening function σy(ε̄p). Recall that the hardening curve is defined here by the
NHARD pairs of sampling points stored in array RPROPS.

7.4. The consistent tangent modulus

Within the description of the incremental finite element framework of Chapter 4, reference
has been made in Section 4.2.5 (page 98) to the use of consistent tangent operators:

D ≡ ∂σn+1

∂εn+1
, (7.104)

in the computation of the element tangent stiffness.
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Elastic materials

In the case of purely elastic materials, the stress is an explicit function of the strain tensor

σ = σ(ε) = ρ̄
∂ψ(ε)

∂ε
, (7.105)

so that the tangent modulus can be explicitly derived as

D = De ≡ ρ̄
∂2ψ(ε)

∂ε2
. (7.106)

For linear elastic materials, the consistent tangent modulus is the standard (constant) elasticity
tensor

D = 2G Id + K I ⊗ I. (7.107)

7.4.1. CONSISTENT TANGENT OPERATORS IN ELASTOPLASTICITY

As shown in Section 7.2, elastoplastic materials require in general some kind of numerical
integration algorithm to update the stress tensor. Basically, given the known internal variable
set αn and the new prescribed total strain εn+1 as input, each of the general integration
procedures described in Section 7.2 will deliver the updated stress σn+1 as the result of the
application of a particular numerical algorithm (see diagram of Figure 7.12). This defines an
algorithmic incremental constitutive function, σ̂, for the stress tensor with general form

σn+1 = σ̂(αn, εn+1). (7.108)

Algorithmic functions of this type have been first referred to in Section 4.2.1 (page 95),
in the formulation of incremental boundary value problems with general path-dependent
material models. Specific examples of incremental constitutive functions have been obtained
earlier in this chapter for the fully implicit elastic predictor/return-mapping implementation
of the von Mises model with isotropic strain hardening. Expressions (7.93, 7.98) show
the corresponding (implicit) incremental constitutive function for the model with nonlinear
hardening and expression (7.103) shows the particular (explicit) format obtained under linear
hardening.

Within a load increment [tn, tn+1], the internal variable set αn given as argument of σ̂
is fixed. Only the guesses for the total strain, εn+1 – associated with the guesses for the
displacement field, un+1 – change during the global Newton–Raphson equilibrium iterations
(refer to Section 4.2, from page 94 for details on the global Newton–Raphson procedure). In
other words, within each global load increment, the stress σn+1 delivered by the integration
algorithm is a function of the total strain tensor only. This function – σ̂(αn, εn+1) with
fixed αn – defines a path-independent stress/strain relation within the interval [tn, tn+1],
equivalent to a (nonlinear) elastic law. The consistent tangent modulus in this case is precisely
the derivative of this equivalent nonlinear elastic law:

D ≡ dσn+1

dεn+1
=

∂σ̂

∂εn+1

∣∣∣∣
αn

, (7.109)

i.e. it is the derivative of the algorithmic function σ̂ with respect to εn+1 with αn held
constant.
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elastic predictor/
return-mapping algorithm

state update procedure
input

α   , εn+1n

output

α     ,  σn+1n+1

σ    =  σ (α  , ε    )n n+1
^

n+1

algorithmic stress
constitutive function

⇔
Figure 7.12. The algorithmic constitutive function for the stress tensor.

At this point, it is worth remarking that, in the context of the multiplicative finite
strain plasticity framework discussed in Chapter 14, no measure of total nonlinear strain
analogous to εn+1 is used (or needed) in the definition of elastoplastic constitutive models.
An elastic trial strain measure (analogous to the infinitesimal tensor εe trial

n+1 ), however, does
appear naturally in the formulation of the corresponding elastic predictor/return-mapping
schemes. Clearly, since εe trial

n+1 = εn+1 − εp
n, the incremental constitutive function for σn+1

can always be expressed equivalently as††

σn+1 = σ̄(αn, εe trial
n+1 ) ≡ σ̂(αn, εe trial

n+1 + εp
n), (7.110)

in terms of the elastic trial strain and the internal variable set at tn, and we also have the trivial
identity

D =
∂σ̂

∂εn+1
=

∂σ̄

∂εe trial
n+1

(7.111)

for the consistent tangent operator. To make the material presented here formally valid also
for the large-strain case addressed in Chapter 14 (where a total strain tensor is not defined),
we shall adopt in what follows the rightmost term of (7.111) as the definition of consistent
tangent operator.‡‡

The elastic and elastoplastic tangents

Before going into further details, it is worth remarking at this point that the algorithmic
function σ̂ is non-differentiable in general. This is clearly seen by noting the presence of
the Heaviside step function – a non-differentiable function – in definition (7.93), (7.98) of
the incremental constitutive law for the implicitly integrated von Mises model with nonlinear
isotropic strain hardening. For states lying within the elastic domain, i.e. states corresponding

††This obvious equivalence has already been used in (7.98).
‡‡Also note that, in order to maximise the number of routines shared by small and large-strain isotropic plasticity

models in the HYPLAS program, we have conveniently chosen the elastic trial strain, εe trial
n+1 , rather than the total

strain εn+1, as the actual input argument to the elastoplastic integration procedures for models of the present type
(see routine SUVM, listed on page 227, for instance).
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Figure 7.13. The tangent moduli consistent with elastic predictor/return-mapping integration algo-
rithms.

to Φtrial < 0 in (7.93), (7.98), any infinitesimal change of total strain can only be elastic, with
the stress σn+1 evolving along the (smooth) elastic curve (see graphical representation of the
uniaxial stress case in Figure 7.13). In this case the function σ̂ is differentiable. At states with
Φtrial > 0, the function σ̂ is also differentiable if the hardening curve is smooth. Infinitesimal
changes of εn+1 will move the stress along the elastoplastic part of the incremental stress–
strain curve. However, at states with Φtrial = 0 in (7.93, 7.98) – where the Heaviside step
function is non-differentiable – either elastic unloading or plastic straining may occur in
the incremental constitutive law. The incremental constitutive function is obviously non-
differentiable in this case. The tangent modulus D is not uniquely defined and two tangent
stress–strain relations exist: an elastic tangent relation, defined for elastic unloading, and an
elastoplastic tangent relation, defined for plastic loading. Consider the one-dimensional case
illustrated in Figure 7.13. Even though σ̂ is non-differentiable its two one-sided derivatives
– the elastic and the elastoplastic tangents – are well defined. In the multidimensional case,
these are generalised respectively as the elastic tangent modulus, De, and the elastoplastic
consistent tangent modulus, Dep. The elastic tangent is associated with the elastic predictor
procedure whereas the elastoplastic tangent is related to the plastic corrector (return-mapping)
procedure. Clearly, when assembling the tangent stiffness matrix required by the Newton–
Raphson iterative procedure for the global incremental equilibrium problem, the appropriate
choice of tangent operator must be made.

The elastic tangent

If the stress is inside the elastic domain (Φtrial < 0) or if it is on the yield surface (Φtrial = 0)
and elastic unloading is assumed to occur, the tangent modulus D consistent with any of the
integration algorithms previously discussed is simply given by

D = De ≡ ρ̄
∂2ψ

∂εe2
, (7.112)
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i.e. it is the standard elastic modulus. Note that, in this case, the stress σn+1 is the outcome
of the elastic predictor, which employs only the elastic constitutive law. This procedure is
common to all algorithms described in Section 7.2.

For elastoplastic materials whose elastic response is linear, such as the von Mises model
and all other models described in Chapter 6, the elastic consistent tangent is the standard
elasticity operator (7.107).

The elastoplastic tangent: the derivative of an implicit function

If the stress is on the yield surface, i.e. Φtrial > 0 or Φtrial = 0 and it is assumed that
further plastic loading is going to occur, then the tangent operator is called the elastoplastic
consistent tangent and is denoted Dep. It is important to emphasise here that elastoplastic
consistent tangent operators cannot be derived for the cutting-plane algorithm (refer to
Remark 7.6, page 208) so that the discussion that follows is restricted to the families of elastic
predictor/return-mapping procedures based on the generalised midpoint and trapezoidal
algorithms.

Crucial to the derivation of the elastoplastic consistent tangent moduli is the observation
that under plastic yielding, the outcome σn+1 of any member of the families of generalised
midpoint and trapezoidal integration algorithms is the solution of a nonlinear system of
algebraic equations in the plastic corrector (return-mapping) procedure. The system solved in
the return mapping depends on the particular algorithm adopted. In this case, it is clear that
σn+1 is defined implicitly through the corresponding nonlinear system. Note, for example,
that the term ∆γ in (7.93) is an implicit function of εe trial

n+1 (or εn+1) defined as the solution
of an algebraic nonlinear equation. In other words, the updated stress σn+1 is an implicit
function of the elastic trial strain εe trial

n+1 in this case. Thus, the consistent tangent operator

Dep =
∂σ̂

∂εe trial
n+1

is simply the derivative of the implicit function defined by the return-mapping equations and
is derived by following the standard procedure for differentiation of implicit functions.

As an illustration of the above concepts, the elastoplastic tangent consistent with the fully
implicit algorithm for the von Mises model is derived below.

7.4.2. THE ELASTOPLASTIC CONSISTENT TANGENT FOR THE VON MISES
MODEL WITH ISOTROPIC HARDENING

The implicit elastic predictor/return-mapping algorithm for the von Mises model has been
described in detail in Section 7.3. There, it was remarked that from the computational
point of view the implementation of the von Mises model is the simplest described in
this book. In this section, the elastoplastic tangent operator consistent with the von Mises
implicit return mapping is derived step by step. The idea is to use this algorithm as an
example to provide the reader with a clear picture of the procedure for the derivation of
elastoplastic consistent tangent operators. The simplicity of this particular return-mapping
scheme avoids the complications associated with more complex models/algorithms. The
derivation of elastoplastic tangent operators consistent with the implicit return mapping for
general plasticity models is addressed later, in Section 7.4.4. The application of the generic
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procedure to the isotropically hardening von Mises model, which offers an alternative route
to the derivation presented below, is described in Section 7.4.5.

The incremental algorithmic constitutive function for the implicitly integrated von Mises
model with nonlinear isotropic strain hardening is given by (7.93). Under plastic flow, i.e.
when the return-mapping procedure is used, the update formula for σn+1 reads

σn+1 =
[
De − ∆γ 6G2

qtrialn+1

Id

]
: εe trial

n+1 , (7.113)

where ∆γ is the solution of the return-mapping equation of the algorithm (Box 7.3),

Φ̃(∆γ) ≡ qtrialn+1 − 3G ∆γ − σy(ε̄p
n + ∆γ) = 0. (7.114)

In the above, the elastic trial von Mises effective stress, qtrialn+1, is the function of the elastic
trial strain defined by (7.95). The elastoplastic consistent tangent modulus for the present
model/algorithm combination is obtained by differentiating (7.113).

A straightforward application of tensor differentiation rules to (7.113) gives

∂σn+1

∂εe trial
n+1

= De − ∆γ 6G2

qtrialn+1

Id −
6G2

qtrialn+1

εe trial
d n+1 ⊗

∂∆γ

∂εe trial
n+1

+
∆γ 6G2

(qtrialn+1)2
εe trial
d n+1 ⊗

∂qtrialn+1

∂εe trial
n+1

. (7.115)

From (7.95) and relation (2.139) (page 36), for the tensor norm derivative, we obtain

∂qtrialn+1

∂εe trial
n+1

= 2G
√
3
2 N̄ n+1, (7.116)

where we have conveniently defined the unit flow vector

N̄n+1 ≡
√
2
3 Nn+1 =

strialn+1

‖strialn+1‖
=

εe trial
d n+1

‖εe trial
d n+1‖

(7.117)

and we have made use of the trivial identity: εe trial
d n+1 : Id = εe trial

d n+1, when applying the chain
rule. Further, the differentiation of the implicit equation (7.114) for ∆γ, taking (7.116) into
account gives

∂∆γ

∂εe trial
n+1

=
1

3G + H

∂qtrialn+1

∂εe trial
n+1

=
2G

3G + H

√
3
2 N̄n+1, (7.118)

where H is the slope of the hardening curve:

H ≡ dσy

dε̄p

∣∣∣∣
ε̄p

n+∆γ

. (7.119)

Finally, by substituting (7.116) and (7.118) into (7.115), we obtain, after a straightforward
manipulation making use of (7.95) and definition (7.117), the following expression for the
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elastoplastic tangent operator consistent with the implicit return-mapping scheme for the
isotropically hardening von Mises model:

Dep = De − ∆γ 6G2

qtrialn+1

Id + 6G2
(

∆γ

qtrialn+1

− 1
3G + H

)
N̄n+1 ⊗ N̄n+1

= 2G

(
1 − ∆γ 3G

qtrialn+1

)
Id

+ 6G2
(

∆γ

qtrialn+1

− 1
3G + H

)
N̄n+1 ⊗ N̄n+1 + K I ⊗ I. (7.120)

It should be noted that the operator Dep in the present case, i.e. for this particular model
and numerical integration algorithm is symmetric. The symmetry of consistent elastoplastic
tangent operators will be further commented upon in Section 7.4.6. In the HYPLAS program,
the above tangent operator is computed in subroutine CTVM. Its implementation is described
in detail in Section 7.4.3.

Remark 7.8. Within the global (equilibrium) Newton–Raphson scheme, the value of ∆γ,
qtrial and H , as well as the incremental unit flow vector, N̄n+1, that take part in (7.120) are
those obtained for the Gauss point of interest in the return-mapping procedure of the previous
global iteration. For the first iteration of any global load increment, ∆γ is zero.

The continuum tangent operator

The concept of tangent operators in plasticity has been initially discussed in Sections 6.2.8
and 6.3.8 (from pages 147 and 153, respectively) in the time-continuum setting. In Sec-
tion 6.3.8, the corresponding elastoplastic continuum tangent operator has been derived for
the generic multi-dimensional plasticity model. Its closed form is given by expression (6.67).
Let us now particularise this formula for the von Mises model with isotropic strain hardening.
Firstly we consider (6.187)–(6.192). In this case we have

ρ̄
∂2ψp

∂α2
= ρ̄

∂2ψp

∂ε̄p2
=

∂κ

∂ε̄p
= H. (7.121)

With the above, together with (6.194) and the associative flow vector definition (6.136) for
the von Mises model, we find that expression (6.67) particularises in the following format:

Dep
c = De − (De : N ) ⊗ (De : N )

N : De : N + H
, (7.122)

where we have used the subscript ‘c’ to emphasise that the above operator is the continuum
tangent modulus. With De defined by (7.107), and taking into consideration the fact that for
the von Mises model N is a deviatoric tensor, we have

De : N = 2G N. (7.123)

In addition, using (6.136), it follows that

N : De : N = 3G. (7.124)
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By introducing these results into (7.122), we obtain the following explicit expression for the
continuum tangent operator for the von Mises model with isotropic strain hardening:

Dep
c = De − 6G2

3G + H
N̄ ⊗ N̄, (7.125)

where N̄ is the unit flow vector at the current state.

Remark 7.9. The difference between the elastoplastic consistent tangent operator and its
continuum counterpart above lies only in the terms that contain ∆γ in expression (7.120).
Note that we may write

Dep = Dep
c − ∆γ 6G2

qtrialn+1

[ Id − N̄n+1 ⊗ N̄n+1]. (7.126)

If ∆γ is set to zero (as in the first iteration of any load increment), the continuum tangent is
recovered. This fact (Ortiz and Martin, 1989) is a mere consequence of the consistency of the
numerical method (backward Euler-based in the present case) adopted in the discretisation of
the time-continuum elastoplasticity equations. For large steps, when the value of ∆γ is large,
the difference between the continuum and the consistent operator can be substantial. In such
cases, the use of the continuum tangent in the assemblage of the stiffness matrix results in a
dramatic degradation of the convergence rate of the global iterative procedure. Clearly, if the
continuum tangent is used in conjunction with the return-mapping scheme, then the global
iterative procedure is not the Newton–Raphson algorithm. In this case, the global iterations
are a form of approximation to the Newton–Raphson scheme. Early implicit elastoplastic
implementations (Owen and Hinton, 1980) relied exclusively on the use of the continuum
tangent operator. The use of the consistent tangent operator in this context was introduced by
Simo and Taylor (1985).

7.4.3. SUBROUTINE CTVM

This section describes subroutine CTVM (Consistent Tangent operator for the Von Mises
model) in detail. In the HYPLAS program, this routine is called by the material interface
MATICT at each Gauss point during the evaluation of the element tangent stiffness matrix.
It computes either the elastic tangent, De, given by (7.107), or the elastoplastic tangent
operator, Dep, given by expression (7.120). The elastoplastic operator is consistent with the
implicit elastic predictor/return-mapping algorithm for the von Mises model with nonlinear
(piecewise linear) isotropic hardening. The algorithm is implemented in subroutine SUVM.

The FORTRAN source code of CTVM is listed below.

1 SUBROUTINE CTVM
2 1( DGAMA ,DMATX ,EPFLAG ,IPROPS ,NTYPE ,

3 2 RPROPS ,RSTAVA ,STRES )

4 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

5 PARAMETER(IPHARD=4 ,MSTRE=4)
6 LOGICAL EPFLAG
7 DIMENSION
8 1 DMATX(MSTRE,MSTRE),IPROPS(*) ,RPROPS(*) ,

9 2 RSTAVA(MSTRE+1) ,STRES(MSTRE)
10 DIMENSION
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11 1 DEVPRJ(MSTRE,MSTRE),FOID(MSTRE,MSTRE) ,S(MSTRE) ,

12 2 SOID(MSTRE)
13 DATA
14 1 FOID(1,1),FOID(1,2),FOID(1,3),FOID(1,4)/

15 2 1.0D0 ,0.0D0 ,0.0D0 ,0.0D0 /

16 3 FOID(2,1),FOID(2,2),FOID(2,3),FOID(2,4)/

17 4 0.0D0 ,1.0D0 ,0.0D0 ,0.0D0 /

18 5 FOID(3,1),FOID(3,2),FOID(3,3),FOID(3,4)/

19 6 0.0D0 ,0.0D0 ,0.5D0 ,0.0D0 /

20 7 FOID(4,1),FOID(4,2),FOID(4,3),FOID(4,4)/

21 8 0.0D0 ,0.0D0 ,0.0D0 ,1.0D0 /
22 DATA
23 1 SOID(1) ,SOID(2) ,SOID(3) ,SOID(4) /

24 2 1.0D0 ,1.0D0 ,0.0D0 ,1.0D0 /
25 DATA
26 1 R1 ,R2 ,R3 ,R6 /

27 2 1.0D0,2.0D0,3.0D0,6.0D0/
28 C***********************************************************************
29 C COMPUTATION OF THE CONSISTENT TANGENT MODULUS FOR VON MISES TYPE
30 C ELASTO-PLASTIC MATERIAL WITH PIECE-WISE LINEAR ISOTROPIC HARDENING.
31 C PLANE STRAIN AND AXISYMMETRIC IMPLEMENTATIONS.
32 C***********************************************************************
33 C Stops program if neither plane strain nor axisymmetric state

34 IF(NTYPE.NE.2.AND.NTYPE.NE.3)CALL ERRPRT(’EI0030’)
35 C Current accumulated plastic strain

36 EPBAR=RSTAVA(MSTRE+1)
37 C Set material properties

38 YOUNG=RPROPS(2)
39 POISS=RPROPS(3)
40 NHARD=IPROPS(3)
41 C Shear and bulk moduli
42 GMODU=YOUNG/(R2*(R1+POISS))
43 BULK=YOUNG/(R3*(R1-R2*POISS))
44 R2G=R2*GMODU
45 R1D3=R1/R3
46 C Set deviatoric projection tensor

47 IF(NTYPE.EQ.2)THEN
48 NSTRE=3
49 ELSEIF(NTYPE.EQ.3)THEN
50 NSTRE=4
51 ENDIF
52 DO 20 I=1,NSTRE
53 DO 10 J=1,NSTRE

54 DEVPRJ(I,J)=FOID(I,J)-SOID(I)*SOID(J)*R1D3
55 10 CONTINUE
56 20 CONTINUE
57 IF(EPFLAG)THEN
58 C Compute elastoplastic consistent tangent

59 C ----------------------------------------
60 R3G=R3*GMODU
61 ROO3D2=SQRT(R3/R2)
62 C Hydrostatic pressure

63 P=(STRES(1)+STRES(2)+STRES(4))*R1D3
64 C Deviatoric stress components

65 S(1)=STRES(1)-P
66 S(2)=STRES(2)-P
67 S(3)=STRES(3)
68 S(4)=STRES(4)-P
69 C Recover last elastic trial von Mises effective stress
70 SNORM=SQRT(S(1)*S(1)+S(2)*S(2)+R2*S(3)*S(3)+S(4)*S(4))
71 Q=ROO3D2*SNORM
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72 QTRIAL=Q+R3G*DGAMA

73 C Assemble elastoplastic tangent (upper triangle only)

74 AFACT=R2G*(R1-R3G*DGAMA/QTRIAL)

75 BFACT=R6*GMODU*GMODU*(DGAMA/QTRIAL-

76 1 R1/(R3G+DPLFUN(EPBAR,NHARD,RPROPS(IPHARD))))/

77 2 (SNORM*SNORM)
78 DO 40 I=1,NSTRE

79 DO 30 J=I,NSTRE

80 DMATX(I,J)=AFACT*DEVPRJ(I,J)+BFACT*S(I)*S(J)+

81 1 BULK*SOID(I)*SOID(J)
82 30 CONTINUE
83 40 CONTINUE
84 ELSE
85 C Compute elasticity matrix (upper triangle only)

86 C -----------------------------------------------
87 DO 60 I=1,NSTRE

88 DO 50 J=I,NSTRE

89 DMATX(I,J)=R2G*DEVPRJ(I,J)+BULK*SOID(I)*SOID(J)

90 50 CONTINUE
91 60 CONTINUE
92 ENDIF
93 C Assemble lower triangle

94 C -----------------------
95 DO 80 J=1,NSTRE-1

96 DO 70 I=J+1,NSTRE

97 DMATX(I,J)=DMATX(J,I)

98 70 CONTINUE
99 80 CONTINUE

100 RETURN
101 END

The arguments of CTVM

→ DGAMA [∆γ]. The incremental plastic multiplier obtained from the return mapping of
SUVM in the previous global (equilibrium) iteration. It is set to zero (before being passed
into CTVM) for the first iteration of every load increment.

← DMATX [either De or Dep]. Tangent operator (stored in matrix form) consistent with
the implicit elastic predictor/return-mapping algorithm for the von Mises model. The
implicit algorithm has been described in Section 7.3.2. The associated elastoplastic
consistent tangent, Dep, was derived in Section 7.4.2 above and is given by expres-
sion (7.120).

→ EPFLAG. Elastoplastic tangent logical flag. If .TRUE., DMATX returns as the elastoplastic
consistent tangent operator, Dep. If .FALSE., DMATX returns as the elastic matrix, De.
The value of EPFLAG is set in subroutine MATICT. The procedure for setting EPFLAG in
MATICT is common to all elastoplastic models of the material class HYPEPL.

→ IPROPS. Array of integer material properties (see description on page 227).

→ NTYPE. Stress state type flag. NTYPE=2 for plane strain and NTYPE=3 for axisymmetric
problems.

→ RPROPS. Array of real material properties (see description on page 227).
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→ RSTAVA [εe, ε̄p]. Array of updated state variables other than the stress components
(output of SUVM) (see page 227 for complete description).

→ STRES [σn+1]. Array containing the updated stress tensor components (output of
SUVM).

Some local arrays of CTVM

• DEVPRJ [Id]. Fourth-order deviatoric projection tensor stored in array form. Refer to
Appendix D for rules of array conversion.

• FOID [IS]. Fourth-order symmetric identity tensor stored in array form according to the
convention shown in (D.16) (page 762).

• SOID [I]. Second-order identity tensor stored in array form.

The names of most local variables and arrays of CTVM follow closely the notation of
Section 7.4.2, where the elastoplastic consistent tangent operator has been derived.

Function calls from CTVM

• DPLFUN. Called to compute the slope, H , of the piecewise linear hardening curve (see
details on page 228).

7.4.4. THE GENERAL ELASTOPLASTIC CONSISTENT TANGENT OPERATOR FOR
IMPLICIT RETURN MAPPINGS

A symbolic expression for the elastoplastic tangent consistent with the implicit return-
mapping algorithm for the general plasticity model is derived in this section. The general
implicit algorithm for plasticity was derived in Section 7.2.3. The corresponding return-
mapping equations, summarised in Box 7.1 [item (iii)], are repeated below for convenience:


εe

n+1 − εe trial
n+1 + ∆γ Nn+1

αn+1 − αn − ∆γ Hn+1

Φ(σn+1, An+1)


=




0

0

0


 .

The basic unknowns of the above system of algebraic equations are: the updated elastic strain,
εe

n+1; the updated set of internal variables, αn+1; and the incremental plastic multiplier, ∆γ.
The corresponding updated stress tensor delivered by the above return mapping is evaluated
from the standard potential form

σn+1 = ρ̄
∂ψ

∂εe

∣∣∣∣
n+1

.

Clearly, by changing the elastic trial strain, εe trial
n+1 , that takes part in the return map

equations, the solution {εe
n+1, αn+1, ∆γ} will change accordingly and so will the updated

stress σn+1. In this way, the algebraic system of equations define an implicit function for
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the stress tensor at tn+1. As discussed in the preceding sections, the elastoplastic consistent
tangent operator

Dep ≡ ∂σn+1

∂εe trial
n+1

,

i.e. the derivative of the implicit function for stress, gives the linear tangent relationship
between εe trial

n+1 and σn+1. Thus, the first step in its derivation is to linearise the return-
mapping equations (having the elastic trial strain – the system input – also as a variable).
Straightforward differentiation of the general return-mapping equations yields the following
linearised form:



dεe + ∆γ
∂N

∂σ
: dσ + ∆γ

∂N

∂A
∗ dA + d∆γ N

dα − ∆γ
∂H

∂σ
∗ dσ − ∆γ

∂H

∂A
∗ dA − d∆γ H

∂Φ
∂σ

: dσ +
∂Φ
∂A

∗ dA




=




dεe trial

0

0




, (7.127)

where the subscripts n + 1 have been suppressed for convenience.
Recall that, for the differentials dσ and dA, we have the following relations (refer to the

rate elastoplasticity equations (7.52) on page 206):

dσ = De : dεe + E ∗ dα

dA = F ∗ dεe + G ∗ dα.
(7.128)

The linear operators E, F and G are defined in (7.48)–(7.50). Inversion of this relation gives
the following general expression

dεe = C : dσ + B ∗ dA

dα = A ∗ dσ + J ∗ dA,
(7.129)

where C, B, A and J are suitably defined linear operators. Note that, under the classical
assumption of decoupling between elasticity and plastic hardening:

ψ(εe, α) = ψe(εe) + ψp(α), (7.130)

the tangent moduli E and F vanish and so do B and A. In this case we end up with the following
relation:

dεe = C : dσ ;

dα = J ∗ dA,
(7.131)

where C = [De]−1 and J = G−1.
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By substituting (7.129) into (7.127), the linearised return-mapping equations can be
rewritten in the following symbolic matrix representation:†



C + ∆γ
∂N

∂σ
B + ∆γ

∂N

∂A
N

A − ∆γ
∂H

∂σ
J − ∆γ

∂H

∂A
−H

∂Φ
∂σ

∂Φ
∂A

0







dσ

dA

d∆γ




=




dεe trial

0

0




. (7.132)

Finally, by inverting the above linear relation, we obtain


dσ

dA

d∆γ


=




D11 D12 D13

D21 D22 D23

D31 D32 D33







dεe trial

0

0


. (7.133)

From the above, we obtain the generalised tangent operators consistent with the implicit
return-mapping algorithm. The generalised operators are: The elastoplastic consistent tan-
gent modulus,

D11 =
dσn+1

dεe trial
n+1

≡ Dep. (7.134)

The operator

D21 =
dAn+1

dεe trial
n+1

, (7.135)

which gives the tangent relation between increments of elastic trial strain and thermodynam-
ical force set An+1; and

D31 =
d∆γ

dεe trial
n+1

, (7.136)

which is the tangent operator (a second-order tensor in this case) relating increments of elastic
trial strain and incremental plastic multiplier. Note that the dimension and order of the linear
operator D21 depends on the definition of set A. As far as finite element computations are
concerned, only the elastoplastic consistent tangent operator is of relevance.

7.4.5. ILLUSTRATION: THE VON MISES MODEL WITH ISOTROPIC HARDENING

For the sake of generality, no assumptions have been made about the nature of the sets α,
of internal state variables, and A, of associated forces, in the above symbolic derivation.

†Note that each element of the symbolic matrix of expression (7.132) is a generic tensor (or set containing scalars,
tensors, etc.) of appropriate order. The product operations between the elements of the matrix and the elements of
the ‘vector’ containing the differentials dσ, etc. are the corresponding appropriate products. This symbolic matrix
notation will be used frequently in this book to represent linearised systems.
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As discussed in Chapter 6, these sets may contain as many variables as necessary for the
appropriate description of the material behaviour. Depending on the particular model, each
element of these sets may be a scalar, vector or tensor of any order. With such a high degree
of generality, it may not be easy to have a clear picture of what operations are involved in
the above derivation. In order to provide the reader with a better view of the derivation of
the elastoplastic consistent tangent operator, the general procedure described above is here
particularised for the implicit return mapping for the von Mises model with isotropic strain
hardening.

Firstly, we recall the discussion around expressions (6.187–6.194) (page 182) for the
von Mises isotropically hardening model. We then have

∂H

∂A
≡ ∂H

∂κ
= 0;

∂H

∂σ
= 0. (7.137)

In addition, as elasticity and plastic hardening are decoupled in the von Mises model, the
operators B and A vanish, as pointed out in the discussion following expression (7.129). The
remaining (non-vanishing) operators are

C = [De]−1 (7.138)

and

J = G−1 =
(

ρ̄
∂2ψ

∂ε̄p 2

)−1
=
(

∂σy

∂ε̄p

)−1
=

1
H

, (7.139)

where H is the hardening modulus (slope of the hardening curve). From the definition (6.136)
of the associative flow vector for the von Mises model, it also follows that

∂N

∂A
≡ ∂N

∂κ
= 0. (7.140)

Substitution of the above expressions and (6.194) into (7.132) results in the following
linearised form: 



[De]−1 + ∆γ
∂N

∂σ
0 N

0
1
H

−1

N −1 0







dσ

dσy

d∆γ




=




dεe trial

0

0



, (7.141)

where by taking (6.136) into account, the flow vector derivative is easily obtained as

∂N

∂σ
=

∂2Φ
∂σ2

=
3
2q

(Id − N̄ ⊗ N̄), (7.142)

where N̄ is the unit flow vector (7.117).
The tangential relation (7.141) can be inverted trivially as follows. We start by observing

that the first row of (7.141) is equivalent to

dσ = P : (dεe trial − d∆γ N ), (7.143)
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where

P ≡
(

IS + ∆γ De :
∂N

∂σ

)−1
: De. (7.144)

The second row of (7.141), in turn, gives

dσy = H d∆γ. (7.145)

This, combined with the third row and (7.143), results in

d∆γ =
1
H

N : dσ

=
1
H

(N : P : dεe trial − d∆γ N : P : N ), (7.146)

or, after rearranging,

d∆γ =
1

N : P : N + H
N : P : dεe trial. (7.147)

Finally, by substituting (7.147) into (7.143), we obtain the following formula for the
elastoplastic consistent tangent operator

Dep = P − 1
N : P : N + H

(P : N ) ⊗ (P : N )

= P − 1
N̄ : P : N̄ + 2

3H
(P : N̄ ) ⊗ (P : N̄ ). (7.148)

The above expression for Dep is an equivalent representation to (7.120) and could be
used as an alternative in the computational implementation of the model. Also note the
similarity between (7.148) and the continuum tangent operator (7.122). As expected (refer
to Remark 7.9, page 235), the above formula recovers (7.122) if ∆γ = 0.

Alternative formula

Yet another representation, alternative to (7.148), is sometimes used in computational
applications. The alternative formula is obtained simply by replacing the first right-hand side
of (7.146) into the first row of (7.141) and then inverting the resulting differential relation.
The corresponding expression for the elastoplastic consistent tangent reads

Dep =
{

[De]−1 + ∆γ
∂N

∂σ
+

1
H

N ⊗ N

}−1
, (7.149)

or, in view of (7.142), and making use of the unit flow vector definition,

Dep =
{

[De]−1 +
3∆γ

2q
Id +

3
2

(
1
H

− ∆γ

q

)
N̄ ⊗ N̄

}−1
. (7.150)

The use of an analogous formula is reported, for instance, by Dutko et al. (1993) in the context
of anisotropic plasticity.

Remark 7.10. The presence of the hardening modulus in the denominator in the above
formula does not allow its use in practical computations if H = 0 (perfect plasticity).
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7.4.6. TANGENT OPERATOR SYMMETRY: INCREMENTAL POTENTIALS

It has been emphasised in Chapter 6 (refer to Remark 6.1, page 153) that the time-continuum
elastoplastic tangent modulus with general expression (6.67) is symmetric for models with
associative plastic flow rule. This property is not transferred in general to its time-discrete
(or consistent) counterpart, whose general symbolic expression was derived in Section 7.4.4.
An interesting discussion on this topic is provided by Ortiz and Martin (1989). These authors
show, for instance, that for the family of generalised midpoint algorithms based on the return-
mapping equations (7.37), operator symmetry is preserved only for the fully implicit member
(θ = 0), when applied to perfectly plastic associative flow models or, in the presence of
hardening, to fully associative models (i.e. models with associative flow and hardening rules).
If the plastic flow rule is associative but the hardening rule does not derive from the associative
relation (6.130), then, even though the continuum tangent is symmetric, its implicit consistent
counterpart is not. Note that the von Mises model with isotropic hardening discussed in the
preceding sections is fully associative so that its elastoplastic tangent consistent with the fully
implicit algorithm given by the equivalent formulae (7.120), (7.148) or (7.150), is symmetric.
In a further discussion on this issue, Simo and Govindjee (1991) show that for the variant of
the family of midpoint algorithms with consistency equation (7.42), the symmetry of the
corresponding consistent tangents is guaranteed for any θ ∈ [0, 1], again only for perfectly
plastic associative flow models or, in the presence of hardening, for fully associative models.
For models with associative flow but non-associative hardening, the consistent tangents for
this family of algorithms are generally unsymmetric.

Incremental potentials

The symmetry of the consistent tangent operator implies that at any state {εn, εp
n, αn} there

exists an incremental potential,

ψn = ψ̃n(εn+1) = ψ̄n(εe trial
n+1 ) (7.151)

analogous to the free-energy function, ψ, such that the updated stress, σn+1, delivered by the
integration algorithm is given by

σn+1 = ρ̄
∂ψ̃n

∂εn+1
= ρ̄

∂ψ̄n

∂εe trial
n+1

. (7.152)

Analogously to (7.106), the corresponding (symmetric) consistent tangent operator in such
cases obeys the potential relations

Dep ≡ ∂σn+1

∂εn+1
= ρ̄

∂2ψ̃n

∂ε2n+1
=

∂σn+1

∂εe trial
n+1

= ρ̄
∂2ψ̄n

∂εe trial
n+1

2 . (7.153)

Remark 7.11. For elastoplastic model/algorithm combinations that preserve the consistent
tangent operator symmetry, the incremental equilibrium boundary value problem is endowed
with a potential structure analogous to that of hyperelasticity boundary value problems. This
allows methods conventionally used in hyperelasticity to be adopted in the study of elasto-
plastic incremental boundary value problems. Also, many important properties associated
with the regularity and stability of the solution of (time-continuum) elastoplasticity problems
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depend crucially on the symmetry of the continuum tangent operator. When symmetry is
preserved in the consistent tangent operator, many such properties can be transferred to the
discretised problem. These issues fall outside the scope of this book. Interested readers are
referred to Martin (1975) and Rice (1976) for further details.

Example: the von Mises model with linear strain hardening

Let us now focus on the fully implicit elastic predictor/return-mapping scheme for the
von Mises model with linear isotropic strain hardening. This particular combination of
elastoplasticity model and constitutive integration algorithm has the following incremental
(pseudo-) potential:

ρ̄ψn =
1
2

(De : εe trial
n+1 ) : εe trial

n+1

− Ĥ(Φtrialn+1)
6G2

3G + H

(
1
2
‖εe trial

d n+1‖2 −
σy

2G
√

3/2
‖εe trial

d n+1‖
)

. (7.154)

That the incremental constitutive function (7.103) is indeed obtained from the potential
relation (7.152) with the above potential can be established by a straightforward application
of tensor differentiation rules taking expression (2.139) (page 36), into account together with
the identity εe trial

d n+1 = Id : εe trial
n+1 .

7.5. Numerical examples with the von Mises model

So far, this chapter has presented a general framework for the numerical treatment of
elastoplasticity within the context of implicit incremental finite element procedures. Firstly, a
general theory of elastic predictor/return-mapping integration algorithms for elastoplasticity
has been presented followed by its specialisation (including a detailed description of the
numerical implementation) to the fully implicit scheme for the von Mises model with
nonlinear isotropic hardening. Subsequently, the concept of consistent tangent operators in
elastoplasticity has been introduced and also specialised, with a complete description of the
tangent operator consistent with the implicit algorithm, for the same model.

The practical application of these numerical procedures is illustrated in this section by
a comprehensive set of benchmark numerical examples. The examples presented here are
restricted to the von Mises model with isotropic hardening, whose details of numerical
implementation have been given in the previous sections. All finite element analyses have
been carried out in the HYPLAS program. Most results are compared with existing analytical
solutions. In all examples, the full Newton–Raphson algorithm, resulting from the use of the
consistent tangent operator described in Sections 7.4.2 and 7.4.3, has been adopted.

7.5.1. INTERNALLY PRESSURISED CYLINDER

This example considers the simulation of the behaviour of a long metallic thick-walled
cylinder subjected to internal pressure. The geometry of the problem, the material properties
and the adopted finite element mesh is illustrated in Figure 7.14. The standard eight-noded
quadrilateral element, with four (2 × 2) Gauss integration points is adopted. The analysis
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30o
P

Material properties – von Mises model

Young’s modulus:        E = 210 GPa
Poisson’s ratio: ν = 0.3
Uniaxial yield stress: σ  = 0.24 GPa  (perfectly plastic)y

P

a = 100 mm

b = 200mm

Figure 7.14. Internally pressurised cylinder. Geometry, material properties and finite element mesh.

is carried out assuming plane strain conditions. Due to symmetry, only a 30o segment of
the whole cylinder cross-section is discretised with the appropriate symmetry displacement
constraints imposed on the edge nodes. The pressure, P , prescribed on the inner surface,
is increased gradually until a collapse (limit) load is reached. For the present problem (see
Figure 7.15), plastic yielding starts at the inner surface (with radial coordinate r = a) and
develops gradually, in the form of a cylindrical plastic front (with radius c), toward the outer
face of the cylinder (r = b). Collapse occurs when the plastic front reaches the outer face
(c = b) and the entire cylinder becomes plastified. At the limit load, the cylinder can expand
indefinitely without further increase in the applied pressure. A closed-form solution to this
problem has been derived by Hill (1950). It relates the applied pressure to the radius c of the
plastic front by means of the expression

P

Y
= ln

(
c

a

)
+

1
2

(
1 − c2

b2

)
, (7.155)

where, for the von Mises model, Y = σy/
√

3. Plastic yielding begins when c = a, which
corresponds to the yielding pressure

P0 =
Y

2

(
1 − a2

b2

)
. (7.156)

Before plastic yielding starts (P < P0), the radial displacement, ub, of the outer surface is a
linear function of P , given by

ub =
2Pb

E(b2/a2 − 1)
(1 − ν2), P < P0. (7.157)
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Figure 7.15. Internally pressurised cylinder. Partly plastified cross-section.
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Figure 7.16. Internally pressurised cylinder. Pressure versus displacement diagram.

Under plastic yielding (P ≥ P0), the radial displacement, ub, is given by the formula

ub =
Y c2

Eb
(1 − ν2), P ≥ P0, (7.158)

where c can be evaluated as an implicit function of P through (7.155). A diagram showing
the applied pressure versus the radial displacement at the outer face of the cylinder obtained
in the finite element simulation is plotted in Figure 7.16 together with Hill’s closed-form
solution. The high accuracy of the finite element results is clear. The limit load is reached
when c = b. It then follows from (7.155) that the limit pressure is

Plim =
2σy√

3
ln(b/a), (7.159)

which for the present dimensions and material parameters gives

Plim ≈ 0.19209GPa. (7.160)

In the finite element solution, the limit load is assumed to have been reached when equilib-
rium can no longer be obtained (global iterations do not converge) with a reasonably small
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Figure 7.17. Internally pressurised cylinder. Hoop and radial stress distributions at different levels of
applied internal pressure. Finite element results are computed at Gauss integration points.

load increment. The limit pressure obtained in the present simulation is about 0.19209 GPa,
which is virtually identical to Hill’s closed-form solution. The hoop and radial stresses
obtained at the Gauss points are plotted in Figure 7.17 together with Hill’s solution for
P = 0.1 GPa and P = 0.18 GPa. In the plastic region, where the radial coordinate r satisfies
a ≤ r ≤ c, the radial and hoop stresses obtained by Hill are given, respectively, by

σr = Y

[
−1

2
− ln

(
c

r

)
+

c2

2b2

]
, σθ = Y

[
1
2
− ln

(
c

r

)
+

c2

2b2

]
. (7.161)

In the elastic region, c ≤ r ≤ b, the stresses are

σr = −Y c2

2b2

(
b2

r2
− 1
)

, σθ =
Y c2

2b2

(
b2

r2
+ 1
)

. (7.162)

The finite element results at the Gauss points are also in very close agreement with Hill’s
solution. It is worth mentioning that at the pressure level P = 0.1 GPa the entire cylinder is
still elastic. At the level P = 0.18 GPa the plastic front has already progressed considerably
and c ≈ 159.79. The transition between the elastic and plastic zones is clearly marked by the
drastic change in the slope of the curve for the hoop stress shown in Figure 7.17.

7.5.2. INTERNALLY PRESSURISED SPHERICAL SHELL

An axisymmetric finite element analysis of an internally pressurised thick-walled spherical
shell is carried out in this example. The geometry of the problem is illustrated in Figure 7.18.
The material parameters and the finite element mesh adopted are identical to those of
Example 7.5.1. As in the previous example, plastic yielding starts at the inner surface and
propagates through the shell as the internal pressure is increased. Collapse takes place when
the (spherical) plastic front reaches the outer boundary and the entire shell is under plastic
flow. An analytical solution to this problem has also been derived by Hill (1950). Adopting
the notation of Example 7.5.1, the analytical radial displacement of the outer face of the shell
under plastic yielding (P ≥ P0) is

ub =
σy c3

Eb2
(1 − ν), P ≥ P0, (7.163)



248 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APPLICATIONS

where the radius of the plastic front, c, is associated with the applied pressure, P , through the
expression

P = 2σy ln
(

c

a

)
+

2σy

3

(
1 − c3

b3

)
, (7.164)

and the yielding pressure, P0, is

P0 =
2σy

3

(
1 − a3

b3

)
. (7.165)

When the whole shell is elastic, i.e. when P < P0, the displacement ub is given by

ub =
3Pb

2E(b3/a3 − 1)
(1 − ν), P < P0. (7.166)

The displacement ub obtained in the finite element solution is plotted against the applied
pressure in Figure 7.18. The analytical curve is also plotted for comparison. The analytical
limit load, corresponding to c = b, is obtained as

Plim = 2σy ln(b/a), (7.167)

which, for the present problem gives

Plim ≈ 0.33271 GPa. (7.168)

Again, in the numerical solution, it is assumed that the limit load has been achieved when
convergence for sufficiently small load increments cannot be obtained. The limit pressure
obtained in the present analysis is approximately 0.33769 GPa, which is nearly identical to
the exact value. The hoop and radial stresses obtained at the Gauss points in the finite element
simulation are plotted in Figure 7.19 together with the corresponding analytical solution.
The agreement between numerical and exact results is excellent. The analytical expressions
for the hoop and radial stresses are

σr = −2Y

[
ln
(

c

r

)
+

1
3

(
1 − c3

2b3

)]
, σθ = 2Y

[
1
2
− ln

(
c

r

)
− 1

3

(
1 − c3

2b3

)]
,

(7.169)
in the plastic region (a ≤ r ≤ c). In the elastic region (c ≤ r ≤ b), the stresses are

σr = −2σyc3

3b3

(
b3

r3
− 1
)

, σθ =
2σyc3

3b3

(
b3

2r3
+ 1
)

. (7.170)

Residual stresses

After complete unloading from a partly plastic state, the shell will be subjected to a field
of (self-equilibrated) residual stresses. The residual stress field produces an increase in the
yield pressure so that pre-loading can be applied to strengthen the shell. For a shell that has
been monotonically loaded to a pressure level P and then completely unloaded without the
occurrence of reverse plastic flow (i.e. the unloading process is purely elastic), the analytical
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Figure 7.18. Internally pressurised spherical shell. Geometry and pressure versus displacement curve.
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Figure 7.19. Internally pressurised spherical shell. Hoop and radial stress distributions at different levels
of applied internal pressure. Finite element results are computed at Gauss integration points.

distribution of residual hoop and radial stresses along the sphere radius are given by

σR
r = −2σy

3

(
c3

a3
− P

P0

)(
a3

r3
− a3

b3

)

σR
θ =

2σy

3

(
c3

a3
− P

P0

)(
a3

2r3
+

a3

b3

)



, for c ≤ r ≤ b, (7.171)

and

σR
r = −2σy

3

[
P

P0

(
1 − a3

r3

)
− 3 ln

(
r

a

)]

σR
θ = −2σy

3

[
3
2
− P

P0

(
1 +

a3

2r3

)
+ 3 ln

(
r

a

)]



, for a ≤ r ≤ c. (7.172)

In the above expressions, c is the radius of the plastic region at the maximum pressure level
attained before unloading. The maximum pressure that can be applied without the occurrence
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Figure 7.20. Internally pressurised spherical shell. Residual hoop and radial stress distributions
resulting from pre-loading to P = 0.28 GPa.

of reverse plastic flow during unloading is P = 2P0, which for the present dimensions and
material constants is

P = 0.28 GPa. (7.173)

For thinner shells, with b/a < 1.701, the maximum pressure that can be applied in pre-loading
is P = Plim. Here, the finite element simulation of a pre-loading operation (with maximum
load P = 0.28 GPa) has also been carried out. The resulting residual stresses are shown in
Figure 7.20 where the above analytical solution is also plotted for comparison. Again, the
high accuracy of the finite element solution is evident.

7.5.3. UNIFORMLY LOADED CIRCULAR PLATE

A simply supported uniformly loaded circular plate is analysed in this example. The plate,
of radius R and thickness h, is simply supported on its edge and is subjected to a uniform
pressure P on its top surface. The dimensions of the problem, the material parameters and
the finite element mesh adopted are shown in Figure 7.21. The plate is discretised by ten
eight-noded axisymmetric quadrilaterals with four Gauss integration points. The elements
are distributed in two layers across the thickness. As in the previous two examples, the
material model adopted is elastic-perfectly plastic with a von Mises yield criterion and the
purpose of the analysis is to determine the limit load for the plate. The limit load for the
present problem (to any desired accuracy) can be obtained by using methods of limit analysis
combined with the finite difference method. The procedure is described by Skrzypek (1993)
and the corresponding limit load is

Plim ≈ 6.52 My

R2
, (7.174)

where
My ≡ σyh2/4 (7.175)

is the yield bending moment. For the present dimensions and yield stress, we have

Plim ≈ 260.8. (7.176)
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Figure 7.21. Uniformly loaded circular plate. Geometry and load versus deflection diagram.
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Figure 7.22. Uniformly loaded circular plate. Deflection profiles at different levels of load obtained in
the finite element analysis.

In the finite element analysis, starting from the unloaded state, the pressure P is increased
gradually, in ten increments, until collapse occurs. The deflection at the centre of the plate
obtained in the numerical simulation is plotted against the applied pressure in the diagram
of Figure 7.21. The accuracy of the finite element procedure in capturing the collapse is
evident. The limit load obtained in the finite element analysis (taken as the load above which
equilibrium iterations can no longer converge for a sufficiently small load increment) is

P felim ≈ 259.8. (7.177)

The relative error is about 0.4%. Note that such a high accuracy has been obtained despite the
use of a relatively coarse mesh. Deflection profiles obtained at different stages of the loading
process are shown in Figure 7.22. In the present problem, plastic yielding starts at the top
and bottom surfaces of the plate around its centre and propagates toward the neutral plane
with increasing load until collapse occurs. The propagation of the plastic zones is illustrated
in Figure 7.23. The plastic and elastic regions, represented respectively by the shaded and
white areas, are shown at different stages of the loading process. At P = 100 the plate is still
purely elastic. At P = 200 plastic yield has already taken place at the bottom and top surfaces
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Figure 7.24. Strip footing. Problem definition.

around the plate centre and at P = 259.5 only a narrow layer surrounding the neutral plane
remains elastic and collapse is imminent. In order to obtain a more accurate definition of the
plastic zones, a finer mesh of 5 × 10 elements has been used. It is remarked that the limit
load obtained with the finer mesh is virtually identical to the one obtained with the previous
coarser mesh.

7.5.4. STRIP-FOOTING COLLAPSE

This example shows the application of the finite element method to the determination of
the bearing capacity (limit load) of a strip footing. The problem consists of a long rectangular
footing, of width B = 1 m and length L = 5 m, lying on soil (assumed as an infinite medium).
The geometry of the problem is illustrated in Figure 7.24. The footing is subjected to a vertical
pressure P and the purpose of the present analysis is to determine the collapse pressure
Plim. The soil is assumed to be weightless and is modelled as a von Mises perfectly plastic
material with the material constants shown in Figure 7.24. Due to the long length of the
footing, the present problem is solved by assuming a plane strain state. The adopted finite
element model is shown in Figure 7.25. Due to obvious symmetry, only one half of the cross-
section is discretised. A mesh of 135 eight-noded quadrilaterals (with four-point quadrature)
is used with a total of 446 nodes. In order to emulate the infinite medium assumption, the
finite element mesh discretises a sufficiently large domain of soil with a depth and half-
width of 5 m. The footing is assumed to be rigid and smooth (no friction at the footing/soil
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Figure 7.26. Strip footing. Load-displacement curve.

interface). This corresponds to prescribing the vertical displacement (the settlement), u, of the
nodes under the footing and allowing their horizontal displacement to be unconstrained. A
total displacement of u = 0.002 m is applied in 14 increments. The corresponding (average)
pressure P supported by the footing is computed as the total reaction on the footing divided
by the width B. Solutions to this problem, based on slip-line theory, have been derived by
Prandtl and Hill (Hill, 1950). They give the following limit pressure:

Plim = (2 + π)c ≈ 5.14 c ≈ 2.97 σy, (7.178)
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Figure 7.27. Strip footing. Evolution of the plastic zone.

where the cohesion or shear strength, c, for the von Mises model is given by c = σy/
√

3. The
normalised average pressure obtained in the finite element simulation is plotted in Figure 7.26
versus the normalised settlement. The limit pressure obtained is in excellent agreement with
the slip-line solution, with a relative error of approximately 0.9%. It is remarked that the
accuracy can be increased by refining the finite element mesh. The evolution of the plastic
zone during the process of loading is shown in Figure 7.27. The plastic zones correspond
to the shaded area in the plot. At the 12th increment, the collapse load has already been
reached. The incremental nodal displacement field corresponding to increment 12 is shown
in Figure 7.28. The sizes of the nodal displacement vectors plotted in Figure 7.28 have been
greatly exaggerated and are not to the same scale as the underlying finite element mesh. At the
collapse load, the nodes located sufficiently far from the footing are virtually fixed and only
the nodes surrounding the footing move. Note that the mechanism depicted in Figure 7.28 is
in agreement with Hill’s slip-line solution (Hill, 1950) which, as pointed out by Hill, is valid
when the footing is assumed to be smooth (unconstrained horizontal displacements under
the footing). It is important to emphasise here that, except under undrained conditions, the
plastic flow in soils is strongly affected by the hydrostatic stress. Thus, pressure insensitive
plasticity models, such as the von Mises material adopted in the present example, give in
general a rather poor representation of the actual behaviour. The simulation of the collapse of
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Figure 7.28. Strip footing. Incremental nodal displacement field at collapse (increment 12).

the strip footing using more appropriate pressure-sensitive plasticity models is carried out in
Chapter 8.

7.5.5. DOUBLE-NOTCHED TENSILE SPECIMEN

In this example, the plane strain analysis of a deep double-edge-notched tensile specimen is
carried out. As in all examples of this chapter, the von Mises elastoplastic model is adopted.
Here, two situations are considered:

1. The material is assumed elastic-perfectly plastic.

2. Linear isotropic hardening is assumed.

Under the hypothesis of perfect plasticity, the present problem is simply the tensile version
of the strip footing problem described above and is often adopted as a benchmark test for
the convergence properties of finite elements in incompressible plasticity (Nagtegaal et al.,
1974; Simo and Rifai, 1990). The geometry, material properties and the finite element mesh
used are shown in Figure 7.29. The specimen, of width w = 10 and length l = 30, contains
two deep notches and its two halves are connected only by a ligament of width b = 1.
Only one symmetric quarter of the specimen, discretised by the 153-element mesh shown
in Figure 7.29, is used in the finite element computations. Again, the standard eight-noded
quadrilateral element with four Gauss integration points is adopted. The total number of nodes
is 506. The specimen is stretched by prescribing the vertical displacement u on the top nodes
of the mesh. A total displacement u = 0.17 is applied incrementally. With R denoting the
total reaction on the restrained edge, the net axial stress, σ̄, on the ligament is given by

σ̄ =
R

b
. (7.179)

In terms of the net stress on the ligament, the limit load obtained by Prandtl for the present
problem (under the hypothesis of perfect plasticity) is given by

σ̄lim =
(2 + π)√

3
σy ≈ 2.97 σy. (7.180)
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Figure 7.29. Double-notched tensile specimen. Geometry, material properties and finite element mesh.
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Figure 7.30. Double-notched specimen. Load-deflection curves: (a) perfect plasticity; and (b) linear
hardening.

In Figure 7.30(a), the normalised axial net stress, σ̄/σy , obtained in the perfectly plastic finite
element analysis is plotted against the normalised deflection of the top edge, 2uE/σyw. The
limit load obtained with the present mesh is only approximately 0.8% higher than the Prandtl
solution. The load-deflection curve obtained for the linearly hardening model is shown in
Figure 7.30(b). In this case, no limit load exists.
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7.6. Further application: the von Mises model with nonlinear mixed
hardening

Having used the simple set-up of the von Mises model with isotropic hardening, we hope to
have provided the reader with a clear picture of the basic components of the finite element
implementation of plasticity models. In this section we move one step forward and apply
the same concepts to derive an implicit integration algorithm (together with its associated
consistent tangent operator) for a version of the von Mises model that combines general
nonlinear isotropic and kinematic hardening. The mixed hardening rule considered here is
the one described in Section 6.6.5 (page 189).

It is worth remarking that consideration of kinematic hardening may become crucial in
applications involving cyclic loads – situations where the Bauschinger effect may not be
disregarded without significant loss of accuracy. The algorithm/tangent operator derived
here are also incorporated into HYPLAS. As we shall see, the structure of these routines
is very similar to those of the isotropic hardening-only counterparts. The computational
implementation of these procedures is a straightforward extension of routines SUVM (for the
integration algorithm) and CTVM (for the consistent tangent). The corresponding routines for
the mixed hardening model are named, respectively, SUVMMX and CTVMX. Their source code
is not included in the text.

Readers wishing to skip the details of the present derivations are referred directly to
Box 7.5 (page 260) for the integration algorithm and formula (7.213) for the corresponding
elastoplastic consistent tangent modulus.

7.6.1. THE MIXED HARDENING MODEL: SUMMARY

Let us start by summarising the equations of the model to be used in what follows. In addition
to the standard linear elastic law, we have:

1. The kinematically hardening von Mises yield function

Φ(σ, β, σy) ≡
√

3 J2(s(σ) − β) − σy

=
√
3
2 ‖η‖ − σy (7.181)

where β is the backstress tensor which defines the translation of the centre of the
(kinematically hardened) von Mises circle in the deviatoric plane, η is the relative
stress

η ≡ s − β, (7.182)

and σy defines now only the radius of the yield surface and not necessarily the uniaxial
yield stress as in the isotropic hardening-only model.

2. Associative law for the plastic flow:

ε̇p = γ̇
∂Φ
∂σ

= γ̇

√
3
2

η

‖η‖ . (7.183)

3. General isotropic strain hardening defined by the isotropic hardening curve

σy = σy(ε̄p). (7.184)
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4. Nonlinear kinematic hardening defined by the following evolution law for the back-
stress:

β̇ =
2
3

Hk(ε̄p) ε̇p = γ̇

√
2
3

Hk(ε̄p)
η

‖η‖ , (7.185)

with

Hk(ε̄p) ≡ dβ̄

dε̄p
(7.186)

denoting the slope of the given kinematic hardening curve:

β̄ = β̄(ε̄p). (7.187)

Recall that the kinematic hardening stress, β̄, is the kinematic contribution to overall
hardening that can be obtained from uniaxial tests with load reversal.

7.6.2. THE IMPLICIT RETURN-MAPPING SCHEME

Particularisation of the general implicit return-mapping equations (7.25) to the present case,
where α ≡ {ε̄p, β}, gives

εe
n+1 = εe trial

n+1 − ∆γ

√
3
2

ηn+1

‖ηn+1‖

βn+1 = βn + ∆γ

√
2
3

Hk(ε̄p
n+1)

ηn+1

‖ηn+1‖
ε̄p

n+1 = ε̄p
n + ∆γ√

3
2
‖ηn+1‖ − σy(ε̄p

n+1) = 0.

(7.188)

As in the isotropic hardening-only case, the above system can be reduced to the solution
of a single scalar equation for the plastic multiplier ∆γ. To achieve this, firstly note that
equation (7.188)1, together with the elastic law, gives the following incremental update for
the stress deviator

sn+1 = strialn+1 − 2G ∆γ

√
3
2

ηn+1

‖ηn+1‖
. (7.189)

By subtracting (7.188)2 from (7.189), we obtain

ηn+1 = ηtrialn+1 − ∆γ

√
3
2

[
2G +

2
3
Hk(ε̄p

n+1)
]

ηn+1

‖ηn+1‖
, (7.190)

where we have defined the elastic trial relative stress as

ηtrialn+1 ≡ strialn+1 − βn. (7.191)

Note that (7.190) implies that ηn+1 and ηtrialn+1 are colinear, i.e. ηn+1 is a scalar multiple of
ηtrialn+1. This gives the identity

ηn+1

‖ηn+1‖
=

ηtrialn+1

‖ηtrialn+1‖
, (7.192)
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which, substituted into (7.190), renders the simpler update formula for the relative stress

ηn+1 =
{

1 − ∆γ

q̄trialn+1

[3G + Hk(ε̄p
n+1)]

}
ηtrialn+1, (7.193)

where q̄trialn+1 is the elastic trial relative effective stress, defined by

q̄trialn+1 ≡
√
3
2 ‖η

trial
n+1‖. (7.194)

Then, by substituting (7.193), together with (7.188)3, into (7.188)4, the return mapping
reduces to the following generally nonlinear scalar equation for ∆γ:

Φ̃(∆γ) ≡ q̄trialn+1 − ∆γ[3G + Hk(ε̄p
n + ∆γ)] − σy(ε̄p

n + ∆γ) = 0. (7.195)

Note that, also consistently with the backward Euler approximation, we have

∆γ Hk(ε̄p
n+1) ≈ β̄n+1 − β̄n, (7.196)

where β̄k ≡ β̄(ε̄p
k). Since the curve β̄(ε̄p) (in the form of discrete sampling points) rather than

the slope Hk(ε̄p) is what is normally available from uniaxial experiments, it is convenient to
use the above approximation and work only with the kinematic hardening stress in the return-
mapping equations. With the adoption of this approach, we replace (7.188)2 and (7.193),
respectively, with

βn+1 = βn +

√
2
3

(β̄n+1 − β̄n)
ηn+1

‖ηn+1‖
(7.197)

and

ηn+1 =
(

1 − 3G∆γ + β̄n+1 − β̄n

q̄trialn+1

)
ηtrialn+1. (7.198)

Correspondingly, the return equation (7.195) is replaced by

Φ̃(∆γ) ≡ q̄trialn+1 − 3G∆γ − β̄(ε̄p
n + ∆γ) + β̄n − σy(ε̄p

n + ∆γ) = 0. (7.199)

The mth Newton–Raphson iterative correction to ∆γ in the solution of the above equation
reads

∆γ(m) := ∆γ(m−1) − Φ̃(∆γ(m−1))
d

, (7.200)

where

d = −3G− Hk(ε̄p
n + ∆γ(m−1)) − H i(ε̄p

n + ∆γ(m−1)) (7.201)

and H i ≡ σ′
y is the slope of the isotropic hardening curve.

The overall integration algorithm is listed in Box 7.5 in pseudo-code format.
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Box 7.5. Implicit elastic predictor/return-mapping algorithm for the von Mises
model with mixed nonlinear hardening.

HYPLAS procedure: SUVMMX

(i) Elastic predictor. Given ∆ε and the state variables at tn, evaluate the elastic trial state

εe trial
n+1 := εe

n + ∆ε

ε̄p trial
n+1 := ε̄p

n; βtrial
n+1 := βn

ptrial
n+1 := Kεe trial

v n+1; strial
n+1 := 2G εe trial

d n+1

ηtrial
n+1 := strial

n+1 − βn; q̄trial
n+1 :=

√
3
2
‖ηtrial

n+1‖

(ii) Check plastic admissibility

IF q̄trial
n+1 − σy(ε̄p trial

n+1 ) ≤ 0

THEN set (·)n+1 := (·)trialn+1 and EXIT

(iii) Return mapping. Solve the equation for ∆γ

q̄trial
n+1 − 3G∆γ − β̄(ε̄p

n + ∆γ) + β̄n − σy(ε̄p
n + ∆γ) = 0

where β̄n = β̄(ε̄p
n) and update

ε̄p
n+1 := ε̄p

n + ∆γ; β̄n+1 := β̄(ε̄p
n+1)

βn+1 := βn +

√
2

3
(β̄n+1 − β̄n)

ηtrial
n+1

‖ηtrial
n+1‖

pn+1 := ptrial
n+1; sn+1 := strial

n+1 − 2G∆γ

√
3

2

ηtrial
n+1

‖ηtrial
n+1‖

σn+1 := sn+1 + pn+1 I; εe
n+1 =

1

2G
sn+1 +

1

3
εe trial
v n+1 I

(iv) EXIT

7.6.3. THE INCREMENTAL CONSTITUTIVE FUNCTION

By means of straightforward tensor manipulations, we can easily establish that the incre-
mental constitutive function, analogous to (7.93), for the present stress updating procedure
reads

σn+1 = σ̄n+1(ε̄p
n, βn, εe trial

n+1 )

≡
[
De − Ĥ(Φtrial)

∆γ 6G2

q̄trialn+1

Id

]
: εe trial

n+1 + Ĥ(Φtrial)
∆γ 3G

q̄trialn+1

βn, (7.202)
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where Ĥ is the Heaviside step function (7.94),

q̄trialn+1 =
√
3
2‖s

trial
n+1 − βn‖ =

√
3
2‖2Gεe trial

d n+1 − βn‖

= q̄trialn+1(βn, εe trial
n+1 ) ≡

√
3
2 ‖2G Id : εe trial

n+1 − βn‖, (7.203)

Φtrial is the function

Φtrial = Φtrial(ε̄p
n, βn, εe trial

n+1 ) ≡ q̄trialn+1(βn, εe trial
n+1 ) − σy(ε̄p

n), (7.204)

and
∆γ = ∆γ(ε̄p

n, βn, εe trial
n+1 ) (7.205)

is the implicit function of εe trial
n+1 and the internal variables {ε̄p

n, βn} defined by the
consistency equation (7.199).

7.6.4. LINEAR HARDENING: CLOSED-FORM RETURN MAPPING

If the kinematic and isotropic hardening are linear, i.e., if

σy(ε̄p) = σy0 + H i ε̄p, β̄(ε̄p) = Hk ε̄p, (7.206)

with constant σy0, H i and Hk, then the present return mapping equation has the following
closed form solution:

∆γ =
Φtrial

3G + Hk + H i
. (7.207)

7.6.5. COMPUTATIONAL IMPLEMENTATION ASPECTS

As anticipated at the beginning of Section 7.6, the algorithm of Box 7.5 is a straightforward
extension of the algorithm for the isotropic hardening-only model listed in Boxes 7.3 and 7.4.
The present mixed hardening algorithm is implemented in subroutine SUVMMX (State Update
procedure for the Von Mises model with nonlinear MiXed hardening). This routine is
a simple modification of routine SUVM (listed in Section 7.3.5). The main modifications
comprise the redefinition of the return-mapping equation and the incorporation of new state
variables – the components of the backstress tensor, β. These components are stored in array
RSTAVA of real-state variables. Also note that, here, two hardening curves (rather than one in
the isotropic hardening-only case) are required: one for σy (already implemented in SUVM)
and a second one for β̄. As for the isotropic hardening curve, the kinematic hardening curve,

β̄(ε̄p),

is assumed to be piecewise linear, defined by the same number of (user supplied) sampling
pairs as the isotropic hardening curve

{ε̄p, β̄}.

The extra properties are read and stored in array RPROPS (real material properties) during the
data input phase of HYPLAS.
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7.6.6. THE ELASTOPLASTIC CONSISTENT TANGENT

Under plastic flow (Φtrial > 0), the algorithmic incremental constitutive function (7.202)
gives

σn+1 =
[
De − ∆γ 6G2

q̄trialn+1

Id

]
: εe trial

n+1 +
∆γ 3G

q̄trialn+1

βn. (7.208)

The elastoplastic consistent tangent operator for the present case is obtained by differentiating
the above relation. The derivation follows closely that presented in Section 7.4.2 (from
page 232) for the isotropic hardening-only model.

The differentiation of (7.208) gives

∂σn+1

∂εe trial
n+1

= De − ∆γ 6G2

q̄trialn+1

Id −
3G

q̄trialn+1

ηtrialn+1 ⊗
∂∆γ

∂εe trial
n+1

+
∆γ 3G

(q̄trialn+1)2
ηtrialn+1 ⊗

∂q̄trialn+1

∂εe trial
n+1

, (7.209)

where we have made use of the connection ηtrialn+1 = 2G Id : εe trial
n+1 − βn. The derivative of the

trial relative effective stress is obtained analogously to (7.116). The corresponding expression
in the present case has the same format as (7.116), i.e.

∂q̄trialn+1

∂εe trial
n+1

= 2G

√
2
3

N̄n+1, (7.210)

with the unit flow vector here defined as

N̄n+1 ≡
ηtrialn+1

‖ηtrialn+1‖
. (7.211)

The incremental plastic multiplier derivative is obtained by differentiating the return-mapping
equation (7.199) with respect to εe trial

n+1 . This gives

∂∆γ

∂εe trial
n+1

=
1

3G + Hk + H i
∂q̄trialn+1

∂εe trial
n+1

=
2G

3G + Hk + H i

√
3
2

N̄ n+1. (7.212)

Then, with the substitution of (7.210) and (7.212) into (7.209) we obtain, after a straightfor-
ward algebra taking (7.194) and (7.211) into account, the following closed-form expression
for the elastoplastic consistent tangent operator:

Dep = De − ∆γ 6G2

q̄trialn+1

Id + 6G2
(

∆γ

q̄trialn+1

− 1
3G + Hk + H i

)
N̄ n+1 ⊗ N̄ n+1

= 2G

(
1 − ∆γ 3G

q̄trialn+1

)
Id

+ 6G2
(

∆γ

q̄trialn+1

− 1
3G + Hk + H i

)
N̄ n+1 ⊗ N̄ n+1 + K I ⊗ I. (7.213)
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Implementation

The above tangent operator is computed in subroutine CTVMMX (Consistent Tangent operator
for the Von M

¯
ises model with nonlinear MiXed hardening) of HYPLAS. As the reader may

verify CTVMMX is a straightforward variation of routine CTVM (refer to Section 7.4.3, from
page 235) coded for the isotropic hardening-only model. The basic difference is that, in
CTVMMX, the incremental flow vector and the scalar factors multiplying the fourth-order
tensors are redefined according to the above formulae.





8 COMPUTATIONS WITH OTHER
BASIC PLASTICITY MODELS

IN Chapter 7, some general schemes for numerical integration of elastoplastic constitutive
equations have been reviewed together with related issues such as the computation of

consistent tangent operators and error analysis. To illustrate such concepts, the von Mises
model – the simplest of the models discussed in this book – has been used as an example
and the corresponding implicit elastic predictor/return-mapping algorithm, together with
the associated consistent tangent, have been derived in detail for the isotropic and mixed
hardening cases. The complete FORTRAN implementation of the related computational
procedures within the finite element environment of program HYPLAS has also been presented
for the isotropic hardening version of the model.

In the present chapter, the complete computational implementation of other basic plasticity
models discussed in Chapter 6, including a step-by-step derivation and FORTRAN coding of
the necessary procedures, is described in detail. Namely, the models discussed here are

• the Tresca model,

• the Mohr–Coulomb model, and

• the Drucker–Prager model,

all featuring linear elastic behaviour and generally a nonlinear isotropic hardening law. The
associative plastic flow rule is adopted for the Tresca model whereas, for the Mohr–Coulomb
and Drucker–Prager models, the generally non-associated laws discussed in Section 6.5.3 of
Chapter 6 are considered. The algorithms for integration of the corresponding elastoplastic
constitutive equations derived here are specialisations of the elastic predictor/return mapping
scheme based on the fully implicit discretisation of the plastic corrector equations, discussed
in Section 7.2.3. The associated consistent tangent moduli are also derived in detail and an
error analysis based on iso-error maps is presented for each model considered.

We remark that the only new concept introduced in this chapter concerns the compu-
tational treatment of singularities (corners) in the yield surface. Note that all three models
addressed here feature such singularities where, in particular, the Tresca and Mohr–Coulomb
criteria admit a multisurface representation with corresponding multivector flow rules.

The main sections of this chapter are three: Sections 8.1, 8.2 and 8.3. These sections
describe, respectively, the implementation of the Tresca, Mohr–Coulomb and Drucker–
Prager models. At the beginning of each of the main sections, a table has been added
indicating the location of flowcharts, pseudo-code and FORTRAN source code of the relevant
computational procedures as well as iso-error maps for the particular material model of

Computational Methods for Plasticity: Theory and Applications EA de Souza Neto, D Perić and DRJ Owen
c© 2008 John Wiley & Sons, Ltd
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interest. These summarise the most important results and the tables should be particularly
helpful to readers who wish to skip the details of derivation and concentrate only on the
practical aspects of computational implementation. Also at the beginning of each main
section, a summary of the constitutive equations of the model concerned is presented. This
layout makes the main sections self-contained to a certain extent and has been chosen in order
to avoid readers having to refer back to Chapter 6, where a more detailed description of the
constitutive equations adopted here is given.

Applications of the numerical procedures derived in the main sections are illustrated in
Section 8.4 by means a comprehensive set of benchmarking numerical examples.

8.1. The Tresca model

This section describes the specialisation of the implicit algorithm of Section 7.2.3 to the
Tresca model with general nonlinear isotropic strain hardening. The corresponding consistent
tangent operator is also derived and an accuracy assessment of the integration algorithm, by
means of iso-error maps, is presented. For the reader who is interested only in the practical
implementation aspects of the material presented in this section, the location of the main
results is summarised below.

integration
algorithm

flowchart

pseudo-code

FORTRAN code

Figure 8.3

Boxes 8.1–8.3

subroutine SUTR
(Section 8.1.2)

iso-error maps Figures 8.6 and 8.7

consistent tangent
– FORTRAN code –

subroutine CTTR
(Section 8.1.5)

The model

All ingredients of the Tresca plasticity model implemented here have been fully described in
Chapter 6. In the following we summarise for convenience only its main equations.

The multisurface representation of the Tresca model is defined by means of the six yield
functions, Φ1, . . . , Φ6, given in (6.91) (page 160). The corresponding associative plastic flow
rule is defined by the rate equation

ε̇p =
6∑

i=1

γ̇i N i, (8.1)

where

N i ≡ ∂Φi

∂σ
, (8.2)
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together with the loading/unloading conditions

Φi ≤ 0, γ̇i ≥ 0, Φiγ̇
i = 0 (8.3)

with no summation on the repeated index.
Isotropic strain hardening is incorporated, as in the von Mises model implementation

discussed in Chapter 7, by assuming the uniaxial yield stress σy that takes part in the yield
functions Φi to be a given (generally nonlinear) function of the accumulated plastic strain:

σy = σy(ε̄p). (8.4)

With the principal stresses ordered, without loss of generality, as σ1 ≥ σ2 ≥ σ3 (refer
to Figure 6.18, page 173), the model can be completely defined with reference to a single
sextant of the principal stress space. In this case, only three possibilities are identified for the
associative plastic flow:

1. Plastic flow from the flat portion (main plane), where the Tresca yielding function is
differentiable. In this case,

ε̇p = γ̇N a, (8.5)

where the flow vector N a is the normal to the corresponding plane defined by Φ1 = 0:

N a ≡ N 1 = e1 ⊗ e1 − e3 ⊗ e3. (8.6)

2. Plastic flow from the right corner, R. The rate of plastic strain in this case is a linear
combination with non-negative coefficients of the normals to the two intersecting
planes at this point. The flow rule reads

ε̇p = γ̇a N a + γ̇b N b, (8.7)

where N a is the normal to the main plane, defined by (8.6), and N b is the normal to
the plane on the right of the main plane defined by Φ6 = 0:

N b ≡ N 6 = e1 ⊗ e1 − e2 ⊗ e2. (8.8)

3. Plastic flow from the left corner, L. The flow rule, in this case, is the same as the one
above, but with N b being the normal to the plane on the left of the main plane (defined
by Φ2 = 0):

N b ≡ N 2 = e2 ⊗ e2 − e3 ⊗ e3. (8.9)

Under the assumption of associative hardening (for further details, refer to the text surround-
ing equation (6.196), page 183), the accumulated plastic strain for this model is defined by
means of its evolution equations, which are given respectively by

˙̄εp = γ̇ (8.10)

for plastic flow from the main plane (item 1 above), and

˙̄εp = γ̇a + γ̇b (8.11)

for plastic flow from the right and left corners (items 2 and 3, respectively).
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8.1.1. THE IMPLICIT INTEGRATION ALGORITHM IN PRINCIPAL STRESSES

The derivation of the implicit elastic predictor/plastic corrector integration algorithm for the
Tresca model follows much the same path as the derivation of algorithm for the von Mises
model, with an extra degree of complexity introduced due to the existence of singularities
(corners) on the yield surface. Early numerical implementations of singular-surface models
have resorted to the smoothing of corners leading to singularity-free formulations (Nayak
and Zienkiewicz, 1972; Owen and Hinton, 1980). In such approaches, however, numerical
instabilities frequently arise in connection with the high curvature of the smoothed corners.
More recently, formulations based on the multisurface-based description of the plastic flow
have been shown to avoid such instabilities providing an effective solution to the integration
of elastoplastic models with non-smooth yield surfaces (Crisfield, 1987; de Borst, 1987;
Pankaj and Bićanić, 1989; Pramono and Willam, 1989; Simo et al., 1988b). An alternative
approach based on a semi-analytical integration algorithm is described by Sloan and Booker
(1992). It is worth remarking that in most of the computational plasticity literature –
especially in the derivation of return-mapping-type schemes – the numerical treatment of
the Tresca model is based on the representation of the Tresca yield function in terms of stress
invariants (refer to expression (6.94), page 160). The main drawback of such a representation
lies in the fact that the Tresca yield function is a highly nonlinear function of the stress
invariants and its use results in rather intricate expressions for the corresponding integration
algorithm and consistent tangent operator. The algorithm described in what follows was
proposed by Perić and de Souza Neto (1999) and differs from the invariant-based procedures
in that it relies entirely on the principal stress representation of the Tresca criterion. The
principal stress-based algorithm results in a simpler computational implementation of this
particular model. For instance, note that the Tresca surface can be represented by means of a
set of linear functions of the principal stresses.

The elastic predictor stage here is identical to the one in the von Mises model implemen-
tation so that, given the incremental strain ∆ε, and the state variables at tn, the elastic trial
state is computed as in (7.80)–(7.83).

The next step is to verify whether the trial state violates the plastic consistency constraint.
At this point, the algorithm for the Tresca model becomes substantially different from the
previously described von Mises algorithm. Due to the principal stress approach adopted here,
the spectral decomposition of the elastic trial stress is required prior to the consistency check.
The principal elastic trial stresses, σtriali (i = 1, 2, 3), and the corresponding eigenvectors,
ei, are computed in closed form by means of the formulae described in Appendix A. With
the principal trial stresses ordered as σtrial1 ≥ σtrial2 ≥ σtrial3 (for notational convenience, the
subscript n + 1 is omitted from the trial and updated principal stresses), the consistency check
follows as:

• If Φtrial ≡ σtrial1 − σtrial3 − σy(ε̄p
n) ≤ εtol, then the process is elastic and

(·)n+1 := (·)trialn+1. (8.12)

• Otherwise, the updated state at tn+1 is obtained by the return-mapping procedure
described in what follows.

It is emphasised here that, as in the algorithm for the von Mises model, substantial
simplification is possible when the general implicit return mapping equations (7.25) are



COMPUTATIONS WITH OTHER BASIC PLASTICITY MODELS 269

particularized for the Tresca model. To derive the simplified equations, consider the implicit
update formula for the elastic strain obtained as a result of the discretisation of (8.1):

εe
n+1 = εe trial

n+1 −
6∑

i=1

∆γiN i
n+1. (8.13)

Due to the isotropic linear elastic law and the fact that the Tresca flow vector is purely
deviatoric, this expression is equivalent, as in the von Mises model, to independent update
formulae for the hydrostatic and the deviatoric stress:

pn+1 = ptrialn+1

sn+1 = strialn+1 − 2G

6∑
i=1

∆γiN i
n+1.

(8.14)

Note that by definition of the flow vectors, N i
n+1 and sn+1 share the same principal

directions. Thus, expression (8.14)2 implies that these principal directions are also shared
by strialn+1 so that the update formula for the deviatoric stress can be equivalently expressed in
terms of principal stresses as†

sj = strialj − 2G

6∑
i=1

∆γiN i
j , (j = 1, 2, 3), (8.15)

where N i
j denotes the eigenvalues of N i

n+1.

The three possible return mappings

Crucial to the derivation of the return-mapping algorithm is the observation that the plastic
flow rule (8.5)–(8.9) has three different explicit forms. The actual form to be used in
discretised form to update the stress depends on the location of the (unknown) updated stress
on the (unknown) updated yield surface. The discretisation of (8.5)–(8.9) results in the three
following possibilities for the return-mapping algorithm:

1. The updated stress lies on the main plane. In this case, there is only one possible non-
zero multiplier and the flow vector is given by (8.6). This substituted in (8.15) gives the
following update formula for the principal deviatoric stresses:

s1 = strial1 − 2G ∆γ

s2 = strial2

s3 = strial3 + 2G ∆γ.

(8.16)

On the main plane, the update formula for the accumulated plastic strain is given by
the implicit discrete counterpart of (8.10):

ε̄p
n+1 = ε̄p

n + ∆γ. (8.17)

†The update formula in terms of principal deviatoric stresses is equally valid for the von Mises model.
However, for the von Mises model, the return-mapping algorithm (described in the previous section) turns out to
be more efficient when the standard formulation in terms of the deviatoric stress tensor components (rather than its
eigenvalues) is adopted.
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The return mapping, in the present case, is obtained with the introduction of (8.16)
and (8.17) into the discrete consistency condition Φ1(σn+1, σy(ε̄p

n+1)) = 0. This
results in the following scalar (generally nonlinear) equation in ∆γ:

Φ̃(∆γ) ≡ strial1 − strial3 − 4G ∆γ − σy(ε̄p
n + ∆γ) = 0. (8.18)

2. The updated stress lies on the right corner. Here, two plastic multipliers may be non-
zero and the incremental plastic strain is obtained from the discretisation of (8.7) as

∆εp = ∆γa N a
n+1 + ∆γb N b

n+1, (8.19)

where N a and N b denote, respectively, the normals to the main plane and to the
plane on its right side given by (8.6) and (8.8). This results in the following explicit
expression for the update of the principal deviatoric stresses:

s1 = strial1 − 2G (∆γa + ∆γb)

s2 = strial2 + 2G ∆γb

s3 = strial3 + 2G ∆γa.

(8.20)

The incremental law for ε̄p in this case is the discrete counterpart of (8.11):

ε̄p
n+1 = ε̄p

n + ∆γa + ∆γb. (8.21)

Analogously to the one-vector return mapping of item 1, the two-vector return-mapping
equation is obtained here by introducing (8.20) and (8.21) into the discrete consistency
condition resulting from (8.3):

Φa
n+1 ≡ Φ1(σn+1, σy(ε̄p

n+1)) = 0, Φb
n+1 ≡ Φ6(σn+1, σy(ε̄p

n+1)) = 0. (8.22)

This yields the following set of two algebraic equations for ∆γa and ∆γb:

Φ̃a(∆γa, ∆γb) ≡ strial1 − strial3 − 2G(2∆γa + ∆γb) − σ̃y(∆γa, ∆γb) = 0

Φ̃b(∆γa, ∆γb) ≡ strial1 − strial2 − 2G(∆γa + 2∆γb) − σ̃y(∆γa, ∆γb) = 0,
(8.23)

where σ̃y has been defined as

σ̃y(∆γa, ∆γb) ≡ σy(ε̄p
n + ∆γa + ∆γb). (8.24)

3. The updated stress lies on the left corner. The situation now is completely analogous to
item 2 above with the difference that, here, N b is the normal to the plane on the left
of the main plane, given by (8.9). The deviatoric principal stress update formula in the
present case reads

s1 = strial1 − 2G ∆γa

s2 = strial2 − 2G ∆γb

s3 = strial3 + 2G (∆γa + ∆γb).

(8.25)
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The update formula for ε̄p is the same as for the return map to the right corner and the
final equations to be solved in the return-mapping algorithm are

Φ̃a(∆γa, ∆γb) ≡ strial1 − strial3 − 2G(2∆γa + ∆γb) − σ̃y(∆γa, ∆γb) = 0

Φ̃b(∆γa, ∆γb) ≡ strial2 − strial3 − 2G(∆γa + 2∆γb) − σ̃y(∆γa, ∆γb) = 0.
(8.26)

The last of the above equations enforces

Φ2(σn+1, σy(ε̄p
n+1)) = 0. (8.27)

In summary, it has been shown above that the essential return-mapping algorithm for the
Tresca model, formulated in principal deviatoric stresses, may have three different explicit
forms. The particular form to be employed depends on the position of the updated stress
on the yield surface. In any case, similarly to the von Mises return mapping, an equation
(or system of two equations for the corners) is solved firstly for the plastic multiplier ∆γ
(∆γa and ∆γb for the corners). With the plastic multiplier(s) at hand, the principal deviatoric
stresses, si, and the accumulated plastic strain, ε̄p, are updated by the formulae corresponding
to the particular case considered (main plane, right or left corner). The updated stress
tensor components, required in the finite element computations, are then obtained simply
by assembling

σn+1 :=
3∑

i=1

(si + pn+1) ei ⊗ ei. (8.28)

Selection of the appropriate return mapping

Having described the possible return procedures, the question now is: as the final location
of the updated stress on the (updated) yield surface is not known in advance, how can one
decide which return mapping to apply in the actual computational implementation of the
model? In the present case, a rather simple and effective algorithm to select the appropriate
return mapping can be derived based on the geometric characteristics of the Tresca surface. It
is remarked that the selection algorithm, described below, ensures that the resulting updated
state rigorously satisfies the general implicit return-mapping equations (7.25).

Firstly, consider the application of the return algorithm to the main plane (item 1 above)
for an arbitrary trial stress. The geometric interpretation is illustrated in Figure 8.1. In this
case, the updated deviatoric stress, sn+1, lies necessarily on the plane

s1 − s3 − σy(ε̄p
n+1) = 0. (8.29)

Upon application of the main plane return algorithm, the final stress can end up either inside
or outside the main sextant:

s1 ≥ s2 ≥ s3, (8.30)

represented by the shaded areas in Figure 8.1. If the updated principal stresses satisfy the
above relation, then they are in the main sextant (Figure 8.1(a)), and, clearly, satisfy the
consistency condition, i.e. they lie on the updated yield surface, and the result of the return
mapping to the main plane is valid. If the updated stress falls outside the main sextant
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Figure 8.1. The implicit algorithm for the Tresca model in principal stresses: (a) valid return to main
plane; and (b) invalid return to main plane – converged stress outside the original sextant. (Reproduced
with permission from A new computational model for Tresca plasticity at finite strains with an optimal
parametrization in the principal space, D Perić and EA de Souza Neto, Computer Methods in Applied
Mechanics and Engineering, Vol 171 c© 1999 Elsevier Science S.A.)
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Figure 8.2. The implicit algorithm for the Tresca model in principal stresses. Selection of the
appropriate return mapping to corner. (Reproduced with permission from A new computational model
for Tresca plasticity at finite strains with an optimal parametrization in the principal space, D Perić
and EA de Souza Neto, Computer Methods in Applied Mechanics and Engineering, Vol 171 c© 1999
Elsevier Science S.A.)
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apply one-vector return mapping
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appropriate corner (right or left) –
obtain:
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Figure 8.3. Flowchart of the integration algorithm for the Tresca model in principal stresses. Procedure
implemented in subroutine SUTR of program HYPLAS.
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(Figure 8.1(b)), i.e. if relation (8.30) is not satisfied, then, in spite of being on the main
plane, the updated stress lies outside the updated elastic domain and, therefore, violates the
consistency condition. In this case, the result of the return to the main plane is obviously
not valid and the correct algorithm to be applied must be either the return to the left or to
right corner, described, respectively, in items 2 and 3 above. The appropriate algorithm to be
applied (right or left) can be easily determined by, again, considering the geometric properties
of the Tresca yield surface: if strialn+1 lies on the right side of the line that passes through the
origin of stresses and is orthogonal to the main plane (the pure shear line), represented by the
dotted line in Figure 8.2, then it can be easily visualized that strialn+1 could only return to the
left corner if ∆γb were negative, which is unacceptable. In this case, the only possible return
is to the right corner. Using the same argument, one concludes that if the trial deviatoric stress
is on the left side of the dotted line, then the appropriate return is to the left corner. It is very
simple to determine, in actual computations, whether strialn+1 lies on the right or left of the
dotted line. Let T be a tangent vector to the main plane as illustrated in Figure 8.2. Clearly, T
has the same eigenvectors as strialn+1 and its eigenvalues may be chosen as

T1 = 1, T2 = −2, T3 = 1. (8.31)

If the scalar product

T : strialn+1 =
3∑

i=1

Ti striali = strial1 + strial3 − 2 strial2 , (8.32)

between T and strialn+1, is positive, then strialn+1 is on the right side of the dotted line and the
return mapping to the right corner is applied. If the product is negative, then the trial stress is
on the left side and the return mapping to the left corner is applied.

With the appropriate choice of return mappings based on the above, the implicit elas-
tic predictor/return-mapping algorithm for the Tresca model is completely defined. The
flowchart of the procedure is illustrated in Figure 8.3. The algorithm, implemented in
subroutine SUTR (State Update procedure for the TResca model), is described in detail in
Boxes 8.1–8.3. Box 8.1 shows the main algorithm and Boxes 8.2 and 8.3 show, respectively,
the Newton–Raphson scheme for solution of the return mapping to the main plane and the
two-vector return mappings to the corners.
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Box 8.1. Implicit elastic predictor/return-mapping algorithm for the Tresca model.

HYPLAS procedure: SUTR

(i) Elastic predictor. Given ∆ε and the state variables at tn, evaluate the elastic trial state

εe trial
n+1 := εe

n + ∆ε; ε̄p trial
n+1 := ε̄p

n

ptrial
n+1 := K εe trial

v n+1; strial
n+1 := 2G εe trial

d n+1

(ii) Spectral decomposition of strial (routine SPDEC2). Compute

strial
1 ≥ strial

2 ≥ strial
3 and ei (i = 1, 2, 3)

(iii) Check plastic admissibility

IF strial
1 − strial

3 − σy(ε̄p trial
n+1 ) ≤ 0

THEN set (·)n+1 := (·)trialn+1 and EXIT

(iv) Return mapping

(iv.a) Return to main plane – GOTO Box 8.2

(iv.b) Check validity of main plane return

IF s1 ≥ s2 ≥ s3 THEN return is valid – GOTO (v)

(iv.c) Return to corner

IF strial
1 + strial

3 − 2 strial
2 > 0

THEN apply return to right corner – GOTO Box 8.3

ELSE apply return to left corner – GOTO Box 8.3

(v) Assemble updated stress
pn+1 := ptrial

n+1

σn+1 :=
∑3

i=1 (si + pn+1) ei ⊗ ei

and update elastic strain

εe
n+1 :=

1

2G
sn+1 +

1

3
εe trial
v n+1 I

(vi) EXIT
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Box 8.2. The Tresca model. One-vector return mapping to main plane.

HYPLAS procedure: SUTR

(i) Set initial guess for ∆γ
∆γ := 0

and corresponding residual (yield function value)

Φ̃ := strial
1 − strial

3 − σy(ε̄p
n)

(ii) Perform Newton–Raphson iteration

H :=
dσy

dε̄p

∣∣∣∣
ε̄

p
n+∆γ

(hardening slope)

d :=
dΦ̃

d∆γ
= −4G − H (residual derivative)

∆γ := ∆γ − Φ̃

d
(new guess for ∆γ)

(iii) Check for convergence

Φ̃ := strial
1 − strial

3 − 4G ∆γ − σy(ε̄p
n + ∆γ)

IF |Φ̃| ≤ εtol THEN update

s1 := strial
1 − 2G ∆γ

s2 := strial
2

s3 := strial
3 + 2G ∆γ

ε̄p
n+1 := ε̄p

n + ∆γ

and RETURN to Box 8.1

(iv) GOTO (ii)
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Box 8.3. The Tresca model. Two-vector return mappings to corners.

HYPLAS procedure: SUTR

(i) Set initial guess for ∆γa and ∆γb

∆γa := 0 ∆γb := 0

and corresponding residual [
Φ̃a

Φ̃b

]
:=

[
s̄a − σy(ε̄p

n)

s̄b − σy(ε̄p
n)

]

where

s̄a = strial
1 − strial

3 , s̄b =

{
strial
1 − strial

2 , for right corner

strial
2 − strial

3 , for left corner

(ii) Perform Newton–Raphson iteration

∆γ := ∆γa + ∆γb

ε̄p
n+1 := ε̄p

n + ∆γ (update ε̄p)

H :=
dσy

dε̄p

∣∣∣∣
ε̄

p
n+1

(hardening slope)

residual derivative:

d :=




dΦ̃a

d∆γa

dΦ̃a

d∆γb

dΦ̃b

d∆γa

dΦ̃b

d∆γb


 =

[−4G − H −2G − H

−2G − H −4G − H

]

new guess for ∆γa and ∆γb:[
∆γa

∆γb

]
:=

[
∆γa

∆γb

]
− d−1

[
Φ̃a

Φ̃b

]

continued on page 278
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Box 8.3 (contd. from page 277). The Tresca model. Two-vector return mappings
to corners (implemented in subroutine SUTR).

(iii) Check for convergence[
Φ̃a

Φ̃b

]
:=

[
s̄a − 2G(2∆γa + ∆γb) − σy(ε̄p

n+1)

s̄b − 2G(∆γa + 2∆γb) − σy(ε̄p
n+1)

]

IF |Φ̃a| + |Φ̃b| ≤ εtol THEN update

s1 := strial
1 − 2G(∆γa + ∆γb)

s2 := strial
2 + 2G∆γb

s3 := strial
3 + 2G∆γa


 for right corner

s1 := strial
1 − 2G∆γa

s2 := strial
2 − 2G∆γb

s3 := strial
3 + 2G(∆γa + ∆γb)


 for left corner

and RETURN to Box 8.1

(iv) GOTO (ii)
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8.1.2. SUBROUTINE SUTR

As in the von Mises state update procedure implemented in subroutine SUVM (Section 7.3.5,
starting page 224), piecewise linear isotropic hardening is assumed in the present imple-
mentation of the implicit integration algorithm for the Tresca model. This hardening rule
is adopted due to its flexibility in fitting experimental data. The reader is referred to
Section 7.3.5 for details of implementation of the piecewise linear hardening law.

The FORTRAN source code of SUTR is listed below.

1 SUBROUTINE SUTR
2 1( DGAM ,IPROPS ,LALGVA ,NTYPE ,RPROPS ,

3 2 RSTAVA ,STRAT ,STRES )

4 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

5 PARAMETER(IPHARD=4 ,MSTRE=4)
6 C Arguments

7 LOGICAL
8 1 LALGVA(4)
9 DIMENSION

10 1 DGAM(2) ,IPROPS(*) ,RPROPS(*) ,

11 2 RSTAVA(MSTRE+1) ,STRAT(MSTRE) ,STRES(MSTRE)
12 C Local arrays and variables

13 LOGICAL
14 1 DUMMY, IFPLAS, RIGHT, SUFAIL, TWOVEC
15 DIMENSION
16 1 EIGPRJ(MSTRE,2) ,PSTRS(3) ,STREST(3)
17
18 DATA
19 1 R0 ,R1 ,R2 ,R3 ,R4 ,SMALL ,TOL /

20 2 0.0D0,1.0D0,2.0D0,3.0D0,4.0D0,1.D-10,1.D-10/

21 DATA MXITER / 50 /
22 C***********************************************************************
23 C STRESS UPDATE PROCEDURE FOR TRESCA TYPE ELASTO-PLASTIC MATERIAL WITH
24 C PIECE-WISE LINEAR ISOTROPIC HARDENING:
25 C IMPLICIT ELASTIC PREDICTOR/RETURN MAPPING ALGORITHM (Boxes 8.1-3).
26 C PLANE STRAIN AND AXISYMMETRIC IMPLEMENTATIONS.
27 C***********************************************************************
28 C Stops program if neither plane strain nor axisymmetric state

29 IF(NTYPE.NE.2.AND.NTYPE.NE.3)CALL ERRPRT(’EI0029’)
30 C Initialize some algorithmic and internal variables

31 DGAMA=R0
32 DGAMB=R0
33 IFPLAS=.FALSE.
34 SUFAIL=.FALSE.
35 EPBARN=RSTAVA(MSTRE+1)
36 EPBAR=EPBARN
37 C Set some material properties

38 YOUNG=RPROPS(2)
39 POISS=RPROPS(3)
40 NHARD=IPROPS(3)
41 C Set some constants
42 GMODU=YOUNG/(R2*(R1+POISS))
43 BULK=YOUNG/(R3*(R1-R2*POISS))
44 R2G=R2*GMODU
45 R4G=R4*GMODU
46 R1D3=R1/R3
47 C Compute elastic trial state

48 C ---------------------------
49 C Volumetric strain and pressure stress

50 EEV=STRAT(1)+STRAT(2)+STRAT(4)
51 P=BULK*EEV



280 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APPLICATIONS

52 C Spectral decomposition of the elastic trial deviatoric stress

53 EEVD3=EEV*R1D3
54 STREST(1)=R2G*(STRAT(1)-EEVD3)
55 STREST(2)=R2G*(STRAT(2)-EEVD3)
56 STREST(3)=GMODU*STRAT(3)
57 CALL SPDEC2(EIGPRJ,PSTRS,DUMMY,STREST)

58 PSTRS(3)=R2G*(STRAT(4)-EEVD3)
59 C Identify maximum (PSTRS1) and minimum (PSTRS3) principal stresses

60 II=1
61 JJ=1
62 PSTRS1=PSTRS(II)

63 PSTRS3=PSTRS(JJ)
64 DO 10 I=2,3

65 IF(PSTRS(I).GE.PSTRS1)THEN
66 II=I
67 PSTRS1=PSTRS(II)
68 ENDIF
69 IF(PSTRS(I).LT.PSTRS3)THEN
70 JJ=I
71 PSTRS3=PSTRS(JJ)
72 ENDIF
73 10 CONTINUE
74 IF(II.NE.1.AND.JJ.NE.1)MM=1
75 IF(II.NE.2.AND.JJ.NE.2)MM=2

76 IF(II.NE.3.AND.JJ.NE.3)MM=3
77 PSTRS2=PSTRS(MM)
78 C Compute trial yield function and check for plastic consistency

79 C --------------------------------------------------------------
80 SHMAXT=PSTRS1-PSTRS3
81 SIGMAY=PLFUN(EPBARN,NHARD,RPROPS(IPHARD))
82 PHIA=SHMAXT-SIGMAY
83 IF(PHIA/SIGMAY.GT.TOL)THEN
84 C Plastic step: Apply return mapping

85 C ==================================
86 IFPLAS=.TRUE.
87 C identify possible two-vector return: right or left of main plane

88 SCAPRD=PSTRS1+PSTRS3-PSTRS2*R2
89 IF(SCAPRD.GE.R0)THEN
90 RIGHT=.TRUE.
91 ELSE
92 RIGHT=.FALSE.
93 ENDIF
94 C Apply one-vector return mapping first (return to main plane)

95 C ------------------------------------------------------------
96 TWOVEC=.FALSE.
97 C Start Newton-Raphson iterations

98 DO 20 NRITER=1,MXITER
99 C Compute residual derivative

100 DENOM=-R4G-DPLFUN(EPBAR,NHARD,RPROPS(IPHARD))
101 C Compute Newton-Raphson increment and update variable DGAMA

102 DDGAMA=-PHIA/DENOM
103 DGAMA=DGAMA+DDGAMA
104 C Compute new residual

105 EPBAR=EPBARN+DGAMA
106 SIGMAY=PLFUN(EPBAR,NHARD,RPROPS(IPHARD))
107 SHMAX=SHMAXT-R4G*DGAMA
108 PHIA=SHMAX-SIGMAY
109 C Check convergence

110 RESNOR=ABS(PHIA/SIGMAY)
111 IF(RESNOR.LE.TOL)THEN
112 C Check validity of one-vector return

113 S1=PSTRS1-R2G*DGAMA
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114 S2=PSTRS2
115 S3=PSTRS3+R2G*DGAMA
116 DELTA=DMAX1(ABS(S1),ABS(S2),ABS(S3))*SMALL

117 IF(S1+DELTA.GE.S2.AND.S2+DELTA.GE.S3)THEN
118 C converged stress is in the same sextant as trial stress -> 1-vector

119 C return is valid. Update EPBAR and principal deviatoric stresses

120 RSTAVA(MSTRE+1)=EPBAR
121 PSTRS1=S1
122 PSTRS3=S3
123 GOTO 50
124 ELSE
125 C 1-vector return is not valid - go to two-vector procedure

126 GOTO 30
127 ENDIF
128 ENDIF
129 20 CONTINUE
130 C failure of stress update procedure

131 SUFAIL=.TRUE.
132 CALL ERRPRT(’WE0001’)
133 GOTO 999
134 30 CONTINUE
135 C Apply two-vector return mapping (return to corner - right or left)

136 C ------------------------------------------------------------------
137 TWOVEC=.TRUE.
138 DGAMA=R0
139 DGABAR=R1
140 EPBAR=EPBARN
141 SIGMAY=PLFUN(EPBARN,NHARD,RPROPS(IPHARD))
142 SHMXTA=PSTRS1-PSTRS3
143 IF(RIGHT)THEN
144 SHMXTB=PSTRS1-PSTRS2
145 ELSE
146 SHMXTB=PSTRS2-PSTRS3
147 ENDIF
148 PHIA=SHMXTA-SIGMAY
149 PHIB=SHMXTB-SIGMAY
150 C Start Newton-Raphson iterations

151 DO 40 NRITER=1,MXITER
152 C Compute residual derivative

153 HSLOPE=DPLFUN(EPBAR,NHARD,RPROPS(IPHARD))
154 DRVAA=-R4G-HSLOPE
155 DRVAB=-R2G-HSLOPE
156 DRVBA=-R2G-HSLOPE
157 DRVBB=-R4G-HSLOPE
158 C Compute Newton-Raphson increment and update variables DGAMA and DGAMB

159 R1DDET=R1/(DRVAA*DRVBB-DRVAB*DRVBA)
160 DDGAMA=(-DRVBB*PHIA+DRVAB*PHIB)*R1DDET
161 DDGAMB=(DRVBA*PHIA-DRVAA*PHIB)*R1DDET
162 DGAMA=DGAMA+DDGAMA
163 DGAMB=DGAMB+DDGAMB
164 C Compute new residual

165 DGABAR=DGAMA+DGAMB
166 EPBAR=EPBARN+DGABAR
167 SIGMAY=PLFUN(EPBAR,NHARD,RPROPS(IPHARD))

168 PHIA=SHMXTA-R2G*(R2*DGAMA+DGAMB)-SIGMAY
169 PHIB=SHMXTB-R2G*(DGAMA+R2*DGAMB)-SIGMAY
170 C Check convergence

171 RESNOR=(ABS(PHIA)+ABS(PHIB))/SIGMAY
172 IF(RESNOR.LE.TOL)THEN
173 C Update EPBAR and principal deviatoric stresses

174 RSTAVA(MSTRE+1)=EPBAR
175 IF(RIGHT)THEN
176 PSTRS1=PSTRS1-R2G*(DGAMA+DGAMB)
177 PSTRS3=PSTRS3+R2G*DGAMA
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178 PSTRS2=PSTRS2+R2G*DGAMB
179 ELSE
180 PSTRS1=PSTRS1-R2G*DGAMA
181 PSTRS3=PSTRS3+R2G*(DGAMA+DGAMB)
182 PSTRS2=PSTRS2-R2G*DGAMB
183 ENDIF
184 GOTO 50
185 ENDIF
186 40 CONTINUE
187 C failure of stress update procedure

188 SUFAIL=.TRUE.
189 CALL ERRPRT(’WE0001’)
190 GOTO 999
191 50 CONTINUE
192 C update stress components

193 C ------------------------
194 PSTRS(II)=PSTRS1

195 PSTRS(JJ)=PSTRS3

196 PSTRS(MM)=PSTRS2

197 STRES(1)=PSTRS(1)*EIGPRJ(1,1)+PSTRS(2)*EIGPRJ(1,2)+P

198 STRES(2)=PSTRS(1)*EIGPRJ(2,1)+PSTRS(2)*EIGPRJ(2,2)+P

199 STRES(3)=PSTRS(1)*EIGPRJ(3,1)+PSTRS(2)*EIGPRJ(3,2)

200 STRES(4)=PSTRS(3)+P
201 C and elastic engineering strain

202 RSTAVA(1)=(STRES(1)-P)/R2G+EEVD3

203 RSTAVA(2)=(STRES(2)-P)/R2G+EEVD3

204 RSTAVA(3)=STRES(3)/GMODU

205 RSTAVA(4)=PSTRS(3)/R2G+EEVD3
206 ELSE
207 C Elastic step: update stress using linear elastic law

208 C ====================================================
209 STRES(1)=STREST(1)+P

210 STRES(2)=STREST(2)+P

211 STRES(3)=STREST(3)

212 STRES(4)=PSTRS(3)+P
213 C elastic engineering strain

214 RSTAVA(1)=STRAT(1)

215 RSTAVA(2)=STRAT(2)

216 RSTAVA(3)=STRAT(3)

217 RSTAVA(4)=STRAT(4)
218 ENDIF
219 999 CONTINUE
220 C Update algorithmic variables before exit

221 C ========================================
222 DGAM(1)=DGAMA

223 DGAM(2)=DGAMB

224 LALGVA(1)=IFPLAS

225 LALGVA(2)=SUFAIL

226 LALGVA(3)=TWOVEC

227 LALGVA(4)=RIGHT
228 RETURN
229 END

The arguments of SUTR

The arguments of this subroutine are identical to those of SUVM for the von Mises model
implementation (see list starting on page 227), except for the following:
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← DGAM [∆γa, ∆γb]. This argument now is an array that stores up to two incremental
plastic multipliers. If the increment is elastic, both multipliers are set to 0. Otherwise,
the multiplier(s) are obtained as the solution of one of the three possible return mapping
equation sets (main plane, right or left corner).

← LALGVA. In addition to the plastic yielding flag IFPLAS and the state update failure
flag SUFAIL used also in SUVM, the array LALGVA of logical algorithnmic flags now
stores the two-vector return flag TWOVEC and the right corner return flag RIGHT. The
two-vector return flag is set to .TRUE. if one of the two possible two-vector return
mappings (right or left corner) is used. It is set to .FALSE. otherwise. The right corner
return flag is set to .TRUE. if the possible two-vector return is to the right corner to
.FALSE. if to the left corner. The flags TWOVEC and RIGHT are required by subroutine
CTTR to decide which elastoplastic tangent operator to compute (consistent with main
plane, right or left corner return mapping).

Also, IPROPS(3) and array RPROPS are, for the present material model implementation, set
in subroutine RDTR during the data input phase of HYPLAS.

Some local variables and arrays of SUTR

• EIGPRJ [ei ⊗ ei, i = 1, 2]. Matrix containing the components of the in-plane eigen-
projection tensors of the elastic trial stress.

• PSTRS [σtriali or σi]. Array of principal trial stresses or principal updated stresses.

• STREST [σtrialn+1]. Array of components of the trial stress tensor.

• TOL [εtol]. Convergence tolerance for the Newton–Raphson algorithm used to solve the
return-mapping equations.

Function calls from SUTR

• DPLFUN. Used to evaluate the slope of the piecewise linear hardening curve.

• ERRPRT. Called to send warning message to results file and standard output in
case of failure of the return-mapping algorithm. Corresponding message is in file
ERROR.RUN.

• PLFUN. Used in SUTR as the piecewise linear hardening function σy(ε̄p).

• SPDEC2. Called to perform the spectral decomposition of σtrialn+1.

8.1.3. FINITE STEP ACCURACY: ISO-ERROR MAPS

The use of iso-error maps to assess the accuracy of numerical integration algorithms
for elastoplasticity under realistic finite steps has been discussed in Section 7.2.10. This
procedure is adopted here to assess the accuracy of the implicit elastic predictor/return-
mapping algorithm for the Tresca model described above. Recall that for the von Mises model
(given as example in Section 7.2.10) the starting point for the map is immaterial due to the
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Figure 8.4. Iso-error maps for the implicit algorithm for the Tresca model. Increment directions.

symmetry of the yield surface. For the Tresca model, however, the starting point has to be
taken into consideration. Here, two starting points, A and B, lying on the deviatoric plane are
considered. These points are shown in Figure 8.4. Point A is on the singularity of the Tresca
hexagon and point B corresponds to a state of pure shear. The increments ∆σtrial are of the
form

∆σtrial =
∆σN

r
N +

∆σT

r
T, (8.33)

where N and T are unit (in Euclidean norm) tensors defining the increment directions and
the scaling factor,

r ≡
√
2
3 σy , (8.34)

is the size of the sides of the Tresca hexagon (same as the radius of the von Mises cylinder
matching the Tresca prism on the edges). Note that, at the singularity (point A), the tensors
N and T are not orthogonal to each other. Two cases are considered in the iso-error maps
constructed in this section:

• perfect plasticity;

• nonlinear (piecewise linear) isotropic hardening.

In both cases, the error plotted is the (Euclidean) norm of the relative difference between
the numerical and ‘exact’ updated stresses. With isotropic hardening, the hardening curve
adopted is shown in Figure 8.5. A total of 16 sampling points have been used to define the
curve.

The error maps obtained for the perfectly plastic case are shown in Figure 8.6. Note that for
both starting points, there is a large area within which the integration error vanishes. This is
obviously a very desirable feature. However, within a narrow band of increments the relative
error can be as high as 40% for the increment range considered in the present assessment.
The reason for such relatively high errors can be easily explained by graphically performing
the projection of σtrial onto the (fixed) yield surface and comparing the resulting stress with
the (exact) one obtained when the increment ∆σtrial is divided into two substeps of suitably
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Figure 8.6. Iso-error maps. Perfectly plastic Tresca model: (a) point A; and (b) point B.

chosen sizes. In this case (perfect plasticity), the integration error is reduced to zero for any
increment if the substepping procedure is included in the return-mapping algorithm. The
error maps obtained with isotropic hardening are shown in Figure 8.7. Again, the areas in
which the error is reasonably small are quite large, but errors are high within a narrow band
of increments. A comparison of the maps obtained with and without hardening suggests that,
for practical purposes, the accuracy expected from the implicit algorithm for the Tresca model
is not influenced by hardening.
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Figure 8.7. Iso-error maps. Tresca model with hardening: (a) point A; and (b) point B.

8.1.4. THE CONSISTENT TANGENT OPERATOR FOR THE TRESCA MODEL

The derivation of tangent moduli consistent with elastic predictor/return-mapping schemes
for plasticity models has been thoroughly explained in Section 7.4. There, the tangent
operator consistent with the implicit algorithm for the von Mises model – the simplest of
all elastoplastic algorithms discussed in this book – has been derived in detail, illustrating the
application of the concept of consistent tangent operators. In the present section, this concept
is applied in the derivation of the tangent modulus consistent with the implicit algorithm for
the Tresca model.

Recall that the elastic tangent (the elasticity tensor) is the same for all basic elastoplastic
models:

De = 2G [IS − 1
3I ⊗ I] + K I ⊗ I, (8.35)

so that, in what follows, attention will be focused on the derivation of the elastoplastic tangent
modulus – the elastoplastic tangent – consistent with the return mapping for the Tresca model.

To start with, recall from Section 7.4.1 that the elastoplastic tangent modulus associated
with a particular return-mapping scheme is the derivative

Dep ≡ dσn+1

dεe trial
n+1

(8.36)

where σn+1 is the outcome of the implicit function defined by the corresponding return-
mapping equations. For the return mapping for the Tresca model presented in Section 8.1.1,
the implicit constitutive function for the stress tensor is defined by the procedures of
items (ii), (iv) and (v) of Box 8.1. It is important to note that, for the Tresca model, there
are three possible sets of equations to be solved:

(i) return to main plane;
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(ii) return to right corner; and

(iii) return to left corner,

each one defining a different implicit function for σn+1. In this case, the tangent operator
used to assemble the stiffness matrix will be the derivative of one of the three possible implicit
functions. The particular derivative adopted is chosen as the one consistent with the previous
application of the return-mapping algorithm for the Gauss point in question. In other words,
if the return to the main plane was used in the previous equilibrium iteration of the current
load increment (or the last iteration of the previous converged load increment if the present
iteration is the first of the current increment) the tangent modulus will be the derivative of the
function associated with the return mapping to the main plane. Similarly, if the return to the
right (left) corner was used in previous stress update, the tangent modulus will be consistent
with the implicit function defined by the right (left) corner return-mapping equations. The
tangent moduli consistent with the three possible sets of equations are derived below.

The elastoplastic tangent: the derivative of an isotropic tensor function

Before deriving the elastoplastic tangent moduli for the Tresca model it is crucial to observe
that the corresponding return mappings are effectively carried out in principal stresses. Thus,
the Tresca return-mapping equations define implicit functions for the principal stresses, σi,
at tn+1 of the form

σi = σ̃i(εe trial
1 , εe trial

2 , εe trial
3 ), i = 1, 2, 3, (8.37)

where the eigenprojection tensors, ei ⊗ ei, of σn+1 coincide with those of εe trial
n+1 . In

addition, due to the isotropy of the model, the algorithmic constitutive function for the stress
tensor is isotropic.

In summary, the integration algorithm for the Tresca model defines the stress tensor,
σn+1, as an isotropic tensor function of a single tensor‡ – the elastic trial strain, εe trial

n+1 .
This function, defined in (8.37), can be identified as a particular case of the class of tensor-
valued functions of a single tensor discussed in Appendix A. Its derivative – the elastoplastic
consistent tangent operator – can be computed by means of the general procedure presented
in Sections A.3 and A.4. The procedure for computation of derivatives of this type of function
is implemented in subroutine DGISO2. In order to compute Dep, the main arguments required
by this routine are

• the principal stresses, σi, and the corresponding unit eigenvectors;

• the principal elastic trial strains, εe trial
i ; and

• the partial derivatives, ∂σi/∂εe trial
j , of the principal stresses with respect to the

principal elastic trial strains associated with the algorithmic functions (8.37).

With these values at hand, the tangent operator Dep is assembled as described in Box A.3. The
principal stresses, the elastic trial strains and the associated eigenvectors are computed in a
trivial manner. The principal stresses derivatives, ∂σi/∂εe trial

j , are the result of the consistent
linearisation of the (principal stress-based) return-mapping algorithm. Their explicit forms,
derived below, depend on the particular algorithm used (main plane, right or left corner).

‡This property is also valid for the von Mises integration algorithm discussed in Chapter 7 as well as for the other
algorithms discussed later in the present chapter.
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Principal stress derivatives for the one-vector return

Since the return mapping for the Tresca model affects only the deviatoric component of the
stress tensor, it is convenient to derive first the derivatives

∂si

∂εe trial
d j

,

of the principal deviatoric stresses with respect to the principal deviatoric elastic trial strains.
When the return to the main plane is applied, the principal deviatoric stresses are updated

according to expressions (8.16–8.18) (item (iii) of Box 8.2). By using the elastic deviatoric
relation, striali = 2G εe trial

d i , and differentiating the principal stress update formula (8.16), we
obtain

ds1 = 2G(dεe trial
d 1 − d∆γ)

ds2 = 2Gdεe trial
d 2

ds3 = 2G(dεe trial
d 3 + d∆γ).

(8.38)

With the differentiation of the return-mapping equation (8.18) the linearised form of the
consistency condition is obtained as

dΦ̃ = 2G(dεe trial
d 1 − dεe trial

d 3 − 2 d∆γ) − H d∆γ = 0, (8.39)

where H ≡ dσy/dε̄p is the slope of the hardening curve. From the above expression, we
obtain

d∆γ =
2G

4G + H
(dεe trial
d 1 − dεe trial

d 3 ). (8.40)

With the substitution of (8.40) into (8.38) it follows that the partial derivatives ∂si/∂εe trial
d j ,

arranged in matrix format, are given by

[
∂si

∂εe trial
d j

]
=



2G(1 − f) 0 2Gf

0 2G 0

2Gf 0 2G(1 − f)


 (8.41)

where the factor f has been defined as

f ≡ 2G

4G + H
. (8.42)

The complete derivatives.

So far, only the expressions for the deviatoric principal stress derivatives have been derived.
In order to obtain the complete derivatives ∂σi/∂εe trial

j , required in the assemblage of the
elastoplastic tangent (these derivatives must be passed as arguments to the general routine
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DGISO2), note that for the present algorithm we have

σ̃i(εe trial
1 , εe trial

2 , εe trial
3 ) = s̃i(εe trial

d 1 , εe trial
d 2 , εe trial

d 3 ) + p(εe trial
v ), (8.43)

i.e. the principal deviatoric stresses are functions solely of the principal deviatoric elastic trial
strains and the hydrostatic stress is a function of the volumetric elastic trial strain only. The
principal deviatoric trial strains are given by

εe trial
d i = εe trial

i − 1
3 εe trial
v , (8.44)

where
εe trial
v = εe trial

1 + εe trial
2 + εe trial

3 . (8.45)

Finally, the substitution of these expressions into (8.43) followed by a straightforward
application of the chain rule leads to the following expression for the principal stress
derivatives:

∂σi

∂εe trial
j

=
∂si

∂εe trial
d k

(δkj − 1
3 ) + K, (8.46)

with summation on repeated indices implied. Here, K is the bulk modulus and δkj denotes
the Krönecker delta.

Principal stress derivatives for the right corner return

Now consider the return mapping to the right corner of the Tresca hexagon. In this case, the
principal deviatoric stresses are updated by (8.20) where the incremental plastic multipliers
are the solution to the return-mapping equations (8.23) (see also item (iii) of Box 8.3).
Differentiation of the stress update formulae followed by the use of the deviatoric elastic
law gives

ds1 = 2G(dεe trial
d 1 − d∆γa − d∆γb)

ds2 = 2G(dεe trial
d 2 + d∆γb)

ds3 = 2G(dεe trial
d 3 + d∆γa).

(8.47)

The differentials of the incremental plastic multipliers are obtained by linearising the
consistency condition (return-mapping equations) as follows. Differentiation of (8.23) and
use of the elastic law yields the linearised equation

dΦa

dΦb


= d


d∆γa

d∆γb


+ 2G


dεe trial

d 1 − dεe trial
d 3

dεe trial
d 1 − dεe trial

d 2


=


0

0


 , (8.48)

where the matrix d, also used in the Newton–Raphson algorithm for solution of the return-
mapping equation in Box 8.3, is defined as

d =


daa dab

dba dbb


, (8.49)
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with

daa = −4G− H,

dab = −2G − H,

dba = −2G − H,

dbb = −4G − H.

(8.50)

Solution of the linearised equation for d∆γa and d∆γb gives
d∆γa

d∆γb


= − 2G

det d


 dbb −dab

−dba daa




dεe trial

d 1 − dεe trial
d 3

dεe trial
d 1 − dεe trial

d 2


, (8.51)

which substituted into (8.47) leads, after a straightforward manipulation, to the expressions
for the derivatives of the principal deviatoric stresses consistent with the return mapping to
the right corner. Arranged in matrix format, the resulting derivatives are

[
∂si

∂εe trial
d j

]
=




2G

(
1 − 8G2

det d

)
4G2

det d
(dab − daa)

4G2

det d
(dba − dbb)

8G3

det d
2G

(
1 +

2G daa

det d

)
− 4G2

det d
dba

8G3

det d
− 4G2

det d
dab 2G

(
1 +

2G dbb

det d

)




. (8.52)

With the above deviatoric principal stresses derivatives at hand, the principal stress deriva-
tives, ∂σi/∂εe trial

j , are obtained by applying formula (8.46).

Derivatives consistent with the left corner return

The principal stress derivatives consistent with the return mapping to the left corner are
obtained by following exactly the same steps as in the above derivation for the right corner
return. The final expression for the deviatoric principal stress derivatives is given by

[
∂si

∂εe trial
d j

]
=




2G

(
1 +

2G dbb

det d

)
− 4G2

det d
dab

8G3

det d

− 4G2

det d
dba 2G

(
1 +

2G daa

det d

)
8G3

det d

4G2

det d
(dba − dbb)

4G2

det d
(dab − daa) 2G

(
1 − 8G2

det d

)




(8.53)

where, again, the derivatives ∂σi/∂εe trial
j are obtained by applying (8.46).
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8.1.5. SUBROUTINE CTTR

The computation of the (either elastic or elastoplastic) tangent operator consistent with
the Tresca integration algorithm is implemented in subroutine CTTR (Consistent Tangent
operator for the TResca model) of program HYPLAS. The integration algorithm is coded in
subroutine SUTR. The elastic tangent is evaluated here in a trivial manner. The computation
of the elastoplastic consistent tangent comprises the following basic steps:

1. Firstly, the principal stresses derivatives consistent with the appropriate return mapping
(main plane, right or left corner) are evaluated according to the expressions derived in
the above.

2. The tangent operator, Dep, (in matrix form) is then assembled in subroutine DGISO2
(Derivative of General ISOtropic tensor functions of a single tensor in 2-D and
axisymmetric conditions). This routine is called by CTTR which passes the principal
stress derivatives (as well as other necessary variables) as arguments.

The FORTRAN source code of CTTR is listed below.

1 SUBROUTINE CTTR
2 1( DMATX ,EPFLAG ,IPROPS ,LALGVA ,NTYPE ,

3 2 RPROPS ,RSTAVA ,STRAT ,STRES )

4 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

5 PARAMETER(IPHARD=4 ,MDIM=3, MSTRE=4)

6 LOGICAL EPFLAG, LALGVA(4), OUTOFP, RIGHT, REPEAT, TWOVEC
7 DIMENSION
8 1 DMATX(MSTRE,MSTRE) ,IPROPS(*) ,RPROPS(*) ,

9 2 RSTAVA(MSTRE+1) ,STRAT(*) ,STRES(*)
10 DIMENSION
11 1 DPSTRS(MDIM,MDIM) ,DPSTRE(MDIM,MDIM) ,EIGPRJ(MSTRE,2) ,

12 2 FOID(MSTRE,MSTRE) ,PSTRS(MDIM) ,PSTRA(MDIM) ,

13 3 SOID(MSTRE) ,STRAC(MSTRE)
14 DATA
15 1 FOID(1,1),FOID(1,2),FOID(1,3),FOID(1,4)/

16 2 1.0D0 ,0.0D0 ,0.0D0 ,0.0D0 /

17 3 FOID(2,1),FOID(2,2),FOID(2,3),FOID(2,4)/

18 4 0.0D0 ,1.0D0 ,0.0D0 ,0.0D0 /

19 5 FOID(3,1),FOID(3,2),FOID(3,3),FOID(3,4)/

20 6 0.0D0 ,0.0D0 ,0.5D0 ,0.0D0 /

21 7 FOID(4,1),FOID(4,2),FOID(4,3),FOID(4,4)/

22 8 0.0D0 ,0.0D0 ,0.0D0 ,1.0D0 /
23 DATA
24 1 SOID(1) ,SOID(2) ,SOID(3) ,SOID(4) /

25 2 1.0D0 ,1.0D0 ,0.0D0 ,1.0D0 /
26 DATA
27 1 R0 ,RP5 ,R1 ,R2 ,R3 ,R4 /

28 2 0.0D0,0.5D0,1.0D0,2.0D0,3.0D0,4.0D0/
29 C***********************************************************************
30 C COMPUTATION OF CONSISTENT TANGENT MODULUS FOR TRESCA TYPE
31 C ELASTO-PLASTIC MATERIAL WITH PIECE-WISE LINEAR ISOTROPIC HARDENING.
32 C PLANE STRAIN AND AXISYMMETRIC IMPLEMENTATIONS.
33 C***********************************************************************
34 C Stops program if neither plane strain nor axisymmetric state

35 IF(NTYPE.NE.2.AND.NTYPE.NE.3)CALL ERRPRT(’EI0028’)
36 C Current accumulated plastic strain

37 EPBAR=RSTAVA(MSTRE+1)
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38 C Set material properties

39 YOUNG=RPROPS(2)

40 POISS=RPROPS(3)

41 NHARD=IPROPS(3)
42 C Set needed algorithmic variables

43 TWOVEC=LALGVA(3)

44 RIGHT=LALGVA(4)
45 C Set some constants
46 GMODU=YOUNG/(R2*(R1+POISS))
47 BULK=YOUNG/(R3*(R1-R2*POISS))
48 R2G=R2*GMODU
49 R4G=R4*GMODU
50 R1D3=R1/R3
51 R2D3=R2*R1D3
52 IF(EPFLAG)THEN
53 C Compute elastoplastic consistent tangent

54 C ----------------------------------------
55 C Spectral decomposition of the elastic trial strain

56 STRAC(1)=STRAT(1)

57 STRAC(2)=STRAT(2)

58 STRAC(3)=STRAT(3)*RP5
59 CALL SPDEC2(EIGPRJ,PSTRA,REPEAT,STRAC)

60 PSTRA(3)=STRAT(4)
61 C and current total stress
62 PSTRS(1)=STRES(1)*EIGPRJ(1,1)+STRES(2)*EIGPRJ(2,1)+

63 1 R2*STRES(3)*EIGPRJ(3,1)

64 PSTRS(2)=STRES(1)*EIGPRJ(1,2)+STRES(2)*EIGPRJ(2,2)+

65 1 R2*STRES(3)*EIGPRJ(3,2)

66 PSTRS(3)=STRES(4)
67 C Identify directions of maximum and minimum principal trial stresses

68 II=1
69 JJ=1
70 PSTMAX=PSTRA(II)

71 PSTMIN=PSTRA(JJ)
72 DO 10 I=2,3

73 IF(PSTRA(I).GE.PSTMAX)THEN
74 II=I
75 PSTMAX=PSTRA(II)
76 ENDIF
77 IF(PSTRA(I).LT.PSTMIN)THEN
78 JJ=I
79 PSTMIN=PSTRA(JJ)
80 ENDIF
81 10 CONTINUE
82 IF(II.NE.1.AND.JJ.NE.1)MM=1

83 IF(II.NE.2.AND.JJ.NE.2)MM=2

84 IF(II.NE.3.AND.JJ.NE.3)MM=3

85 IF(TWOVEC)THEN
86 C Tangent consistent with two-vector return algorithm

87 HSLOPE=DPLFUN(EPBAR,NHARD,RPROPS(IPHARD))
88 DAA=R4G+HSLOPE
89 DAB=R2G+HSLOPE
90 DBA=R2G+HSLOPE
91 DBB=R4G+HSLOPE
92 DET=DAA*DBB-DAB*DBA
93 R2GDD=R2G/DET
94 R4G2DD=R2G*R2GDD
95 IF(RIGHT)THEN
96 C ...returned to right corner

97 DPSTRS(II,II)=R2G*(R1-R2GDD*R4G)

98 DPSTRS(II,MM)=R4G2DD*(DAA-DAB)
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99 DPSTRS(II,JJ)=R4G2DD*(DBB-DBA)

100 DPSTRS(MM,II)=R4G2DD*R2G

101 DPSTRS(MM,MM)=R2G*(R1-R2GDD*DAA)

102 DPSTRS(MM,JJ)=R4G2DD*DBA

103 DPSTRS(JJ,II)=R4G2DD*R2G

104 DPSTRS(JJ,MM)=R4G2DD*DAB

105 DPSTRS(JJ,JJ)=R2G*(R1-R2GDD*DBB)
106 ELSE
107 C ...returned to left corner
108 DPSTRS(II,II)=R2G*(R1-R2GDD*DBB)

109 DPSTRS(II,MM)=R4G2DD*DAB

110 DPSTRS(II,JJ)=R4G2DD*R2G

111 DPSTRS(MM,II)=R4G2DD*DBA

112 DPSTRS(MM,MM)=R2G*(R1-R2GDD*DAA)

113 DPSTRS(MM,JJ)=R4G2DD*R2G

114 DPSTRS(JJ,II)=R4G2DD*(DBB-DBA)

115 DPSTRS(JJ,MM)=R4G2DD*(DAA-DAB)

116 DPSTRS(JJ,JJ)=R2G*(R1-R2GDD*R4G)
117 ENDIF
118 ELSE
119 C Tangent consistent with one-vector return algorithm

120 FACTOR=R2G/(R4G+DPLFUN(EPBAR,NHARD,RPROPS(IPHARD)))

121 DPSTRS(II,II)=R2G*(R1-FACTOR)

122 DPSTRS(II,MM)=R0

123 DPSTRS(II,JJ)=R2G*FACTOR

124 DPSTRS(MM,II)=DPSTRS(II,MM)

125 DPSTRS(MM,MM)=R2G

126 DPSTRS(MM,JJ)=R0

127 DPSTRS(JJ,II)=DPSTRS(II,JJ)

128 DPSTRS(JJ,MM)=DPSTRS(MM,JJ)

129 DPSTRS(JJ,JJ)=DPSTRS(II,II)
130 ENDIF
131 DPSTRE(1,1)=+DPSTRS(1,1)*R2D3-DPSTRS(1,2)*R1D3-DPSTRS(1,3)*R1D3+
132 1 BULK
133 DPSTRE(2,1)=+DPSTRS(2,1)*R2D3-DPSTRS(2,2)*R1D3-DPSTRS(2,3)*R1D3+
134 1 BULK
135 DPSTRE(3,1)=+DPSTRS(3,1)*R2D3-DPSTRS(3,2)*R1D3-DPSTRS(3,3)*R1D3+
136 1 BULK
137 DPSTRE(1,2)=-DPSTRS(1,1)*R1D3+DPSTRS(1,2)*R2D3-DPSTRS(1,3)*R1D3+
138 1 BULK
139 DPSTRE(2,2)=-DPSTRS(2,1)*R1D3+DPSTRS(2,2)*R2D3-DPSTRS(2,3)*R1D3+
140 1 BULK
141 DPSTRE(3,2)=-DPSTRS(3,1)*R1D3+DPSTRS(3,2)*R2D3-DPSTRS(3,3)*R1D3+
142 1 BULK
143 DPSTRE(1,3)=-DPSTRS(1,1)*R1D3-DPSTRS(1,2)*R1D3+DPSTRS(1,3)*R2D3+
144 1 BULK
145 DPSTRE(2,3)=-DPSTRS(2,1)*R1D3-DPSTRS(2,2)*R1D3+DPSTRS(2,3)*R2D3+
146 1 BULK
147 DPSTRE(3,3)=-DPSTRS(3,1)*R1D3-DPSTRS(3,2)*R1D3+DPSTRS(3,3)*R2D3+
148 1 BULK
149 IF(NTYPE.EQ.2)THEN
150 OUTOFP=.FALSE.
151 ELSEIF(NTYPE.EQ.3)THEN
152 OUTOFP=.TRUE.
153 ENDIF
154 CALL DGISO2
155 1( DPSTRE ,DMATX ,EIGPRJ ,PSTRA ,PSTRS ,

156 2 OUTOFP ,REPEAT )
157 ELSE
158 C Compute elasticity matrix
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159 C -------------------------
160 IF(NTYPE.EQ.2)THEN

161 NSTRE=3
162 ELSEIF(NTYPE.EQ.3)THEN

163 NSTRE=4
164 ENDIF
165 C
166 FACTOR=BULK-R2G*R1D3
167 DO 50 I=1,NSTRE

168 DO 40 J=I,NSTRE

169 DMATX(I,J)=R2G*FOID(I,J)+FACTOR*SOID(I)*SOID(J)
170 40 CONTINUE
171 50 CONTINUE
172 DO 70 J=1,NSTRE-1

173 DO 60 I=J+1,NSTRE

174 DMATX(I,J)=DMATX(J,I)

175 60 CONTINUE
176 70 CONTINUE
177 ENDIF
178 RETURN
179 END

The arguments of CTTR

In addition to the arguments of SUTR (see list on page 282), whose output values are taken as
input values for (and are not changed by) CTTR, the present routine requires the following:

← DMATX [either De or Dep]. As in the von Mises implementation (refer to page 237).

→ EPFLAG. Elastoplastic tangent logical flag (refer to page 237 for a description).

The elements of the array LALGVA of logical algorithmic flags, set in subroutine SUTR, indicate
which elastoplastic tangent is to be computed here (consistent with main plane, right or left
return algorithm).

Some local arrays of CTTR

• DPSTRE [∂σi/∂εe trial
j ]. Matrix of derivatives of the principal stresses.

• DPSTRS [∂si/∂εe trial
d j ]. Matrix of derivatives of the principal deviatoric stresses.

• EIGPRJ [ei ⊗ ei, i=1,2]. Matrix containing the components of the in-plane eigenpro-
jection tensors of the elastic trial strain.

• FOID [IS]. Fourth-order identity tensor stored in array form according to (D.16),
page 762.

• SOID [I]. Second-order identity tensor stored in array form.

• STRAT [εe trial
i ]. Array containing the principal elastic trial strains.

The names of most local variables defined in CTTR resemble resemble the notation of
Section 8.1.4.
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Important function calls from CTTR

• DGISO2. Called to assemble the elastoplastic consistent tangent operator as a particular
case of the general derivatives of isotropic tensor function discussed in Section A.3 of
Appendix A.

• SPDEC2. Called to perform the spectral decomposition of the elastic trial strain.

8.2. The Mohr–Coulomb model

This section is devoted to the computational implementation of a classical (generally non-
associative) Mohr–Coulomb model with nonlinear isotropic strain hardening. For quick
reference, the following table shows where the main results of this section can be found.

integration
algorithm

flowchart

pseudo-code

FORTRAN code

Figure 8.10

Boxes 8.4–8.7

subroutine SUMC
(Section 8.2.2)

iso-error maps Figure 8.12

consistent tangent
– FORTRAN code –

subroutine CTMC
(Section 8.2.5)

As far as yield surface singularities are concerned, the algorithm described here is entirely
based on the ideas that underly the numerical integration scheme for the Tresca model of the
previous section. Here, however, an extra return-mapping procedure – the return to the apex
of the Mohr–Coulomb yield surface – is required in the numerical integration scheme.

The implemented Mohr–Coulomb model

The Mohr–Coulomb yield criterion as well as the corresponding flow rules and possible
hardening laws have been thoroughly discussed in Chapter 6. In what follows, we summarised
the actual equations adopted in the present computational implementation of the Mohr–
Coulomb model.

The multisurface description of the Mohr–Coulomb plastic flow rule has the represen-
tation (8.1)–(8.3) in the associative case with the yield functions Φi defined by (6.118)
(page 165). In the generally non-associative case, whose implementation is described here,
the flow vectors are re-defined as

N i ≡ ∂Ψi

∂σ
, (8.54)

where each Ψi has the same format as the corresponding Φi, except that the frictional angle
φ is replaced with the dilatancy angle ψ ≤ φ (assumed constant) in the definition of Ψi.

With the principal stresses ordered as σ1 ≥ σ2 ≥ σ3, the flow rule may be formulated
within the sextant of the principal stress space depicted in Figure 6.19(a) (page 174). There
are four distinct possibilities for the plastic flow definition.
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1. Plastic flow from the smooth (flat) portion of the main plane, where only one multiplier
may be non-zero. The generally non-associative flow vector in this case is reduced to

N a ≡ N 1 = (1 + sin ψ)e1 ⊗ e1 − (1 − sin ψ)e3 ⊗ e3, (8.55)

and
εp = γ̇N a. (8.56)

2. Plastic flow from the right edge. Here, only two plastic multipliers can be non-zero and
the flow rule is explicitly defined as

ε̇p = γ̇aN a + γ̇bN b, (8.57)

where N a is the same as in the above, N b is the flow vector of the plane on the right
of the main plane

N b ≡ N 6 = (1 + sin ψ)e1 ⊗ e1 − (1 − sin ψ)e2 ⊗ e2. (8.58)

3. Plastic flow from the left edge. The plastic flow is defined as above but with N b being
the flow vector of the plane on the left of the main plane

N b ≡ N 2 = (1 + sin ψ)e2 ⊗ e2 − (1 − sin ψ)e3 ⊗ e3. (8.59)

4. Plastic flow from the apex of the Mohr–Coulomb pyramid. In this case, up to six
multipliers may be non-zero, as the plastic rate tensor lies within the pyramid formed by
the six vectors of the Mohr–Coulomb model (refer to Figure 6.19.(b) which illustrates
the associative flow case). The plastic strain rate equation in this case is left in its
general format

ε̇p =
6∑

i=1

γ̇iN i. (8.60)

In the present implementation, isotropic strain hardening is included by letting the
cohesion c that takes part in the definition of the yield functions Φi be a generic nonlinear
function of the accumulated plastic strain:

c = c(ε̄p). (8.61)

Hardening associativity is assumed. The general equation for the evolution of ε̄p in this case
is given by (6.200) on page 184. For flow from the main plane as discussed above, only one
multiplier may be non-zero and (6.200) is reduced to

˙̄εp = 2 cos φ γ̇. (8.62)

For plastic flow from an edge of the Mohr–Coulomb pyramid, the evolution of ε̄p reads

˙̄εp = 2 cos φ (γ̇a + γ̇b). (8.63)

At the apex, the general equation (6.200) applies. In this case, the following general relation

˙̄εp =
cos φ

sin ψ
ε̇p
v, (8.64)
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between the rate of accumulated plastic strain and the volumetric plastic strain rate, will be
crucial in the computational implementation of the model. This relation can be obtained by
combining the counterpart of (6.155) (page 175) under non-associative plastic flow:

ε̇p
v = 2 sin ψ

6∑
i=1

γ̇i, (8.65)

and (6.200).

8.2.1. INTEGRATION ALGORITHM FOR THE MOHR–COULOMB MODEL

As for the algorithm for the Tresca model, the essential stress-updating is carried out here in
the principal stress space. Hence, after the computation of the elastic trial state, the spectral
decomposition of the trial stress, σtrial, is performed. With the principal trial stresses arranged
as σtrial1 ≥ σtrial2 ≥ σtrial3 , the plastic consistency check proceeds as follows:

• If

Φtrial ≡ σtrial1 − σtrial3 + (σtrial1 + σtrial3 ) sin φ − 2 c(ε̄p
n) cos φ ≤ 0,

then the step is elastic and all state variables are updated as

(·)n+1 := (·)trialn+1.

• Otherwise, a return-mapping procedure is carried out.

Recall that the general return-mapping update formula for the stress tensor is given by

σn+1 = σtrialn+1 − De : ∆εp. (8.66)

With the discretisation of the non-associated Mohr–Coulomb flow rule (8.60), this gives

σn+1 = σtrialn+1 − De :
6∑

i=1

∆γiN i
n+1. (8.67)

Due to the isotropy of the model, the stress update formula can be written equivalently in
terms of principal stresses as

σj = σtrialj −
6∑

i=1

∆γi (2G [N i
d]j − K N i

v), (8.68)

for j = 1, 2, 3. In the above formula, N i
v ≡ tr[Ni] is the volumetric component of the flow

vector N i at the updated state and [N i
d]j denotes the j th eigenvalue of its deviatoric

projection.
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The four possible return mappings

Following the four possible descriptions of the Mohr–Coulomb flow rule, the corresponding
backward Euler-based return-mapping algorithm has four distinct explicit forms, which
depend on the location of the updated stress, σn+1, on the yield surface. The equations for
each of the four possible return mappings are derived below:

1. The updated stress lies on the main plane (smooth portion). The flow vector in this
case is defined by (8.55). Introduction of this expression in (8.68) gives the following
principal stress updating formulae:

σ1 = σtrial1 − ∆γ [2G(1 + 1
3 sin ψ) + 2K sin ψ]

σ2 = σtrial2 + ∆γ (43G − 2K) sin ψ

σ3 = σtrial3 + ∆γ [2G(1 − 1
3 sin ψ) − 2K sin ψ].

(8.69)

The corresponding increment of accumulated plastic strain reads

∆ε̄p = 2 cos φ ∆γ. (8.70)

The incremental plastic multiplier, ∆γ, is obtained by solving the return-mapping
equation

Φ̃(∆γ) ≡ (σtrial1 − σtrial3 ) + (σtrial1 + σtrial3 ) sin φ

− 2 c(ε̄p
n + ∆ε̄p) cos φ − a∆γ = 0, (8.71)

where ∆ε̄p is the (linear) function of ∆γ defined by (8.70) and a is the constant

a = 4G(1 + 1
3 sin φ sin ψ) + 4K sin φ sin ψ. (8.72)

Equation (8.71) is obtained by introducing the update formulae (8.69) into the main
plane equation Φ1 = 0.

2. The updated stress lies on the right edge of the pyramid. The incremental plastic strain,
obtained from the backward Euler discretisation of (8.57), is in this case given by the
two-vector formula

∆εp = ∆γaN a + ∆γbN b. (8.73)

The corresponding principal stress update formulae follow from the substitution of the
above expression into (8.68):

σ1 = σtrial1 − [2G(1 + 1
3 sin ψ) + 2K sin ψ](∆γa + ∆γb)

σ2 = σtrial2 + (43G − 2K) sin ψ ∆γa + [2G(1 − 1
3 sin ψ) − 2K sin ψ]∆γb

σ3 = σtrial3 + [2G(1 − 1
3 sin ψ) − 2K sin ψ]∆γa + (43G − 2K) sin ψ ∆γb.

(8.74)
The increment of accumulated plastic strain is the discrete form of (8.63):

∆ε̄p = 2 cos φ (∆γa + ∆γb). (8.75)
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At the right edge, the updated principal stresses are such that the equations of the main
plane, Φ1 = 0, and the plane on its right, Φ6 = 0, are simultaneously satisfied. This
condition gives the following set of two return-mapping equations to be solved for
∆γa and ∆γb:

Φ̃a(∆γa, ∆γb) ≡ σtrial1 − σtrial3 + (σtrial1 + σtrial3 ) sin φ

− 2 cos φ c(ε̄p
n + ∆ε̄p) − a ∆γa − b ∆γb = 0

Φ̃b(∆γa, ∆γb) ≡ σtrial1 − σtrial2 + (σtrial1 + σtrial2 ) sin φ

− 2 cos φ c(ε̄p
n + ∆ε̄p) − b ∆γa − a ∆γb = 0.

(8.76)

The incremental accumulated plastic strain, ∆ε̄p, appearing in the above equations is
the linear function of ∆γa and ∆γb previously defined and the constant b is defined by

b = 2G(1 + sin φ + sin ψ − 1
3 sin φ sin ψ) + 4K sin φ sin ψ. (8.77)

3. The updated stress lies on the left edge. The return mapping to the left edge is
completely analogous to the return to the right edge derived in the above. The essential
difference is that the tensor N b is now defined by (8.59). The resulting principal stress
updating formulae are

σ1 = σtrial1 − [2G(1 + 1
3 sin ψ) + 2K sin ψ]∆γa + (43G − 2K) sin ψ ∆γb

σ2 = σtrial2 + (43G − 2K) sin ψ ∆γa − [2G(1 + 1
3 sin ψ) + 2K sin ψ]∆γb

σ3 = σtrial3 + [2G(1 − 1
3 sin ψ) − 2K sin ψ](∆γa + ∆γb),

(8.78)
and the corresponding increment of accumulated plastic strain is also given by (8.75).
The incremental plastic multipliers are the solution of the following return-mapping
equations:

Φ̃a(∆γa, ∆γb) ≡ σtrial1 − σtrial3 + (σtrial1 + σtrial3 ) sin φ

− 2 cos φ c(ε̄p
n + ∆ε̄p) − a ∆γa − b ∆γb = 0

Φ̃b(∆γa, ∆γb) ≡ σtrial2 − σtrial3 + (σtrial2 + σtrial3 ) sin φ

− 2 cos φ c(ε̄p
n + ∆ε̄p) − b ∆γa − a ∆γb = 0

(8.79)

where the constant b has been redefined as

b = 2G(1 − sin φ − sin ψ − 1
3 sin φ sin ψ) + 4K sin φ sin ψ. (8.80)

The above equations represent the intersection of the main plane, Φ1 = 0, with the
plane on its left, Φ2 = 0.

4. The updated stress lies on the apex. The apex of the Mohr–Coulomb pyramid is the
point along the hydrostatic axis for which

p = c cot φ. (8.81)
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Now recall the general hydrostatic pressure-updating equation for a return mapping
with an underlying linear description of the elastic behaviour:

pn+1 = ptrialn+1 − K ∆εp
v. (8.82)

The updated hydrostatic stress in the present case must lie on the apex of the updated
Mohr–Coulomb pyramid. This condition is enforced by introducing the update for-
mula (8.82), together with the hardening curve and the discretised evolution equation
for ε̄p, into the apex equation (8.81). We then have (Figure 8.8)

c(ε̄p
n + ∆ε̄p) cot φ − ptrialn+1 + K ∆εp

v = 0. (8.83)

Now consider the discrete version of (8.64):

∆ε̄p = α∆εp
v; α ≡ cos φ

sin ψ
. (8.84)

The substitution of this expression into (8.83) yields the final apex return-mapping
equation:

c(ε̄p
n + α∆εp

v) cot φ − ptrialn+1 + K ∆εp
v = 0, (8.85)

for the unknown ∆εp
v. Once the solution is found, we update

ε̄p
n+1 := ε̄p

n + α∆εp
v,

σn+1 := pn+1 I,
(8.86)

with pn+1 given by (8.82). Note that under zero dilatancy (ψ = 0), the return to apex
does not make sense as the purely deviatoric flow vector (combination of deviatoric
flow vectors) does not produce volumetric plastic flow. In this case, α →∞.

Remark 8.1. Under the assumption of linear hardening, with c = c0 + Hε̄p, all four sets of
return-mapping equations are linear and, therefore, can be solved in closed form.

Remark 8.2. When φ = ψ = 0 all equations of the one-vector return mapping to the main
plane and the two-vector return mappings to the right and left edge reduce to those of the
Tresca model implementation, derived in Section 8.1.1.

Strategy for selection of the appropriate return mapping

The strategy for selection of the appropriate return mapping to be used is a direct extension
of the procedure adopted in the return algorithm for the Tresca model, whose description
starts on page 271. As in the Tresca algorithm, the present strategy is simple and ensures
that the resulting updated state rigorously satisfies the general implicit return-mapping
equations (7.25), regardless of the prescribed hardening/softening curve. In essence, the
strategy comprises the following steps.

1. Firstly apply the return mapping to the main plane.



COMPUTATIONS WITH OTHER BASIC PLASTICITY MODELS 301

yield surface at tn

updated yield surface

σn +1

σn +1
trial

= p In +1

- K ∆εp
v

 pn +1
trial

Figure 8.8. Mohr–Coulomb model. Return mapping to apex.

2. Check validity: if the updated principal stresses remain in the same sextant as the trial
stresses, i.e. if

σ1 ≥ σ2 ≥ σ3, (8.87)

then the return to the main plane is valid and the corresponding updated state is
accepted.

3. Otherwise, try either the return mapping to the right or to the left edge (the procedure
to select which one to try at this stage is described later).

4. Check validity: if the updated principal stresses remain in the same sextant as the trial
stress, then the return mapping carried out in item 3 is valid and the updated state is
accepted.

5. Otherwise, apply the return algorithm to the apex. The result obtained now is necessar-
ily valid and does not require further checks.

The reader should note that any returned stress that fails to pass the validity check of
items 2 and 4 lies necessarily outside the updated elastic domain (which is fixed in the
perfectly plastic case) and is, therefore, not admissible. This can be easily verified by simple
geometrical considerations analogous to those of the Tresca model given in Figure 8.1.



302 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APPLICATIONS

sn+1

sn+1
trial

2G∆γ

N a
d

N a
d

a

2G∆γ N b
d

b

T

updated
surface

yield surface
at t n

σn+1
trial : T > 0 right

sn+1
trial

N a
d

σn+1
trial : T < 0 left

sn+1

−

−

N b
d

N b
d

N b
d

N b
d

σ1

σ2
σ3

Figure 8.9. Mohr–Coulomb model. Selection of appropriate return mapping to edge.

Selection of right or left edge return.

The determination of which return mapping is to be tried in item 3 above is based purely
on geometrical arguments and is also analogous to the procedure schematically illustrated in
Figure 8.2 for the Tresca model. Firstly, it should be noted that at any edge of the Mohr–
Coulomb pyramid we have

si = sj

for at least one pair {si, sj} with i 
= j. According to the present convention, s2 = s3
corresponds to a point on the right edge and s1 = s2 to a point on the left edge. On the
deviatoric plane, these points correspond to corners of the Mohr–Coulomb pyramid cross
section (irregular hexagon). Consider now the deviatoric part to the two-vector edge return
algorithms (Figure 8.9):

sn+1 = strialn+1 − 2G(∆γa N a
d + ∆γb N b

d ), (8.88)

where N a
d and N b

d are the deviatoric components of N a and N b, respectively. Clearly,
N b in the above is normal to the right (left) plane if sn+1 lies on the right (left) edge. The
dotted line of Figure 8.9 is the deviatoric projection of the plane parallel to N a that contains
the hydrostatic line. If σtrialn+1 lies on the right side of this plane (strialn+1 lies on the right of
the dotted line) the only possible way to return to the left edge consistently with the above
formula is to have negative ∆γb – an unacceptable solution. In this case, if σtrialn+1 returns to
an edge, it can only be the right edge. Similarly, if strialn+1 lies on the left of the dotted line, the
only possibly valid edge return algorithm is the return to the left edge.

Based on the above considerations, the procedure for selection of the appropriate edge
return is extremely simple. Let T be a deviatoric tensor orthogonal to the deviatoric
projection N a

d , pointing to the right. Here T is chosen with the following eigenvalues:

T1 = 1 − sin ψ, T2 = −2, T3 = 1 + sin ψ. (8.89)
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Its eigenvectors coincide with those of σtrialn+1. To select the appropriate edge return, the scalar
product

S ≡ T : σtrialn+1

= T1 σtrial1 + T2 σtrial2 + T3 σtrial3

= (1 − sin ψ) σtrial1 − 2 σtrial2 + (1 + sin ψ) σtrial3 , (8.90)

is computed first. If S > 0 the possible edge return is to the right. Otherwise, it is the return
mapping to the left edge.

The overall integration algorithm

Having described the four possible return mappings together with a simple and robust strategy
to select the valid return mapping, the implicit elastic predictor/return-mapping algorithm for
the Mohr–Coulomb model is completely defined.

The flowchart of the overall integration algorithm is shown in Figure 8.10. The correspond-
ing pseudo-code is conveniently summarised in Boxes 8.4–8.7. The procedure is implemented
in subroutine SUMC (State Update procedure for the Mohr–Coulomb model) of program
HYPLAS. Its FORTRAN code and details of its computational implementation are explained
in Section 8.2.2 below.
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Figure 8.10. Flowchart of the integration algorithm for the Mohr–Coulomb model in principal stresses.
Procedure implemented in subroutine SUMC of program HYPLAS.
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Box 8.4. Implicit elastic predictor/return mapping algorithm for the Mohr–
Coulomb model.

HYPLAS procedure: SUMC

(i) Elastic predictor. Given ∆ε and the state variables at tn, evaluate the elastic trial state

εe trial
n+1 := εe

n + ∆ε; ε̄p trial
n+1 := ε̄p

n

σtrial
n+1 := 2G εe trial

d n+1 + K εe trial
v n+1 I

(ii) Spectral decomposition of σtrial (routine SPDEC2). Compute

σtrial
1 ≥ σtrial

2 ≥ σtrial
3 and ei (i = 1, 2, 3)

(iii) Check plastic admissibility

IF σtrial
1 − σtrial

3 + (σtrial
1 + σtrial

3 ) sin φ − 2 c(ε̄p trial
n+1 ) cos φ ≤ 0

THEN set (·)n+1 := (·)trialn+1 and EXIT

(iv) Return mapping

(iv.a) Return to main plane – GOTO Box 8.5

(iv.b) Check validity of main plane return

IF σ1 ≥ σ2 ≥ σ3 THEN return is valid – GOTO (v)

(iv.c) Return to edge
IF (1 − sin ψ)σtrial

1 − 2σtrial
3 + (1 + sin ψ)σtrial

2 > 0

THEN apply return to right edge – GOTO Box 8.6

ELSE apply return to left edge – GOTO Box 8.6

(iv.d) Check validity of edge return

IF σ1 ≥ σ2 ≥ σ3 THEN return is valid – GOTO (v)

(iv.e) Return to apex – GOTO Box 8.7

(v) Assemble updated stress tensor

σn+1 :=
3∑

i=1

σi ei ⊗ ei

and update elastic strain

εe
n+1 :=

1

2G
sn+1 +

pn+1

3K
I

(vi) EXIT
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Box 8.5. The Mohr–Coulomb model. One-vector return mapping to main plane.

HYPLAS procedure: SUMC

(i) Set initial guess for ∆γ
∆γ := 0; ε̄p

n+1 := ε̄p
n

and corresponding residual (yield function value)

Φ̃ := σtrial
1 − σtrial

3 + (σtrial
1 + σtrial

3 ) sin φ − 2 c(ε̄p
n) cos φ

(ii) Perform Newton–Raphson iteration for ∆γ

H :=
dc

dε̄p

∣∣∣∣
ε̄

p
n+1

(hardening slope)

d :=
dΦ̃

d∆γ
= −4G(1 + 1

3
sin ψ sin φ)

− 4K sin ψ sin φ − 4H cos2 φ
(residual derivative)

∆γ := ∆γ − Φ̃/d (update ∆γ)

(iii) Check for convergence

ε̄p
n+1 := ε̄p

n + 2 cos φ ∆γ

Φ̃ := σtrial
1 − σtrial

3 + (σtrial
1 + σtrial

3 ) sin φ

− [4G(1 + 1
3

sin ψ sin φ) + 4K sin φ sin ψ]∆γ
− 2 c(ε̄p

n+1) cos φ

IF |Φ̃| ≤ εtol THEN update

σ1 := σtrial
1 − [2G(1 + 1

3
sin ψ) + 2K sin ψ]∆γ

σ2 := σtrial
2 + ( 4

3
G − 2K) sin ψ ∆γ

σ3 := σtrial
3 + [2G(1 − 1

3
sin ψ) − 2K sin ψ]∆γ

and RETURN to Box 8.4

(iv) GOTO (ii)
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Box 8.6. The Mohr–Coulomb model. Two-vector return mappings to edges.

HYPLAS procedure: SUMC

(i) Set initial guess for ∆γa and ∆γb

∆γa := 0, ∆γb := 0; ε̄p
n+1 := ε̄p

n

and corresponding residual[
Φ̃a

Φ̃b

]
:=

[
σ̄a − 2 c(ε̄p

n) cos φ

σ̄b − 2 c(ε̄p
n) cos φ

]

where
σ̄a = σtrial

1 − σtrial
3 + (σtrial

1 + σtrial
3 ) sin φ

σ̄b =

{
σtrial

1 − σtrial
2 + (σtrial

1 + σtrial
2 ) sin φ right edge

σtrial
2 − σtrial

3 + (σtrial
2 + σtrial

3 ) sin φ left edge

(ii) Perform Newton–Raphson iteration for ∆γa and ∆γb

H :=
dc

dε̄p

∣∣∣∣
ε̄

p
n+1

a := 4G(1 + 1
3

sin φ sin ψ) + 4K sin φ sin ψ

b :=

{
2G(1 + sinφ + sinψ − 1

3
sinφ sinψ) + 4K sinφ sinψ right edge

2G(1 − sinφ − sinψ − 1
3

sinφ sinψ) + 4K sinφ sinψ left edge

residual derivative matrix:

d :=




∂Φ̃a

∂∆γa

∂Φ̃a

∂∆γb

∂Φ̃b

∂∆γa

∂Φ̃b

∂∆γb


 =

[−a − 4H cos2 φ −b − 4H cos2 φ

−b − 4H cos2 φ −a − 4H cos2 φ

]

new guess for ∆γa and ∆γb:[
∆γa

∆γb

]
:=

[
∆γa

∆γb

]
− d−1

[
Φ̃a

Φ̃b

]

contd on page 308
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Box 8.6 (contd. from page 307). The Mohr–Coulomb model. Two-vector return
mappings to edges (implemented in subroutine SUMC)

(iii) Compute new residual and check for convergence

ε̄p
n+1 := ε̄p

n + 2 cos φ (∆γa + ∆γb)[
Φ̃a

Φ̃b

]
:=

[
σ̄a − a ∆γa − b ∆γb − 2 c(ε̄p

n+1) cos φ

σ̄b − b ∆γa − a ∆γb − 2 c(ε̄p
n+1) cos φ

]

IF |Φ̃a| + |Φ̃b| ≤ εtol THEN update

for right edge:

σ1 := σtrial
1 − [2G(1 + 1

3
sinψ) + 2K sinψ](∆γa + ∆γb)

σ2 := σtrial
2 + ( 4G

3
− 2K) sinψ ∆γa + [2G(1 − 1

3
sinψ) − 2K sinψ]∆γb

σ3 := σtrial
3 + [2G(1 − 1

3
sinψ) − 2K sinψ]∆γa + ( 4G

3
− 2K) sinψ ∆γb

for left edge:

σ1 := σtrial
1 − [2G(1 + 1

3
sinψ) + 2K sinψ]∆γb + ( 4G

3
− 2K) sinψ ∆γb

σ2 := σtrial
2 + ( 4G

3
− 2K) sinψ ∆γa − [2G(1 + 1

3
sinψ) + 2K sin ψ]∆γb

σ3 := σtrial
3 + [2G(1 − 1

3
sinψ) − 2K sinψ](∆γa + ∆γb)

and RETURN to Box 8.4

(iv) GOTO (ii)
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Box 8.7. The Mohr–Coulomb model. Return mapping to apex.

HYPLAS procedure: SUMC

(i) Set initial guess for ∆εp
v

∆εp
v := 0; ε̄p

n+1 := ε̄p
n

and corresponding residual (refer to equation (8.85))

r := c(ε̄p
n) cot φ − ptrial

n+1

(ii) Perform Newton–Raphson iteration

H :=
dc

dε̄p

∣∣∣∣
ε̄

p
n+1

(hardening slope)

d :=
H cos φ cot φ

sin ψ
+ K (residual derivative)

∆εp
v := ∆εp

v − r/d (update ∆εp
v)

(iii) Compute new residual and check for convergence

ε̄p
n+1 := ε̄p

n + cos φ
sin ψ

∆εp
v

pn+1 := ptrial
n+1 − K ∆εp

v

r := c(ε̄p
n+1) cot φ − pn+1

IF |r| ≤ εtol THEN update

σ1 := σ2 := σ3 := pn+1

and RETURN to Box 8.4

(iv) GOTO (ii)
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8.2.2. SUBROUTINE SUMC

The present implementation of the implicit elastic predictor/return-mapping algorithm for the
Mohr–Coulomb model incorporates a piecewise linear isotropic hardening curve in order to
approximate general nonlinear hardening. As in the algorithms for the von Mises and Tresca
models (subroutines SUVM and SUTR, respectively), the hardening curve is here defined by
a user-specified number of sampling points. For the hardening law adopted in the present
implementation, each sampling point i is a pair

{iε̄p, ic}

defined by the accumulated plastic strain and the corresponding cohesion. It is pointed out
that perfect plasticity – the most common assumption accompanying the use of the Mohr–
Coulomb model – is obtained by simply defining two sampling points with identical cohesion.
The FORTRAN source code of subroutine SUMC is listed below.

1 SUBROUTINE SUMC
2 1( DGAM ,IPROPS ,LALGVA ,NTYPE ,RPROPS ,

3 2 RSTAVA ,STRAT ,STRES )

4 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

5 PARAMETER(IPHARD=7 ,MSTRE=4)
6 C Arguments

7 LOGICAL
8 1 LALGVA(5)
9 DIMENSION

10 1 DGAM(2) ,IPROPS(*) ,RPROPS(*) ,

11 2 RSTAVA(MSTRE+1) ,STRAT(MSTRE) ,STRES(MSTRE)
12 C Local variables and arrays

13 LOGICAL
14 1 APEX, DUMMY, EDGE, IFPLAS, RIGHT, SUFAIL
15 DIMENSION
16 1 EIGPRJ(MSTRE,2) ,PSTRS(3) ,STREST(3)
17 DATA
18 1 R0 ,R1 ,R2 ,R3 ,R4 ,SMALL ,TOL /

19 2 0.0D0,1.0D0,2.0D0,3.0D0,4.0D0,1.D-06,1.D-10/

20 DATA MXITER / 50 /
21 C***********************************************************************
22 C STATE UPDATE PROCEDURE FOR MOHR-COULOMB TYPE ELASTO-PLASTIC MATERIAL
23 C WITH ASSOCIATIVE/NON-ASSOCIATIVE FLOW RULE AND PIECE-WISE LINEAR
24 C ISOTROPIC HARDENING:
25 C IMPLICIT ELASTIC PREDICTOR/RETURN MAPPING ALGORITHM (BOXES 8.4-7).
26 C PLANE STRAIN AND AXISYMMETRIC IMPLMENTATIONS.
27 C***********************************************************************
28 C Stops program if neither plane strain nor plane stress state

29 IF(NTYPE.NE.2.AND.NTYPE.NE.3)CALL ERRPRT(’EI0027’)
30 C Initialize some algorithmic and internal variables

31 DGAMA=R0
32 DGAMB=R0
33 IFPLAS=.FALSE.
34 SUFAIL=.FALSE.
35 EDGE=.FALSE.
36 APEX=.FALSE.
37 EPBARN=RSTAVA(MSTRE+1)
38 EPBAR=EPBARN
39 C Set some material properties

40 YOUNG=RPROPS(2)
41 POISS=RPROPS(3)
42 SINPHI=RPROPS(4)



COMPUTATIONS WITH OTHER BASIC PLASTICITY MODELS 311

43 COSPHI=RPROPS(5)
44 SINPSI=RPROPS(6)
45 NHARD=IPROPS(3)
46 C Set some constants
47 GMODU=YOUNG/(R2*(R1+POISS))
48 BULK=YOUNG/(R3*(R1-R2*POISS))
49 R2G=R2*GMODU
50 R4G=R4*GMODU
51 R2BULK=R2*BULK
52 R2CPHI=R2*COSPHI
53 R1D3=R1/R3
54 C Compute elastic trial state

55 C ---------------------------
56 C Elastic trial volumetric strain and pressure stress

57 EETV=STRAT(1)+STRAT(2)+STRAT(4)
58 PT=BULK*EETV
59 C Spectral decomposition of the elastic trial stress

60 EETVD3=EETV*R1D3
61 STREST(1)=R2G*(STRAT(1)-EETVD3)+PT
62 STREST(2)=R2G*(STRAT(2)-EETVD3)+PT
63 STREST(3)=GMODU*STRAT(3)
64 CALL SPDEC2(EIGPRJ,PSTRS,DUMMY,STREST)

65 PSTRS(3)=R2G*(STRAT(4)-EETVD3)+PT
66 C Identify maximum (PSTRS1) and minimum (PSTRS3) principal stresses

67 II=1
68 JJ=1
69 PSTRS1=PSTRS(II)
70 PSTRS3=PSTRS(JJ)
71 DO 10 I=2,3

72 IF(PSTRS(I).GE.PSTRS1)THEN
73 II=I
74 PSTRS1=PSTRS(II)
75 ENDIF
76 IF(PSTRS(I).LT.PSTRS3)THEN
77 JJ=I
78 PSTRS3=PSTRS(JJ)
79 ENDIF
80 10 CONTINUE
81 IF(II.NE.1.AND.JJ.NE.1)MM=1
82 IF(II.NE.2.AND.JJ.NE.2)MM=2
83 IF(II.NE.3.AND.JJ.NE.3)MM=3
84 PSTRS2=PSTRS(MM)
85 C Compute trial yield function and check for plastic consistency

86 C --------------------------------------------------------------
87 COHE=PLFUN(EPBARN,NHARD,RPROPS(IPHARD))

88 SMCT=PSTRS1-PSTRS3+(PSTRS1+PSTRS3)*SINPHI
89 PHIA=SMCT-R2CPHI*COHE
90 RES=PHIA
91 IF(COHE.NE.R0)RES=RES/ABS(COHE)
92 IF(RES.GT.TOL)THEN
93 C Plastic step: Apply return mapping

94 C ==================================
95 IFPLAS=.TRUE.
96 C identify possible edge return: either right or left of main plane

97 SCAPRD=PSTRS1*(R1-SINPSI)+PSTRS2*(-R2)+PSTRS3*(R1+SINPSI)
98 IF(SCAPRD.GE.R0)THEN
99 RIGHT=.TRUE.

100 ELSE
101 RIGHT=.FALSE.
102 ENDIF
103 C Apply one-vector return mapping first (return to MAIN PLANE)

104 C ------------------------------------------------------------
105 SPHSPS=SINPHI*SINPSI
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106 CONSTA=R4G*(R1+R1D3*SPHSPS)+R4*BULK*SPHSPS
107 R4C2PH=R2CPHI*R2CPHI
108 C Start Newton-Raphson iterations for DGAMA

109 DO 20 NRITER=1,MXITER
110 C Compute residual derivative

111 DENOM=-CONSTA-R4C2PH*DPLFUN(EPBAR,NHARD,RPROPS(IPHARD))
112 C Compute Newton-Raphson increment and update variable DGAMA

113 DDGAMA=-PHIA/DENOM
114 DGAMA=DGAMA+DDGAMA
115 C Compute new residual

116 EPBAR=EPBARN+R2CPHI*DGAMA
117 COHE=PLFUN(EPBAR,NHARD,RPROPS(IPHARD))
118 PHIA=SMCT-CONSTA*DGAMA-R2CPHI*COHE
119 C Check convergence

120 RESNOR=ABS(PHIA)
121 IF(SMCT.NE.R0)RESNOR=RESNOR/ABS(SMCT)
122 IF(RESNOR.LE.TOL)THEN
123 C Check validity of 1-vector return (check sextant of converged stress)

124 S1=PSTRS1-(R2G*(R1+R1D3*SINPSI)+R2BULK*SINPSI)*DGAMA
125 S2=PSTRS2+(R4G*R1D3-R2BULK)*SINPSI*DGAMA
126 S3=PSTRS3+(R2G*(R1-R1D3*SINPSI)-R2BULK*SINPSI)*DGAMA
127 DELTA=DMAX1(ABS(S1),ABS(S2),ABS(S3))*SMALL

128 IF(S1+DELTA.GE.S2.AND.S2+DELTA.GE.S3)THEN
129 C converged stress is in the same sextant as trial stress -> 1-vector

130 C return is valid.
131 P=(S1+S2+S3)*R1D3
132 GOTO 70
133 ELSE
134 C converged stress is not in the same sextant -> 1-vector result is

135 C not valid. Go to two-vector return map to edge

136 GOTO 30
137 ENDIF
138 ENDIF
139 20 CONTINUE
140 C failure of stress update procedure

141 SUFAIL=.TRUE.
142 CALL ERRPRT(’WE0003’)
143 GOTO 999
144 30 CONTINUE
145 C Apply two-vector return mapping to appropriate EDGE

146 C ---------------------------------------------------
147 DGAMA=R0
148 EPBAR=EPBARN
149 COHE=PLFUN(EPBARN,NHARD,RPROPS(IPHARD))

150 SMCTA=PSTRS1-PSTRS3+(PSTRS1+PSTRS3)*SINPHI
151 IF(RIGHT)THEN
152 SMCTB=PSTRS1-PSTRS2+(PSTRS1+PSTRS2)*SINPHI
153 ELSE
154 SMCTB=PSTRS2-PSTRS3+(PSTRS2+PSTRS3)*SINPHI
155 ENDIF
156 PHIA=SMCTA-R2CPHI*COHE
157 PHIB=SMCTB-R2CPHI*COHE
158 IF(RIGHT)THEN
159 CONSTB=R2G*(R1+SINPHI+SINPSI-R1D3*SPHSPS)+R4*BULK*SPHSPS
160 ELSE
161 CONSTB=R2G*(R1-SINPHI-SINPSI-R1D3*SPHSPS)+R4*BULK*SPHSPS
162 ENDIF
163 C Start Newton-Raphson iterations for DGAMA and DGAMB

164 DO 40 NRITER=1,MXITER
165 C Compute residual derivative matrix

166 FACTA=R4C2PH*DPLFUN(EPBAR,NHARD,RPROPS(IPHARD))
167 DRVAA=-CONSTA-FACTA
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168 DRVAB=-CONSTB-FACTA
169 DRVBA=-CONSTB-FACTA
170 DRVBB=-CONSTA-FACTA
171 C Compute Newton-Raphson increment and update variables DGAMA and DGAMB

172 R1DDET=R1/(DRVAA*DRVBB-DRVAB*DRVBA)
173 DDGAMA=(-DRVBB*PHIA+DRVAB*PHIB)*R1DDET
174 DDGAMB=(DRVBA*PHIA-DRVAA*PHIB)*R1DDET
175 DGAMA=DGAMA+DDGAMA
176 DGAMB=DGAMB+DDGAMB
177 C Compute new residual

178 EPBAR=EPBARN+R2CPHI*(DGAMA+DGAMB)
179 COHE=PLFUN(EPBAR,NHARD,RPROPS(IPHARD))
180 PHIA=SMCTA-CONSTA*DGAMA-CONSTB*DGAMB-R2CPHI*COHE
181 PHIB=SMCTB-CONSTB*DGAMA-CONSTA*DGAMB-R2CPHI*COHE
182 C Check convergence

183 RESNOR=(ABS(PHIA)+ABS(PHIB))
184 FACTOR=(ABS(SMCTA)+ABS(SMCTB))
185 IF(FACTOR.NE.R0)RESNOR=RESNOR/FACTOR
186 IF(RESNOR.LE.TOL)THEN
187 C Check validity of 2-vector return to edge

188 AUX1=R2G*(R1+R1D3*SINPSI)+R2BULK*SINPSI
189 AUX2=(R4G*R1D3-R2BULK)*SINPSI
190 AUX3=R2G*(R1-R1D3*SINPSI)-R2BULK*SINPSI
191 IF(RIGHT)THEN
192 S1=PSTRS1-AUX1*(DGAMA+DGAMB)
193 S2=PSTRS2+AUX2*DGAMA+AUX3*DGAMB
194 S3=PSTRS3+AUX3*DGAMA+AUX2*DGAMB
195 ELSE
196 S1=PSTRS1-AUX1*DGAMA+AUX2*DGAMB
197 S2=PSTRS2+AUX2*DGAMA-AUX1*DGAMB
198 S3=PSTRS3+AUX3*(DGAMA+DGAMB)
199 ENDIF
200 DELTA=DMAX1(ABS(S1),ABS(S2),ABS(S3))*SMALL

201 IF(S1+DELTA.GE.S2.AND.S2+DELTA.GE.S3)THEN
202 C converged stress is in the same sextant as trial stress -> 2-vector

203 C return to edge is valid.

204 EDGE=.TRUE.
205 P=(S1+S2+S3)*R1D3
206 GOTO 70
207 ELSE
208 C converged stress is not in the same sextant -> 2-vector return to edge

209 C is not valid. Go to two-vector return map to APEX

210 GOTO 50
211 ENDIF
212 ENDIF
213 40 CONTINUE
214 C failure of stress update procedure

215 SUFAIL=.TRUE.
216 CALL ERRPRT(’WE0003’)
217 GOTO 999
218 50 CONTINUE
219 C Apply multi-vector return mapping to APEX

220 C ---------------------------------------
221 C Check conditions for which return to apex does not make sense

222 IF(SINPHI.EQ.R0)CALL ERRPRT(’EE0009’)

223 IF(SINPSI.EQ.R0)CALL ERRPRT(’EE0010’)
224 C Set initial guess for volumetric plastic strain increment DEPV

225 DEPV=R0
226 EPBAR=EPBARN
227 COHE=PLFUN(EPBAR,NHARD,RPROPS(IPHARD))

228 COTPHI=COSPHI/SINPHI
229 RES=COTPHI*COHE-PT
230 C Newton-Raphson iterations for DEPV
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231 DO 60 NRITER=1,MXITER

232 DENOM=COSPHI*COTPHI/SINPSI*DPLFUN(EPBAR,NHARD,RPROPS(IPHARD))+
233 1 BULK
234 DDEPV=-RES/DENOM
235 DEPV=DEPV+DDEPV
236 EPBAR=EPBARN+COSPHI/SINPSI*DEPV
237 COHE=PLFUN(EPBAR,NHARD,RPROPS(IPHARD))
238 P=PT-BULK*DEPV
239 RES=COTPHI*COHE-P
240 C check for convergence

241 RESNOR=ABS(RES)
242 IF(PT.NE.R0)RESNOR=RESNOR/ABS(PT)
243 IF(RESNOR.LE.TOL)THEN
244 APEX=.TRUE.
245 DGAMA=DEPV
246 DGAMB=R0
247 C update principal stresses

248 S1=P
249 S2=P
250 S3=P
251 GOTO 70
252 ENDIF
253 60 CONTINUE
254 SUFAIL=.TRUE.
255 CALL ERRPRT(’WE0003’)
256 GOTO 999
257 70 CONTINUE
258 C update internal variable EPBAR and stress components

259 C -----------------------------------------------------
260 RSTAVA(MSTRE+1)=EPBAR
261 PSTRS(II)=S1
262 PSTRS(JJ)=S3

263 PSTRS(MM)=S2
264 STRES(1)=PSTRS(1)*EIGPRJ(1,1)+PSTRS(2)*EIGPRJ(1,2)

265 STRES(2)=PSTRS(1)*EIGPRJ(2,1)+PSTRS(2)*EIGPRJ(2,2)

266 STRES(3)=PSTRS(1)*EIGPRJ(3,1)+PSTRS(2)*EIGPRJ(3,2)

267 STRES(4)=PSTRS(3)
268 C and elastic engineering strain

269 EEVD3=P/BULK*R1D3
270 RSTAVA(1)=(STRES(1)-P)/R2G+EEVD3
271 RSTAVA(2)=(STRES(2)-P)/R2G+EEVD3
272 RSTAVA(3)=STRES(3)/GMODU
273 RSTAVA(4)=(STRES(4)-P)/R2G+EEVD3
274 ELSE
275 C Elastic step: update stress using linear elastic law

276 C ====================================================
277 STRES(1)=STREST(1)
278 STRES(2)=STREST(2)
279 STRES(3)=STREST(3)
280 STRES(4)=PSTRS(3)
281 C elastic engineering strain

282 RSTAVA(1)=STRAT(1)
283 RSTAVA(2)=STRAT(2)
284 RSTAVA(3)=STRAT(3)

285 RSTAVA(4)=STRAT(4)
286 ENDIF
287 999 CONTINUE
288 C Update algorithmic variables before exit

289 C ========================================
290 DGAM(1)=DGAMA
291 DGAM(2)=DGAMB
292 LALGVA(1)=IFPLAS
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293 LALGVA(2)=SUFAIL
294 LALGVA(3)=EDGE
295 LALGVA(4)=RIGHT
296 LALGVA(5)=APEX
297 RETURN
298 END

The arguments of SUMC

This subroutine has the same list of arguments as SUTR (for the Tresca model implementation
– see page 282). Note, however, that here IPROPS(3) is set in subroutine RDMC. Array RPROPS
of real material properties stores the following in the present case:

RPROPS= [E, ν, sin φ, cos φ, sin ψ, 1ε̄p, 1c, 2ε̄p, 2c, . . . . . . , nhard ε̄p, nhardc],

where ic denote the cohesion at the different points supplied along the (piecewise linear)
isotropic hardening curve. The array LALGVA of logical algorithmic values also differs from
that of the Tresca model implementation. Here, we have:

← LALGVA. For the Mohr–Coulomb model this array contains the plastic yielding flag,
IFPLAS, the state update failure flag SUFAIL, the edge return flag EDGE, the right edge
return flag RIGHT and the apex return flag APEX. Flags IFPLAS and SUFAIL are set
in the same way as in the other material model implementations already described.
The edge return flag is set to .TRUE. if one of the two possible edge return mappings
(right or left edge) is used. It is set to .FALSE. otherwise. The right edge return flag
is set to .TRUE. if the possible edge return is to the right edge and is set to .FALSE.
otherwise. The flag APEX is set to .TRUE. only if the return mapping to the apex is
applied. The flags EDGE, RIGHT and APEX are required by subroutine CTMC to decide
which elastoplastic tangent operator to compute (consistent with main plane, right, left
edge or apex return mapping).

Local variables and arrays and function calls

Subroutine SUMC calls the same functions as and has a very similar structure to its counterpart
SUTR for the Tresca model. Refer to page 283 for a description of important local variables
and arrays.

8.2.3. ACCURACY: ISO-ERROR MAPS

The finite step accuracy of the integration algorithm coded in SUMC is assessed in this section
by means of iso-error maps. The maps constructed here are restricted to the perfectly plastic
Mohr–Coulomb model and associative flow rule with φ = 20o. Three starting points lying
on the deviatoric plane are considered. These are shown in Figure 8.11 together with the
corresponding increment directions. The increment direction vectors T on all three points are
deviatoric. The vector N at point A is normal to the Mohr–Coulomb surface. At points B and
C, N is chosen as the mean normal between the corresponding adjacent planes. Note that, in
view of the pressure sensitivity of the Mohr–Coulomb model, a more comprehensive accuracy
assessment would have to include increments in other directions with more significant
hydrostatic components. For instance, iso-error maps could be plotted for points B and C
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Figure 8.11. Iso-error maps for the Mohr–Coulomb model. Starting points and increment directions.

having the vector T parallel to the corresponding edge of the Mohr–Coulomb pyramid. It is
remarked, however, that the results presented in this section give a very good insight into the
accuracy properties of the present algorithm.

The maps obtained are shown in Figure 8.12. Similarly to the integration algorithm for the
Tresca model (Section 8.1.3), large areas in which the integration error vanishes are observed
in the present case for all starting points. Within some narrow bands, however, the integration
error can be high. Recall that, in the absence of hardening, the present integration algorithm
simply projects the trial stress onto the yield surface along a suitable direction. The reason for
the observed relatively high errors can be verified by performing the projections graphically
in a single step and comparing with the result obtained when the increment is divided into
substeps.

8.2.4. CONSISTENT TANGENT OPERATOR FOR THE MOHR–COULOMB MODEL

The next step for the incorporation of the Mohr–Coulomb model into program HYPLAS is the
derivation of the tangent operator consistent with the integration algorithm of Section 8.2.1
(coded in SUMC). In what follows, only the derivation of the elastoplastic tangent is addressed.

Firstly, it is remarked that the consistent elastoplastic tangent for the Mohr–Coulomb
model is derived here following the same basic ideas that underly the computation of Dep

in the Tresca model implementation; that is, the tangent modulus in the present case is also
computed as the derivative of an isotropic tensor function of a single tensor defined in terms
of principal values (refer to Section 8.1.4 for details of this approach).

Essentially, in order to compute the elastoplastic tangent operator, we need only to derive
expressions for the partial derivatives

∂σ̃i

∂εe trial
j

, i, j = 1, 2, 3

where σ̃i are the implicit functions for the principal updated stresses

σi = σ̃i(εe trial
1 , εe trial

2 , εe trial
3 ), (8.91)
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Figure 8.12. Iso-error maps. Associative Mohr–Coulomb model: (a) point A; (b) point B; and,
(c) point C.

defined by the Mohr–Coulomb integration algorithm. Having computed the principal stress
consistent derivatives, the tangent operator

Dep ≡ dσn+1

dεe trial
n+1

(8.92)

can then be assembled as described in Section A.3 of Appendix A (in the program, the matrix
form of Dep is assembled in subroutine DGISO2).
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Recall that the present model admits four distinct return-mapping sets of equations: return
to main plane, right, left edge and apex.§ For each one there is a different explicit form
for the principal stress derivatives and for Dep. In the finite element program, the actual
form adopted in the assemblage of the tangent stiffness matrix is the one consistent with
the previous application of the return-mapping procedure at the Gauss point in question. The
derivation of the principal stresses derivatives consistent with each of the four possible return
mappings is addressed in what follows.

Principal stress derivatives for the main plane return

The first step in the derivation is to differentiate the main plane return principal stress update
formulae (8.69). This gives

dσ1 = dσtrial1 − [2G(1 + 1
3 sin ψ) + 2K sin ψ] d∆γ

dσ2 = dσtrial2 +
(

4G

3
− 2K

)
sin ψ d∆γ

dσ3 = dσtrial3 + [2G(1 − 1
3 sin ψ) − 2K sin ψ] d∆γ.

(8.93)

The differential of ∆γ is derived by enforcing the linearised consistency condition

dΦ̃ = dσtrial1 − dσtrial3 + (dσtrial1 + dσtrial3 ) sin φ − (4H cos2 φ + a) d∆γ = 0, (8.94)

which is obtained by differentiating (8.71). In this last expression, H is the isotropic
hardening modulus (slope of the hardening curve):

H ≡ dc

dε̄p

∣∣∣∣
ε̄p

n+1

, (8.95)

and the constant a is defined by (8.72). Combination of the two differential forms above,
together with the use of the linear elastic relation

σtrialn+1 = De : εe trial
n+1 , (8.96)

renders the final expressions for the derivatives of the principal stresses. The resulting
expressions – not explicitly written in the present text – are implemented in subroutine CTMC
and can be easily identified from the FORTRAN source code listed in Section 8.2.5. In CTMC,
the computed principal stress derivatives are stored in matrix DPSTRS.

Principal stress derivatives for the edge return mappings

To obtain the principal stress derivatives consistent with the right edge return, we need first
to differentiate the update formulae (8.74) and then substitute the differentials d∆γa and
d∆γb obtained by linearising the consistency equations (8.76). The derivation is lengthier
than the previous one and will not be shown here. The final results can be easily identified
in subroutine CTMC. The same comments apply to the derivation of the derivatives for the left
edge return mapping, whose main steps involve the differentiation of the expressions given
in (8.78) and (8.79).

§The situation here is completely analogous to the Tresca model implementation where three return map equation
sets exist.
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Principal stress derivatives for the apex return

Differentiation of the apex return stress update formulae (8.82) and (8.86)2 yields

dσi = dptrialn+1 − K d∆εp
v

= K (dεtrial1 + dεtrial2 + dεtrial3 − d∆εp
v) (8.97)

for i = 1, 2, 3. By differentiating (8.85), the following linearised consistency condition is
obtained:

H cos φ cot φ

sin ψ
d∆εp

v − K (dεe trial
1 + dεe trial

2 + dεe trial
3 − d∆εp

v) = 0, (8.98)

which rearranged gives

d∆εp
v =

K

K + cos φ cot φ
sin ψ H

(dεtrial1 + dεtrial2 + dεtrial3 ). (8.99)

The substitution of this expression into (8.97) yields the principal stress derivatives consistent
with the apex return mapping:

∂σi

∂εe trial
j

= K

(
1 − K

K + cos φ cot φ
sin ψ H

)
, (8.100)

for i, j = 1, 2, 3.

Remark 8.3. In the absence of hardening (H = 0) all principal stress derivatives consistent
with the apex return vanish. Clearly, as in this case the apex remains fixed in stress space, we
have trivially Dep = 0.

8.2.5. SUBROUTINE CTMC

The computation of the tangent moduli consistent with the integration algorithm for the
Mohr–Coulomb model is implemented in subroutine CTMC (Consistent Tangent for the
Mohr–Coulomb model). This routine is consistent with the algorithm coded in SUMC. It
returns either the elastic tangent or the elastoplastic tangent depending on the entry value
of the logical flag EPFLAG (one of its arguments). When the elastoplastic tangent is required,
consistency with the appropriate return algorithm (main plane, right, left edge or apex) is
defined by the list of logical algorithmic variables passed as arguments in array LALGVAwhose
values are set in routine SUMC. The source code of CTMC is listed in the following.

1 SUBROUTINE CTMC
2 1( DMATX ,EPFLAG ,IPROPS ,LALGVA ,NTYPE ,

3 2 RPROPS ,RSTAVA ,STRAT ,STRES )

4 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

5 PARAMETER(IPHARD=7 ,MDIM=3, MSTRE=4)
6 C Arguments

7 LOGICAL EPFLAG ,LALGVA(5)
8 DIMENSION
9 1 DMATX(MSTRE,MSTRE) ,IPROPS(*) ,RPROPS(*) ,
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10 2 RSTAVA(MSTRE+1) ,STRAT(MSTRE) ,STRES(MSTRE)
11 C Local arrays and variables

12 LOGICAL APEX ,EDGE ,OUTOFP ,RIGHT ,REPEAT
13 DIMENSION
14 1 DPSTRS(MDIM,MDIM) ,EIGPRJ(MSTRE,2) ,FOID(MSTRE,MSTRE) ,

15 2 PSTRS(MDIM) ,PSTRA(MDIM) ,SOID(MSTRE) ,

16 3 STRAC(MSTRE)
17 DATA
18 1 FOID(1,1),FOID(1,2),FOID(1,3),FOID(1,4)/

19 2 1.0D0 ,0.0D0 ,0.0D0 ,0.0D0 /

20 3 FOID(2,1),FOID(2,2),FOID(2,3),FOID(2,4)/

21 4 0.0D0 ,1.0D0 ,0.0D0 ,0.0D0 /

22 5 FOID(3,1),FOID(3,2),FOID(3,3),FOID(3,4)/

23 6 0.0D0 ,0.0D0 ,0.5D0 ,0.0D0 /

24 7 FOID(4,1),FOID(4,2),FOID(4,3),FOID(4,4)/

25 8 0.0D0 ,0.0D0 ,0.0D0 ,1.0D0 /
26 DATA
27 1 SOID(1) ,SOID(2) ,SOID(3) ,SOID(4) /

28 2 1.0D0 ,1.0D0 ,0.0D0 ,1.0D0 /
29 DATA
30 1 RP5 ,R1 ,R2 ,R3 ,R4 /

31 2 0.5D0,1.0D0,2.0D0,3.0D0,4.0D0/
32 C***********************************************************************
33 C COMPUTATION OF CONSISTENT TANGENT MODULUS FOR MOHR-COULOMB TYPE
34 C ELASTO-PLASTIC MATERIAL WITH ASSOCIATIVE/NON-ASSOCIATIVE FLOW RULE AND
35 C PIECE-WISE LINEAR ISOTROPIC HARDENING.
36 C PLANE STRAIN AND AXISYMMETRIC IMPLEMENTATIONS.
37 C***********************************************************************
38 C Stops program if neither plane strain nor axisymmetric state

39 IF(NTYPE.NE.2.AND.NTYPE.NE.3)CALL ERRPRT(’EI0026’)
40 C Current accumulated plastic strain

41 EPBAR=RSTAVA(MSTRE+1)
42 C Set material properties

43 YOUNG=RPROPS(2)
44 POISS=RPROPS(3)
45 SINPHI=RPROPS(4)
46 COSPHI=RPROPS(5)

47 SINPSI=RPROPS(6)
48 NHARD=IPROPS(3)
49 C Set needed algorithmic variables

50 EDGE=LALGVA(3)
51 RIGHT=LALGVA(4)
52 APEX=LALGVA(5)
53 C Set some constants
54 GMODU=YOUNG/(R2*(R1+POISS))
55 BULK=YOUNG/(R3*(R1-R2*POISS))
56 R2G=R2*GMODU
57 R4G=R4*GMODU
58 R2BULK=R2*BULK
59 R2CPHI=R2*COSPHI
60 R4C2PH=R2CPHI*R2CPHI
61 R1D3=R1/R3
62 R2D3=R2*R1D3
63 R2GD3=R2G*R1D3
64 R4GD3=R4G*R1D3
65 IF(EPFLAG)THEN
66 C Compute elastoplastic consistent tangent

67 C ----------------------------------------
68 C Spectral decomposition of the elastic trial strain

69 STRAC(1)=STRAT(1)
70 STRAC(2)=STRAT(2)
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71 STRAC(3)=STRAT(3)*RP5
72 CALL SPDEC2(EIGPRJ,PSTRA,REPEAT,STRAC)

73 PSTRA(3)=STRAT(4)
74 C and current total stress
75 PSTRS(1)=STRES(1)*EIGPRJ(1,1)+STRES(2)*EIGPRJ(2,1)+

76 1 R2*STRES(3)*EIGPRJ(3,1)

77 PSTRS(2)=STRES(1)*EIGPRJ(1,2)+STRES(2)*EIGPRJ(2,2)+

78 1 R2*STRES(3)*EIGPRJ(3,2)

79 PSTRS(3)=STRES(4)
80 C Identify directions of maximum and minimum principal trial stresses

81 II=1
82 JJ=1
83 PSTMAX=PSTRA(II)
84 PSTMIN=PSTRA(JJ)
85 DO 10 I=2,3

86 IF(PSTRA(I).GE.PSTMAX)THEN
87 II=I
88 PSTMAX=PSTRA(II)
89 ENDIF
90 IF(PSTRA(I).LT.PSTMIN)THEN
91 JJ=I
92 PSTMIN=PSTRA(JJ)
93 ENDIF
94 10 CONTINUE
95 IF(II.NE.1.AND.JJ.NE.1)MM=1
96 IF(II.NE.2.AND.JJ.NE.2)MM=2
97 IF(II.NE.3.AND.JJ.NE.3)MM=3
98 IF(EDGE)THEN
99 C Tangent consistent with 2-vector return to edge

100 SPHSPS=SINPHI*SINPSI
101 CONSTA=R4G*(R1+R1D3*SPHSPS)+R4*BULK*SPHSPS
102 IF(RIGHT)THEN
103 CONSTB=R2G*(R1+SINPHI+SINPSI-R1D3*SPHSPS)+R4*BULK*SPHSPS
104 ELSE
105 CONSTB=R2G*(R1-SINPHI-SINPSI-R1D3*SPHSPS)+R4*BULK*SPHSPS
106 ENDIF
107 FACTA=R4C2PH*DPLFUN(EPBAR,NHARD,RPROPS(IPHARD))
108 DRVAA=-CONSTA-FACTA
109 DRVAB=-CONSTB-FACTA
110 DRVBA=-CONSTB-FACTA
111 DRVBB=-CONSTA-FACTA
112 AUX1=R2G*(R1+R1D3*SINPSI)+R2BULK*SINPSI
113 AUX2=(R4GD3-R2BULK)*SINPSI
114 AUX3=R2G*(R1-R1D3*SINPSI)-R2BULK*SINPSI
115 R1DDET=R1/(DRVAA*DRVBB-DRVAB*DRVBA)
116 IF(RIGHT)THEN
117 C ...returned to right edge

118 DPSTRS(II,II)=BULK+R4GD3+AUX1*(-DRVAB+DRVBB+DRVAA-DRVBA)*

119 1 (R2G+(R2BULK+R2GD3)*SINPHI)*R1DDET
120 DPSTRS(II,MM)=BULK-R2GD3+AUX1*(R2G*(DRVAB-DRVAA)+

121 1 ((-DRVAB+DRVBB+DRVAA-DRVBA)*(R2BULK+R2GD3)+
122 2 (DRVBA-DRVBB)*R2G)*SINPHI)*R1DDET
123 DPSTRS(II,JJ)=BULK-R2GD3+AUX1*(R2G*(DRVBA-DRVBB)+

124 1 ((-DRVAB+DRVBB+DRVAA-DRVBA)*(R2BULK+R2GD3)+
125 2 (DRVAB-DRVAA)*R2G)*SINPHI)*R1DDET
126 DPSTRS(MM,II)=BULK-R2GD3+(AUX2*(DRVAB-DRVBB)+AUX3*(DRVBA-

127 1 DRVAA))*(R2G+(R2BULK+R2GD3)*SINPHI)*R1DDET
128 DPSTRS(MM,MM)=BULK+R4GD3+(AUX2*((R2BULK*(DRVAB-DRVBB)+

129 1 (DRVAB*R2GD3+DRVBB*R4GD3))*SINPHI-DRVAB*R2G)+
130 2 AUX3*(DRVAA*R2G+(R2BULK*(DRVBA-DRVAA)-
131 3 (DRVAA*R2GD3+DRVBA*R4GD3))*SINPHI))*R1DDET
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132 DPSTRS(MM,JJ)=BULK-R2GD3+(AUX2*((R2BULK*(DRVAB-DRVBB)-

133 1 (DRVBB*R2GD3+DRVAB*R4GD3))*SINPHI+DRVBB*R2G)+
134 2 AUX3*((R2BULK*(DRVBA-DRVAA)+(DRVAA*R4GD3+
135 3 DRVBA*R2GD3))*SINPHI-DRVBA*R2G))*R1DDET
136 DPSTRS(JJ,II)=BULK-R2GD3+((AUX2*(DRVBA-DRVAA)+AUX3*(DRVAB-

137 1 DRVBB))*((R2BULK+R2GD3)*SINPHI+R2G))*R1DDET
138 DPSTRS(JJ,MM)=BULK-R2GD3+(AUX2*(((R2BULK*(DRVBA-DRVAA)-

139 1 (DRVBA*R4GD3+DRVAA*R2GD3))*SINPHI)+DRVAA*R2G)+
140 2 AUX3*(((R2BULK*(DRVAB-DRVBB)+(DRVAB*R2GD3+
141 3 DRVBB*R4GD3))*SINPHI)-DRVAB*R2G))*R1DDET
142 DPSTRS(JJ,JJ)=BULK+R4GD3+(AUX2*(((R2BULK*(DRVBA-DRVAA)+

143 1 (DRVAA*R4GD3+DRVBA*R2GD3))*SINPHI)-DRVBA*R2G)+
144 2 AUX3*(((R2BULK*(DRVAB-DRVBB)-(DRVAB*R4GD3+
145 3 DRVBB*R2GD3))*SINPHI)+DRVBB*R2G))*R1DDET
146 ELSE
147 C ...returned to left edge

148 DPSTRS(II,II)=BULK+R4GD3+(AUX1*(((R2BULK*(DRVBB-DRVAB)+

149 1 (DRVAB*R4GD3+DRVBB*R2GD3))*SINPHI)+DRVBB*R2G)+
150 2 AUX2*(((R2BULK*(DRVBA-DRVAA)+(DRVAA*R4GD3+
151 3 DRVBA*R2GD3))*SINPHI)+DRVBA*R2G))*R1DDET
152 DPSTRS(II,MM)=BULK-R2GD3+(AUX1*(((R2BULK*(DRVBB-DRVAB)-

153 1 (DRVAB*R2GD3+DRVBB*R4GD3))*SINPHI)-DRVAB*R2G)+
154 2 AUX2*(((R2BULK*(DRVBA-DRVAA)-(DRVAA*R2GD3+
155 3 DRVBA*R4GD3))*SINPHI)-DRVAA*R2G))*R1DDET
156 DPSTRS(II,JJ)=BULK-R2GD3+((AUX1*(DRVBB-DRVAB)+AUX2*(DRVBA-

157 1 DRVAA))*(((R2BULK+R2GD3)*SINPHI)-R2G))*R1DDET
158 DPSTRS(MM,II)=BULK-R2GD3+(AUX1*(((R2BULK*(DRVAA-DRVBA)-

159 1 (DRVAA*R4GD3+DRVBA*R2GD3))*SINPHI)-DRVBA*R2G)+
160 2 AUX2*(((R2BULK*(DRVAB-DRVBB)-(DRVAB*R4GD3+
161 3 DRVBB*R2GD3))*SINPHI)-DRVBB*R2G))*R1DDET
162 DPSTRS(MM,MM)=BULK+R4GD3+(AUX1*(((R2BULK*(DRVAA-DRVBA)+

163 1 (DRVAA*R2GD3+DRVBA*R4GD3))*SINPHI)+DRVAA*R2G)+
164 2 AUX2*(((R2BULK*(DRVAB-DRVBB)+(DRVAB*R2GD3+
165 3 DRVBB*R4GD3))*SINPHI)+DRVAB*R2G))*R1DDET
166 DPSTRS(MM,JJ)=BULK-R2GD3+((AUX1*(DRVAA-DRVBA)+AUX2*(DRVAB-

167 1 DRVBB))*(((R2BULK+R2GD3)*SINPHI)-R2G))*R1DDET
168 DPSTRS(JJ,II)=BULK-R2GD3+(AUX3*(((R2BULK*(DRVAB-DRVBB-DRVAA+

169 1 DRVBA)+(DRVAA-DRVAB)*R4GD3+(DRVBA-DRVBB)*
170 2 R2GD3)*SINPHI)+(DRVBA-DRVBB)*R2G))*R1DDET
171 DPSTRS(JJ,MM)=BULK-R2GD3+(AUX3*(((R2BULK*(DRVAB-DRVBB-DRVAA+

172 1 DRVBA)+(DRVAB-DRVAA)*R2GD3+(DRVBB-DRVBA)*
173 2 R4GD3)*SINPHI)+(DRVAB-DRVAA)*R2G))*R1DDET
174 DPSTRS(JJ,JJ)=BULK+R4GD3+(AUX3*(DRVAB-DRVBB-DRVAA+DRVBA)*

175 1 (((R2BULK+R2GD3)*SINPHI)-R2G))*R1DDET
176 ENDIF
177 ELSEIF(APEX)THEN
178 C Tangent consistent with multi-vector return to apex

179 COTPHI=COSPHI/SINPHI
180 DSIDEJ=BULK*(R1-(BULK/(BULK+
181 1 DPLFUN(EPBAR,NHARD,RPROPS(IPHARD))*COTPHI*COSPHI/

182 2 SINPSI)))
183 DPSTRS(II,II)=DSIDEJ

184 DPSTRS(II,MM)=DSIDEJ

185 DPSTRS(II,JJ)=DSIDEJ

186 DPSTRS(MM,II)=DSIDEJ

187 DPSTRS(MM,MM)=DSIDEJ

188 DPSTRS(MM,JJ)=DSIDEJ

189 DPSTRS(JJ,II)=DSIDEJ

190 DPSTRS(JJ,MM)=DSIDEJ
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191 DPSTRS(JJ,JJ)=DSIDEJ

192 ELSE
193 C Tangent consistent with 1-vector return to main active plane

194 SPHSPS=SINPHI*SINPSI

195 CONSTA=R4G*(R1+R1D3*SPHSPS)+R4*BULK*SPHSPS

196 DENOM=-CONSTA-R4C2PH*DPLFUN(EPBAR,NHARD,RPROPS(IPHARD))

197 B1=(R2G*(R1+R1D3*SINPSI)+R2BULK*SINPSI)/DENOM

198 B2=(R4G*R1D3-R2BULK)*SINPSI/DENOM

199 B3=(R2G*(R1-R1D3*SINPSI)-R2BULK*SINPSI)/DENOM

200 DPSTRS(II,II)=R2G*(R2D3+B1*(R1+R1D3*SINPHI))+

201 1 BULK*(R1+R2*B1*SINPHI)

202 DPSTRS(II,MM)=R1D3*(R3*BULK-R2G)*(R1+R2*B1*SINPHI)

203 DPSTRS(II,JJ)=R2G*(-R1D3-B1*(R1-R1D3*SINPHI))+

204 1 BULK*(R1+R2*B1*SINPHI)

205 DPSTRS(MM,II)=R2G*(-R1D3-B2*(R1+R1D3*SINPHI))+

206 1 BULK*(R1-R2*B2*SINPHI)

207 DPSTRS(MM,MM)=R4G*R1D3*(R1+B2*SINPHI)+BULK*(R1-R2*B2*SINPHI)

208 DPSTRS(MM,JJ)=R2G*(-R1D3+B2*(R1-R1D3*SINPHI))+

209 1 BULK*(R1-R2*B2*SINPHI)

210 DPSTRS(JJ,II)=R2G*(-R1D3-B3*(R1+R1D3*SINPHI))+

211 1 BULK*(R1-R2*B3*SINPHI)

212 DPSTRS(JJ,MM)=R1D3*(R3*BULK-R2G)*(R1-R2*B3*SINPHI)

213 DPSTRS(JJ,JJ)=R2G*(R2D3+B3*(R1-R1D3*SINPHI))+

214 1 BULK*(R1-R2*B3*SINPHI)

215 ENDIF
216 C

217 IF(NTYPE.EQ.2)THEN

218 OUTOFP=.FALSE.

219 ELSEIF(NTYPE.EQ.3)THEN

220 OUTOFP=.TRUE.
221 ENDIF
222 CALL DGISO2

223 1( DPSTRS ,DMATX ,EIGPRJ ,PSTRA ,PSTRS ,

224 2 OUTOFP ,REPEAT )

225 ELSE
226 C Compute elasticity matrix

227 C -------------------------

228 IF(NTYPE.EQ.2)THEN

229 NSTRE=3

230 ELSEIF(NTYPE.EQ.3)THEN

231 NSTRE=4
232 ENDIF
233 FACTOR=BULK-R2G*R1D3
234 DO 50 I=1,NSTRE

235 DO 40 J=I,NSTRE

236 DMATX(I,J)=R2G*FOID(I,J)+FACTOR*SOID(I)*SOID(J)

237 40 CONTINUE
238 50 CONTINUE
239 DO 70 J=1,NSTRE-1

240 DO 60 I=J+1,NSTRE

241 DMATX(I,J)=DMATX(J,I)

242 60 CONTINUE
243 70 CONTINUE
244 ENDIF
245 RETURN
246 END
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The arguments of CTMC

The arguments here are those of SUMC (exept for the array DGAM) plus DMATX and EPFLAG
which carry, respectively, the tangent operator and the elastoplastic flag that indicates whether
the elastic or elastoplastic operator is to be computed in CTMC. The output values of the
arguments of SUMC are taken as input values by CTMC.

Function calls from CTMC

Function calls here are the same as from subroutine CTTR (for the Tresca model implementa-
tion). Refer to page 295.

8.3. The Drucker–Prager model

We now move on to the last model implementation discussed in this chapter. Here we focus on
a Drucker–Prager model with piecewise linear isotropic strain hardening. The most important
results of this section can be found as indicated in the table below.

integration
algorithm

flowchart

pseudo-code

FORTRAN code

Figure 8.15

Boxes 8.8–8.10

subroutine SUDP
(Section 8.3.2)

iso-error map Figure 8.16

consistent tangent
– FORTRAN code –

subroutine CTDP
(Section 8.3.5)

Following the format of the previous sections, a brief summary of the constitutive
equations adopted in the present implementation is presented below.

The implemented Drucker–Prager constitutive equations

The Drucker–Prager yield surface is defined by means of the yield function

Φ(σ, c) =
√

J2(s(σ)) + η p(σ) − ξ c, (8.101)

where
J2 = 1

2s : s; s = σ − p(σ) I, (8.102)

p = 1/3 tr[σ] is the hydrostatic pressure and c is the cohesion. The constants η and
ξ are chosen according to the required approximation to the Mohr–Coulomb criterion.
Their formulae for outer edge, inner edge, plane strain, uniaxial tension/compression and
biaxial tension/compression matching are given, respectively, by expressions (6.122), (6.123)
and (6.124), (6.126) and (6.127).
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The generally non-associative flow rule is adopted in the present implementation of the
Drucker–Prager model. The corresponding flow potential is

Ψ(σ, c) =
√

J2(s(σ)) + η̄ p(σ), (8.103)

where the constant η̄ depends on the dilatancy angle, ψ, and according to the adopted
Drucker–Prager approximation to the Mohr–Coulomb law may be given by (6.163), (6.164)
or (6.165) respectively for the outer, inner edge and plane strain match. The flow rule reads

ε̇p = γ̇ N, (8.104)

where, on the smooth portion of the yield surface, the flow vector is given by

N =
∂Ψ
∂σ

=
1

2
√

J2(s)
s +

η̄

3
I. (8.105)

At the cone apex, where the potential is singular, the flow vector is a subgradient of Ψ; that
is, N is a vector contained in the complementary cone (refer to the schematic illustration of
Figure 6.20(b), page 176).

As for the Mohr–Coulomb implementation of the previous section, associative isotropic
strain hardening is adopted here. The hardening law is defined by (8.61), together with the
associative evolution equation for the accumulated plastic strain derived for Drucker–Prager
plasticity in Section 6.6.3:

˙̄εp = γ̇ ξ. (8.106)

Analogously to the Mohr–Coulomb implementation, the Drucker–Prager counterpart of
relation (8.64):

˙̄εp =
ξ

η̄
ε̇p
v, (8.107)

will be needed in the derivation of the return-mapping equation for the apex of the Drucker–
Prager cone. This relation is obtained by combining the non-associative version of (6.161)
with the evolution law (8.106).

8.3.1. INTEGRATION ALGORITHM FOR THE DRUCKER–PRAGER MODEL

The integration algorithm for the Drucker–Prager model is simpler than its counterparts
presented earlier in this chapter for the Tresca and Mohr–Coulomb models. This relative
simplicity stems from two main features of the present material model. Firstly, only one
singularity exists in the Drucker–Prager yield surface – its apex. This is in contrast with
the two and three possible singularities identified, respectively, in the implementation of the
Tresca and Mohr–Coulomb models. Secondly, the Drucker–Prager yield surface, as well as
the flow vector field resulting from the generally non-associative flow potential, are fully
symmetric about the hydrostatic axis.

Consider the general return-mapping update formula for the stress tensor for materials
with linear elastic law:

σn+1 = σtrialn+1 − ∆γ De : Nn+1, (8.108)

where −∆γ De : Nn+1 is the return vector. As a consequence of the symmetry about the
pressure axis (see Figure 6.20, page 176), whenever the above formula is applied (regardless
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of whether σn+1 lies on the smooth portion of the cone or on its apex), the return vector
is always parallel to the plane that contains σtrialn+1 and the hydrostatic axis (see Figure 8.14,
page 329). Thus, without loss of generality, the return-mapping algorithm can be completely
formulated in such a plane of the stress space. The corresponding algorithms are derived in
what follows. Note that, since the definition of the flow vector Nn+1 in the smooth portion
of the cone differs from that at the apex singularity, two possible explicit forms exist for the
return-mapping algorithm. These are treated separately below.

Return to the smooth portion of the cone

On the smooth portion of the cone, the flow vector is defined by (8.105). The corresponding
increment of plastic strain then reads

∆εp = ∆γ Nn+1 = ∆γ

(
1

2
√

J2(s)
sn+1 +

η̄

3
I

)
. (8.109)

The corresponding stress update formula is

σn+1 = σtrialn+1 − ∆γ[2G (Nd)n+1 + K (Nv)n+1]

= σtrialn+1 − ∆γ

(
G√
J2(s)

sn+1 +
K η̄

3
I

)
. (8.110)

Simplification of the above expression can be obtained by noting that, due to the definition of
J2, the following identity holds

sn+1

J2(sn+1)
=

strialn+1

J2(strialn+1)
. (8.111)

Its substitution into the stress update formula gives

σn+1 = σtrialn+1 − ∆γ

(
G√

J2(strial)
strialn+1 +

K η̄

3
I

)
, (8.112)

which, equivalently, in terms of deviatoric and hydrostatic components reads

sn+1 =
(

1 − G ∆γ√
J2(strialn+1)

)
strialn+1

pn+1 = ptrialn+1 − K η̄ ∆γ.

(8.113)

It should be noted that the deviatoric updated stress, sn+1, is obtained by simply scaling down
the trial deviatoric stress, strialn+1, by a factor that depends on ∆γ. Recall that in the von Mises
implicit return mapping derived in Chapter 7 the updated deviatoric stress is also obtained by
scaling its elastic trial counterpart.

The consistency condition in the present case is given by

Φn+1 ≡
√

J2(sn+1) + η pn+1 − ξ c(ε̄p
n+1) = 0, (8.114)
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where the update accumulated plastic strain is obtained from the discrete version of (8.106):

ε̄p
n+1 = ε̄p

n + ∆ε̄p (8.115)

with
∆ε̄p = ξ ∆γ. (8.116)

The substitution of the above expression and (8.113) into the consistency condition results
in the following (generally nonlinear) equation for ∆γ:

Φ̃(∆γ) ≡
√

J2(strialn+1) − G ∆γ + η (ptrialn+1 − K η̄ ∆γ)

− ξ c(ε̄p
n + ξ ∆γ) = 0. (8.117)

After solution of the above equation, the stress is updated by (8.113).

Return to the apex

At the apex, the return vector must be contained in the complementary cone schematically
illustrated in Figure 6.20(b) of page 176. The derivation of the return-mapping procedure
in this case is completely analogous to that of the Mohr–Coulomb apex return described in
item 4 of page 299. The consistency condition (8.114) is reduced to

c(ε̄p
n + ∆ε̄p)

ξ

η̄
− ptrialn+1 + K ∆εp

v = 0. (8.118)

Further, with the introduction of the discretised form of (8.107) in the above equation, we
obtain the final return-mapping equation for the Drucker–Prager apex:

r(∆εp
v) ≡ c(ε̄p

n + α∆εp
v) β − ptrialn+1 + K ∆εp

v = 0, (8.119)

where

α ≡ ξ

η
, β ≡ ξ

η̄
. (8.120)

This equation is analogous to the return-mapping equation (8.85) of the Mohr–Coulomb
implementation. Its geometrical representation is shown in Figure 8.13. After the solution
of (8.119) for ∆εp

v, we update

ε̄p
n+1 := ε̄p

n + α∆εp
v,

σn+1 := (ptrialn+1 − K ∆εp
v) I.

(8.121)

Note that for non-dilatant flow (η̄ = 0), the return to apex does not make sense in the present
context and the comments made immediately after expression (8.86) for the Mohr–Coulomb
implementation apply.

Remark 8.4. For perfectly plastic materials, c is constant and, for linearly hardening models,
the hardening function reads c(ε̄p) = c0 + H ε̄p, where H denotes the hardening modulus.
In such cases, the return-mapping equations (8.117) and (8.119) respectively for the smooth
portion and apex of the Drucker–Prager cone are linear and ∆γ is computed in closed form.
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Figure 8.13. Drucker–Prager model. Return mapping to apex.

Selection of the appropriate return mapping

Having derived the two possible forms of return mapping for the Drucker–Prager model, a
strategy for selection of the appropriate one is necessary for the complete definition of the
integration algorithm. Recall that the purpose of the selection procedure is to ensure that the
validated return mapping – in the present case, either the return to the smooth wall or the
return to the apex – rigorously satisfies the general implicit return-mapping equations (7.25),
derived in Chapter 7.

The selection strategy for the Drucker–Prager model is simple. There are only two possible
return mappings. Thus, if the application of one of them generates a contradiction, then the
other one must be valid. A possible selection strategy is summarised in the following steps
(refer to Figure 8.14 for a graphical representation):

• Firstly, apply the return algorithm to the smooth part of the Drucker–Prager cone. From
the corresponding deviatoric stress update formula (8.113)1, it follows that

√
J2(sn+1) =

√
J2(strialn+1) − G ∆γ. (8.122)

If, after determination of ∆γ from the related consistency condition, the following is
satisfied

acone ≡
√

J2(strialn+1) − G ∆γ ≥ 0, (8.123)

then the returned stress indeed lies on the Drucker–Prager cone and the return mapping
is validated.

• Otherwise, the returned stress lies outside the updated elastic domain and is not
admissible. In this case, the return mapping to the apex must be applied. The results
obtained by the apex return are then necessarily valid.

The above selection procedure ensures the consistency of the selected return algorithm
regardless of any prescribed hardening/softening law.
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Figure 8.14. Drucker–Prager model. Selection of appropriate return mapping.

The overall integration algorithm

Essentially, the overall integration algorithm for the Drucker–Prager model comprises the
elastic predictor stage – which is common to all models addressed in this chapter –
followed by the two return mappings described above, with the associated selection strategy.
A flowchart of the procedure is shown in Figure 8.15. The corresponding pseudo-code is
summarised in Boxes 8.8–8.10. The integration algorithm for the Drucker–Prager model has
been implemented in subroutine SUDP of program HYPLAS and is explained in detail below.
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apply one-vector return mapping
to smooth part of cone – obtain:
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Figure 8.15. Flowchart of the implicit elastic predictor/return-mapping scheme for the Drucker–Prager
model. Procedure implemented in subroutine SUDP of program HYPLAS.
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Box 8.8. Implicit elastic predictor/return-mapping algorithm for the Drucker–
Prager model.

HYPLAS procedure: SUDP

(i) Elastic predictor. Given ∆ε and the state variables at tn, evaluate the elastic trial state

εe trial
n+1 := εe

n + ∆ε ε̄p trial
n+1 := ε̄p

n

strial
n+1 := 2G εe trial

d n+1 ptrial
n+1 := K εe trial

v n+1

(ii) Check plastic admissibility

IF
√

J2(strial
n+1) + η ptrial

n+1 − ξ c(ε̄p trial
n+1 ) ≤ 0

THEN set (·)n+1 := (·)trialn+1 and EXIT

(iii) Return mapping

(a) Return to smooth portion of cone – GOTO Box 8.9

(b) Check validity

IF
√

J2(strial
n+1) − G ∆γ ≥ 0

THEN return is valid – GOTO (iv)

(c) Return to apex – GOTO Box 8.10

(iv) Update elastic strain

εe
n+1 :=

1

2G
sn+1 +

pn+1

3K
I

(v) EXIT
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Box 8.9. The Drucker–Prager model. Return mapping to smooth portion of cone.

HYPLAS procedure: SUDP

(i) Set initial guess for ∆γ
∆γ := 0, ε̄p

n+1 := ε̄p
n

and corresponding residual (yield function value)

Φ̃ :=
√

J2(strial
n+1) + η ptrial

n+1 − ξ c(ε̄p
n)

(ii) Perform Newton–Raphson iteration for ∆γ

H :=
dc

dε̄p

∣∣∣∣
ε̄

p
n+1

(hardening slope)

d :=
dΦ̃

d∆γ
= −G − Kη̄η − ξ2H (residual derivative)

∆γ := ∆γ − Φ̃/d (new guess for ∆γ)

(iii) Check convergence

ε̄p
n+1 := ε̄p

n + ξ ∆γ

Φ̃ :=
√

J2(strial
n+1) − G∆γ + η (ptrial − K η̄ ∆γ) − ξ c(ε̄p

n+1)

IF |Φ̃| ≤ εtol THEN update

sn+1 :=

(
1 − G ∆γ√

J2(strial
n+1)

)
strial

n+1

pn+1 := ptrial
n+1 − K η̄ ∆γ

and RETURN to Box 8.8

(iv) GOTO (ii)
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Box 8.10. The Drucker–Prager model. Return mapping to apex.

HYPLAS procedure: SUDP

(i) Set initial guess for ∆εp
v

∆εp
v := 0, ε̄p

n+1 := ε̄p
n

and corresponding residual (refer to equation (8.119))

r := c(ε̄p
n) β − ptrial

n+1

(ii) Perform Newton–Raphson iteration for ∆εp
v

H :=
dc

dε̄p

∣∣∣∣
ε̄

p
n+1

(hardening slope)

d := αβH + K (residual derivative)

∆εp
v := ∆εp

v − r/d (update ∆εp
v)

(iii) Compute new residual and check convergence

ε̄p
n+1 := ε̄p

n + α∆εp
v

pn+1 := ptrial
n+1 − K ∆εp

v

r := β c(ε̄p
n+1) − pn+1

IF |r| ≤ εtol THEN update

σn+1 := pn+1 I

and RETURN to Box 8.4

(iv) GOTO (ii)
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8.3.2. SUBROUTINE SUDP

The above integration algorithm has been implemented in subroutine SUDP (State Update
procedure for the Drucker–Prager model) of program HYPLAS. As in the Mohr–Coulomb
implementation of subroutine SUMC (Section 8.2.2), a general piecewise isotropic hardening
law is assumed with the (user-supplied) hardening curve defined by a set of pairs:

{iε̄p, ic}.

The source code of SUDP is listed below.

1 SUBROUTINE SUDP
2 1( DGAM ,IPROPS ,LALGVA ,NTYPE ,RPROPS ,

3 2 RSTAVA ,STRAT ,STRES )

4 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

5 PARAMETER(IPHARD=7 ,MSTRE=4)

6 LOGICAL APEX, IFPLAS, LALGVA(3), SUFAIL
7 DIMENSION
8 1 IPROPS(*) ,RPROPS(*) ,RSTAVA(MSTRE+1) ,

9 2 STRAT(MSTRE) ,STRES(MSTRE)
10 DIMENSION
11 1 STRIAL(MSTRE)
12 DATA
13 1 R0 ,RP5 ,R1 ,R2 ,R3 ,TOL /

14 2 0.0D0,0.5D0,1.0D0,2.0D0,3.0D0,1.D-08/

15 DATA MAXRT / 50 /
16 C***********************************************************************
17 C STRESS UPDATE PROCEDURE FOR DRUCKER PRAGER TYPE ELASTO-PLASTIC
18 C MATERIAL WITH ASSOCIATIVE/NON-ASSOCIATIVE FLOW RULE AND PIECE_WISE
19 C LINEAR ISOTROPIC HARDENING:
20 C IMPLICIT ELASTIC PREDICTOR/RETURN MAPPING ALGORITHM (Boxes 8.8-10)
21 C***********************************************************************
22 C Stops program if neither plane strain nor axisymmetric

23 IF(NTYPE.NE.2.AND.NTYPE.NE.3)CALL ERRPRT(’EI0016’)
24 C Initialize some algorithmic and internal variables

25 DGAMA=R0
26 IFPLAS=.FALSE.
27 SUFAIL=.FALSE.
28 EPBARN=RSTAVA(MSTRE+1)
29 EPBAR=EPBARN
30 C Set some material properties

31 YOUNG=RPROPS(2)
32 POISS=RPROPS(3)
33 ETA=RPROPS(4)
34 XI=RPROPS(5)
35 ETABAR=RPROPS(6)
36 NHARD=IPROPS(3)
37 C and some constants
38 GMODU=YOUNG/(R2*(R1+POISS))
39 BULK=YOUNG/(R3*(R1-R2*POISS))
40 R2G=R2*GMODU
41 R1D3=R1/R3
42 C Compute elastic trial state

43 C ---------------------------
44 C Elastic trial volumetric strain and pressure stress

45 EETV=STRAT(1)+STRAT(2)+STRAT(4)
46 PT=BULK*EETV
47 C Elastic trial deviatoric stress
48 EEVD3=EETV*R1D3
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49 STRIAL(1)=R2G*(STRAT(1)-EEVD3)
50 STRIAL(2)=R2G*(STRAT(2)-EEVD3)
51 STRIAL(4)=R2G*(STRAT(4)-EEVD3)
52 C shear component

53 STRIAL(3)=R2G*(STRAT(3)*RP5)
54 C Compute elastic trial stress J2 invariant and cohesion

55 VARJ2T=STRIAL(3)*STRIAL(3)+RP5*(STRIAL(1)*STRIAL(1)+
56 1 STRIAL(2)*STRIAL(2)+STRIAL(4)*STRIAL(4))
57 COHE=PLFUN(EPBARN,NHARD,RPROPS(IPHARD))
58 C Check for plastic consistency

59 C -----------------------------
60 SQRJ2T=SQRT(VARJ2T)
61 PHI=SQRJ2T+ETA*PT-XI*COHE
62 RES=PHI
63 IF(COHE.NE.R0)RES=RES/ABS(COHE)
64 IF(RES.GT.TOL)THEN
65 C Plastic step: Use return mapping

66 C ================================
67 IFPLAS=.TRUE.
68 APEX=.FALSE.
69 C Apply return mapping to smooth portion of cone - Box 8.9

70 C --------------------------------------------------------
71 DO 20 IPTER1=1,MAXRT
72 C Compute residual derivative

73 DENOM=-GMODU-BULK*ETABAR*ETA-
74 1 XI*XI*DPLFUN(EPBAR,NHARD,RPROPS(IPHARD))
75 C Compute Newton-Raphson increment and update variable DGAMA

76 DDGAMA=-PHI/DENOM
77 DGAMA=DGAMA+DDGAMA
78 C Compute new residual

79 EPBAR=EPBARN+XI*DGAMA
80 COHE=PLFUN(EPBAR,NHARD,RPROPS(IPHARD))
81 SQRJ2=SQRJ2T-GMODU*DGAMA
82 P=PT-BULK*ETABAR*DGAMA
83 PHI=SQRJ2+ETA*P-XI*COHE
84 C Check convergence

85 RESNOR=ABS(PHI)
86 IF(COHE.NE.R0)RESNOR=RESNOR/ABS(COHE)
87 IF(RESNOR.LE.TOL)THEN
88 C Check validity of return to smooth portion

89 IF(SQRJ2.GE.R0)THEN
90 C results are valid, update stress components and other variables

91 IF(SQRJ2T.EQ.R0)THEN
92 FACTOR=R0
93 ELSE
94 FACTOR=R1-GMODU*DGAMA/SQRJ2T
95 ENDIF
96 GOTO 50
97 ELSE
98 C smooth wall return not valid - go to apex return procedure

99 GOTO 30
100 ENDIF
101 ENDIF
102 20 CONTINUE
103 C failure of stress update procedure

104 SUFAIL=.TRUE.
105 CALL ERRPRT(’WE0002’)
106 GOTO 999
107 30 CONTINUE
108 C Apply return mapping to APEX - Box 8.10

109 C ---------------------------------------
110 C perform checks and set some variables
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111 APEX=.TRUE.
112 IF(ETA.EQ.R0)CALL ERRPRT(’EE0011’)

113 IF(ETABAR.EQ.R0)CALL ERRPRT(’EE0012’)

114 ALPHA=XI/ETABAR
115 BETA=XI/ETA
116 C Set initial guess for unknown DEPV and start iterations

117 DEPV=R0
118 EPBAR=EPBARN
119 COHE=PLFUN(EPBAR,NHARD,RPROPS(IPHARD))
120 RES=BETA*COHE-PT
121 DO 40 IPTER2=1,MAXRT

122 DENOM=ALPHA*BETA*DPLFUN(EPBAR,NHARD,RPROPS(IPHARD))+BULK
123 C Compute Newton-Raphson increment and update variable DEPV

124 DDEPV=-RES/DENOM
125 DEPV=DEPV+DDEPV
126 C Compute new residual

127 EPBAR=EPBARN+ALPHA*DEPV
128 COHE=PLFUN(EPBAR,NHARD,RPROPS(IPHARD))
129 P=PT-BULK*DEPV
130 RES=BETA*COHE-P
131 C Check convergence

132 RESNOR=ABS(RES)
133 IF(COHE.NE.R0)RESNOR=RESNOR/ABS(COHE)

134 IF(RESNOR.LE.TOL)THEN
135 C update stress components and other variables

136 DGAMA=DEPV/ETABAR
137 FACTOR=R0
138 GOTO 50
139 ENDIF
140 40 CONTINUE
141 C failure of stress update procedure

142 SUFAIL=.TRUE.
143 CALL ERRPRT(’WE0002’)
144 GOTO 999
145 C Store converged stress components and other state variables

146 C -----------------------------------------------------------
147 50 CONTINUE
148 STRES(1)=FACTOR*STRIAL(1)+P
149 STRES(2)=FACTOR*STRIAL(2)+P

150 STRES(3)=FACTOR*STRIAL(3)
151 STRES(4)=FACTOR*STRIAL(4)+P
152 C update EPBAR

153 RSTAVA(MSTRE+1)=EPBAR

154 C compute converged elastic (engineering) strain components

155 FACTOR=FACTOR/R2G

156 EEVD3=P/(BULK*R3)
157 RSTAVA(1)=FACTOR*STRIAL(1)+EEVD3
158 RSTAVA(2)=FACTOR*STRIAL(2)+EEVD3

159 RSTAVA(3)=FACTOR*STRIAL(3)*R2
160 RSTAVA(4)=FACTOR*STRIAL(4)+EEVD3
161 ELSE
162 C Elastic step: update stress using linear elastic law

163 C ====================================================
164 STRES(1)=STRIAL(1)+PT

165 STRES(2)=STRIAL(2)+PT
166 STRES(3)=STRIAL(3)
167 STRES(4)=STRIAL(4)+PT
168 C elastic engineering strain

169 RSTAVA(1)=STRAT(1)
170 RSTAVA(2)=STRAT(2)
171 RSTAVA(3)=STRAT(3)
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172 RSTAVA(4)=STRAT(4)
173 ENDIF
174 999 CONTINUE
175 C Update some algorithmic variables before exit

176 C =============================================
177 LALGVA(1)=IFPLAS
178 LALGVA(2)=SUFAIL
179 LALGVA(3)=APEX
180 DGAM=DGAMA
181 RETURN
182 END

The arguments of SUDP

The arguments of SUDP are the same as those of SUMC (refer to list on page 315) for the Mohr–
Coulomb model implementation. Note, however, that in the present case IPROPS(3) is set in
subroutine RDDP. Also, for the Drucker–Prager model, array RPROPS stores the following:

RPROPS= [E, ν, η, ξ, η̄, 1ε̄p, 1c, 2ε̄p, 2c, . . . . . . , nhard ε̄p, nhardc],

and array LALGVA is defined as

← LALGVA. For the Drucker–Prager model this array contains the plastic yielding flag,
IFPLAS, the state update failure flag SUFAIL and the apex return flag APEX. Flags
IFPLAS and SUFAIL are set in the same way as in the previous implementations
discussed. The apex return flag is set to .TRUE. if the return mapping to the apex is
selected. It is set to .FALSE. otherwise. The logical flag APEX is required by subroutine
CTDP to decide which elastoplastic tangent operator to compute (consistent with the
return to either the smooth part or apex of the Drucker–Prager cone).

8.3.3. ISO-ERROR MAP

An iso-error map for the integration algorithm described above for the Drucker–Prager model
is presented in this section. The analysis is restricted to the perfectly plastic case with
associative flow rule. The Drucker–Prager parameters adopted in the test are chosen so as
to match the outer edges of the Mohr–Coulomb criterion with frictional angle φ = 20o. Due
to the symmetry of the Drucker–Prager yield surface about the hydrostatic axis, the error
maps obtained from all points within the same cross-section of the Drucker–Prager cone
are identical. Here the error map is constructed having a generic point of the deviatoric
plane as the starting point. The unit tensors N and T defining the increment directions are,
respectively, normal and tangent to the yield surface. The tangent tensor here is deviatoric.
The resulting error map is plotted in Figure 8.16. The increment normalising factor q is the
von Mises effective stress at the starting point. Due to the pressure-sensitivity of the model
(as for the Mohr–Coulomb case), a more comprehensive accuracy assessment would require
increments in other directions, i.e. with non-deviatoric tangents to the yield surface as well.

8.3.4. CONSISTENT TANGENT OPERATOR FOR THE DRUCKER–PRAGER MODEL

Again, the elastic tangent is the standard elasticity matrix so that the derivation below is
focused only on the elastoplastic tangents associated with the integration algorithm described
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Figure 8.16. Iso-error map. Drucker–Prager model with associative flow.

above for the Drucker–Prager model. For this model, there are two possible elastoplastic
tangents: one consistent with the return to the smooth portion of the cone and the other
consistent with the return to the apex. Following the procedure adopted in the implementation
of the Tresca and Mohr–Coulomb models where, respectively, three and four elastoplastic
explicit forms of tangent exist, the actual elastoplastic tangents used to assemble the stiffness
matrix are the ones consistent with the last application of the return-mapping procedure at
each Gauss point.

Tangent consistent with the smooth portion return

Firstly, let us consider the deviatoric stress update formula of the return mapping to the
smooth part of the cone:

sn+1 =
(

1 − G ∆γ√
J2(strial)

)
strialn+1 = 2G

(
1 − ∆γ√

2 ‖εe trial
d n+1‖

)
εe trial
d n+1. (8.124)

Straightforward differentiation of the above expression yields

dsn+1 = 2G

[(
1 − ∆γ√

2 ‖εe trial
d n+1‖

)
dεe trial
d n+1

+
∆γ√

2 ‖εe trial
d n+1‖

D ⊗ D : dεe trial
d n+1 −

1√
2

d∆γ D

]
, (8.125)

where the second-order tensor D is the unit tensor parallel to εe trial
d n+1:

D ≡
εe trial
d n+1

‖εe trial
d n+1‖

. (8.126)

Similarly, the differentiation of the hydrostatic pressure update formula

pn+1 = ptrialn+1 − Kη̄ ∆γ = K(εe trial
v n+1 − η̄ ∆γ), (8.127)
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gives
dpn+1 = K (dεe trial

v n+1 − η̄ d∆γ). (8.128)

The expression relating d∆γ and the differentials of trial strain is obtained by linearising the
consistency condition (8.117). The linearisation of (8.117), in conjunction with the use of the
elastic relation, gives the following equation:

dΦ̃ =
√

2 G D : dεe trial
d n+1 + Kη dεe trial

v n+1

− (G + Kηη̄ + ξ2H) d∆γ = 0, (8.129)

which results in the identity

d∆γ =
1

G + Kηη̄ + ξ2H
(
√

2 G D : dεe trial
d n+1 + Kη dεe trial

v n+1). (8.130)

Finally, with the substitution of (8.130) into (8.125) and (8.128), and use of the identity

Dep ≡ dσn+1

dεe trial
n+1

=
dsn+1

dεe trial
n+1

+ I ⊗ dpn+1

dεe trial
n+1

, (8.131)

the explicit expression for the elastoplastic tangent consistent with the one-vector return is
obtained after some straightforward manipulations as

Dep = 2G

(
1 − ∆γ√

2‖εe trial
d n+1‖

)
Id + 2G

(
∆γ√

2‖εe trial
d n+1‖

− GA

)
D ⊗ D

−
√

2 GAK (η D ⊗ I + η̄ I ⊗ D) + K (1 − Kηη̄A) I ⊗ I, (8.132)

where Id is the deviatoric projection tensor and A is defined as

A =
1

G + Kηη̄ + ξ2H
. (8.133)

Tangent consistent with the return mapping to the apex

Since the stress deviator, sn+1, vanishes at the apex, the differential of the updated stress
consistent with the application of the apex return is simply

dσn+1 = dpn+1 I. (8.134)

Accordingly, the associated elastoplastic tangent modulus is given by

Dep ≡ dσn+1

dεe trial
n+1

= I ⊗ dpn+1

dεe trial
n+1

. (8.135)

Now, recall the hydrostatic pressure update formula:

pn+1 = ptrialn+1 − K ∆εp
v. (8.136)

Its differentiation gives
dpn+1 = K I : dεe trial

n+1 − K d∆εp
v. (8.137)
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The explicit expression for the d∆εp
v in terms of the elastic trial strain differential is obtained

by differentiating the residual equation (8.119). This gives

dr = (K + αβH) d∆εp
v − K I : dεe trial

n+1 = 0 (8.138)

and yields the expression

d∆εp
v =
(

K

K + αβH

)
I : dεe trial

n+1 . (8.139)

Finally, with the substitution of the above formula into (8.137) and use of (8.135) we obtain
the expression for the tangent operator consistent with the apex return mapping:

Dep = K

(
1 − K

K + αβH

)
I ⊗ I. (8.140)

This formula is in complete analogy with that of the apex return for the Mohr–Coulomb
model, given by (8.100) in terms of principal stress derivatives.

Remark 8.5. The comments made in Remark 8.3 are equally valid for the Drucker–Prager
model. Note that, in the absence of hardening (H = 0) the above tangent operator vanishes.

8.3.5. SUBROUTINE CTDP

The computation of the tangent modulus consistent with the implicit elastic predictor/return-
mapping scheme for the Drucker–Prager model is performed in subroutine CTDP (Consistent
Tangent modulus for the Drucker–Prager model). The implicit algorithm with which the
present tangent computation is consistent is coded in subroutine SUDP. This routine returns
either the standard elastic tangent or the consistent elastoplastic tangent operator depending
on the entry value of the logical argument EPFLAG. The elastoplastic tangents computed
in CTDP are those given by expressions (8.132) and (8.140). If the elastoplastic tangent is
requested, the decision on whether to compute the tangent consistent with the return mapping
to the smooth part of the cone or the return mapping to the apex is made based on the
entry value of the logical algorithmic variable APEX stored in array LALGVA. The actual
tangent computed is consistent with the last application of the return mapping (in the Gauss
integration point of interest) carried out in SUDP. The source code of CTDP is listed below.

1 SUBROUTINE CTDP
2 1( DGAM ,DMATX ,EPFLAG ,IPROPS ,LALGVA ,

3 2 NTYPE ,RPROPS ,RSTAVA ,STRAT )

4 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

5 PARAMETER(IPHARD=7 ,MSTRE=4)

6 LOGICAL APEX, EPFLAG, LALGVA(3)
7 DIMENSION
8 1 DMATX(MSTRE,MSTRE),IPROPS(*) ,RPROPS(*) ,

9 2 RSTAVA(MSTRE+1) ,STRAT(MSTRE)
10 DIMENSION
11 1 EETD(MSTRE) ,FOID(MSTRE,MSTRE) ,SOID(MSTRE) ,

12 2 UNIDEV(MSTRE)
13 DATA
14 1 FOID(1,1),FOID(1,2),FOID(1,3),FOID(1,4)/
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15 2 1.0D0 ,0.0D0 ,0.0D0 ,0.0D0 /

16 3 FOID(2,1),FOID(2,2),FOID(2,3),FOID(2,4)/

17 4 0.0D0 ,1.0D0 ,0.0D0 ,0.0D0 /

18 5 FOID(3,1),FOID(3,2),FOID(3,3),FOID(3,4)/

19 6 0.0D0 ,0.0D0 ,0.5D0 ,0.0D0 /

20 7 FOID(4,1),FOID(4,2),FOID(4,3),FOID(4,4)/

21 8 0.0D0 ,0.0D0 ,0.0D0 ,1.0D0 /
22 DATA
23 1 SOID(1) ,SOID(2) ,SOID(3) ,SOID(4) /

24 2 1.0D0 ,1.0D0 ,0.0D0 ,1.0D0 /
25 DATA
26 1 R0 ,R1 ,RP5 ,R2 ,R3 /

27 2 0.0D0,1.0D0,0.5D0,2.0D0,3.0D0/
28 C***********************************************************************
29 C COMPUTATION OF CONSISTENT TANGENT MODULUS FOR DRUCKER-PRAGER TYPE
30 C ELASTO-PLASTIC MATERIAL WITH ASSOCIATIVE/NON-ASSOCIATIVE FLOW RULE AND
31 C PIECE-WISE LINEAR ISOTROPIC HARDENING
32 C***********************************************************************
33 IF(NTYPE.EQ.2)THEN
34 NSTRE=3
35 ELSEIF(NTYPE.EQ.3)THEN
36 NSTRE=4
37 ELSE
38 CALL ERRPRT(’EI0017’)
39 ENDIF
40 C Retrieve accumulated plastic strain, DGAMA and APEX algorithm flag

41 EPBAR=RSTAVA(MSTRE+1)
42 DGAMA=DGAM
43 APEX=LALGVA(3)
44 C Set some material properties

45 YOUNG=RPROPS(2)

46 POISS=RPROPS(3)
47 ETA=RPROPS(4)
48 XI=RPROPS(5)

49 ETABAR=RPROPS(6)
50 NHARD=IPROPS(3)
51 C and some constants
52 GMODU=YOUNG/(R2*(R1+POISS))
53 BULK=YOUNG/(R3*(R1-R2*POISS))
54 R2G=R2*GMODU
55 R1D3=R1/R3
56 ROOT2=SQRT(R2)
57 C
58 IF(EPFLAG)THEN
59 C Compute elastoplastic consistent tangent

60 C ========================================
61 C Hardening slope

62 HSLOPE=DPLFUN(EPBAR,NHARD,RPROPS(IPHARD))

63 IF(APEX)THEN
64 C Elastoplastic tangent consistent with apex return

65 C -------------------------------------------------
66 ALPHA=XI/ETABAR
67 BETA=XI/ETA

68 AFACT=BULK*(R1-BULK/(BULK+ALPHA*BETA*HSLOPE))
69 DO 20 I=1,NSTRE
70 DO 10 J=1,NSTRE

71 DMATX(I,J)=AFACT*SOID(I)*SOID(J)
72 10 CONTINUE
73 20 CONTINUE
74 ELSE
75 C Elastoplastic tangent consistent with smooth cone wall return
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76 C -------------------------------------------------------------

77 C Elastic trial deviatoric (physical) strain

78 EEVD3=(STRAT(1)+STRAT(2)+STRAT(4))*R1D3

79 EETD(1)=STRAT(1)-EEVD3

80 EETD(2)=STRAT(2)-EEVD3

81 EETD(3)=STRAT(3)*RP5

82 EETD(4)=STRAT(4)-EEVD3

83 ETDNOR=SQRT(EETD(1)*EETD(1)+EETD(2)*EETD(2)+

84 1 R2*EETD(3)*EETD(3)+EETD(4)*EETD(4))

85 C Unit deviatoric flow vector

86 IF(ETDNOR.NE.R0)THEN

87 EDNINV=R1/ETDNOR

88 ELSE
89 EDNINV=R0
90 ENDIF
91 DO 30 I=1,NSTRE

92 UNIDEV(I)=EETD(I)*EDNINV

93 30 CONTINUE
94 C Assemble tangent

95 AUX=R1/(GMODU+BULK*ETA*ETABAR+XI*XI*HSLOPE)

96 AFACT=R2G*(R1-DGAMA/(ROOT2*ETDNOR))

97 AFACD3=AFACT*R1D3

98 BFACT=R2G*(DGAMA/(ROOT2*ETDNOR)-GMODU*AUX)

99 CFACT=-ROOT2*GMODU*BULK*AUX

100 DFACT=BULK*(R1-BULK*ETA*ETABAR*AUX)

101 DO 50 I=1,NSTRE

102 DO 40 J=1,NSTRE

103 DMATX(I,J)=AFACT*FOID(I,J)+BFACT*UNIDEV(I)*UNIDEV(J)+

104 1 CFACT*(ETA*UNIDEV(I)*SOID(J)+

105 2 ETABAR*SOID(I)*UNIDEV(J))+

106 3 (DFACT-AFACD3)*SOID(I)*SOID(J)

107 40 CONTINUE
108 50 CONTINUE
109 ENDIF
110 ELSE
111 C Compute elasticity matrix

112 C =========================
113 FACTOR=BULK-R2G*R1D3
114 DO 70 I=1,NSTRE

115 DO 60 J=I,NSTRE

116 DMATX(I,J)=R2G*FOID(I,J)+FACTOR*SOID(I)*SOID(J)

117 60 CONTINUE
118 70 CONTINUE
119 DO 90 J=1,NSTRE-1

120 DO 80 I=J+1,NSTRE

121 DMATX(I,J)=DMATX(J,I)

122 80 CONTINUE
123 90 CONTINUE
124 ENDIF
125 RETURN
126 END

The arguments of CTDP

The situation here is completely analogous to that of subroutine CTMC (refer to page 324),
with state update related arguments coming in the present case from subroutine SUDP.
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Some local variables and arrays of CTDP

• ETDNOR [‖εe trial
n+1 ‖]. Norm of the deviatoric component of the elastic trial strain tensor.

• UNIDEV [D]. Array of components of the unit tensor parallel to the deviatoric elastic
trial strain, D ≡ εe trial

d n+1/‖εe trial
d n+1‖.

8.4. Examples

This section presents a set of benchmark numerical examples involving all material model
implementations described in the previous sections of this chapter. The examples presented
comprise metal plasticity (with the Tresca model) as well as some typical soil mechanics
applications with pressure-sensitive models (Mohr–Coulomb and Drucker–Prager). It is noted
that all results presented here have been obtained with the standard version of program
HYPLAS that accompanies this book. Whenever available, theoretical solutions are presented
and compared with the results obtained in order to illustrate the accuracy of the numerical
procedures described in the preceding sections. Without exception, the full Newton–Raphson
algorithm has been adopted in the iterative solution of the global finite element equilibrium
equations.

8.4.1. BENDING OF A V-NOTCHED TRESCA BAR

In this example, the collapse of a wide rectangular metal bar containing a deep 90o V-shaped
notch and subjected to pure bending is analysed. The bar is wide enough so that the analysis
can be carried out under the assumption of plane strain conditions. The material is modelled as
elastic-perfectly plastic with the Tresca yield criterion. The geometry and material parameters
are shown in Figure 8.17. An analytical upper bound to the limit load for this problem has
been obtained by Green (1953) based on the theory of slip-line fields. The reader is referred to
Chakrabarty (1987) for details of the solution. For a notch angle of 90o the associated upper
bound moment per unit width of the bar is

Mu ≈ 0.623 c a2 (8.141)

where a is the thickness of the bar in the neck and the cohesion or shear strength, c, for the
Tresca model is given as c = σy/2. For the present material parameters and geometry, it gives

Mu ≈ 1.869 Nm (8.142)

per millimetre width of the bar. The finite element model adopted in the present analysis is
shown in Figure 8.18. For symmetry reasons, only half of the bar is discretised with symmetry
kinematical constraints imposed on the nodes across the neck. A mesh of 312 eight-noded
elements (with 2 × 2 Gauss quadrature) is adopted with a total of 1001 nodes. The moment
M is applied by means of two opposite nodal forces of equal intensity F prescribed on the
nodes indicated in Figure 8.18. Due to the distance between the neck and the points where the
forces are applied, a condition close to pure bending is obtained near the neck. A total number
of 13 load increments is applied in the finite element analysis. The vertical deflection obtained
for the nodes where the forces are applied is plotted in Figure 8.19 against the normalised
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Figure 8.17. Bending of a V-notched bar. Problem definition. (Reproduced with permission from
A new computational model for Tresca plasticity at finite strains with an optimal parametrization in
the principal space, D Perić and EA de Souza Neto, Computer Methods in Applied Mechanics and
Engineering, Vol 171 c© 1999 Elsevier Science S.A.)
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Figure 8.18. Bending of a V-notched bar. Finite element model. (Reproduced with permission from
A new computational model for Tresca plasticity at finite strains with an optimal parametrization in
the principal space, D Perić and EA de Souza Neto, Computer Methods in Applied Mechanics and
Engineering, Vol 171 c© 1999 Elsevier Science S.A.)

bending moment per unit width, M/ca2. The limit load determined by the present analysis is

M fe
lim

c a2
≈ 0.636. (8.143)

This result is in very close agreement (about 2% higher) with Green’s upper bound. The slip-
line field proposed by Green (1953) for the present dimensions is schematically illustrated in
Figure 8.20(a). Alongside, in Figure 8.20(b), the contour plot of the incremental accumulated
plastic strain, ∆ε̄p, corresponding to load increment 12 of the finite element computation
is shown for comparison. In this increment the bar is effectively collapsing, i.e. a small
increment of applied load results in extremely large incremental deflections. The contour
plot of ∆ε̄p shows the area where the plastic process is concentrated and clearly illustrates
the collapse mechanism. Note that the collapse mechanism predicted by the finite element
simulation is in agreement with Green’s slip-line field.

8.4.2. END-LOADED TAPERED CANTILEVER

The collapse of a wide end-loaded tapered cantilever is analysed in this example. The
geometry of the cantilever as well as the mesh adopted in the finite element analysis are
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Figure 8.19. Bending of a V-notched bar. Moment-deflection diagram. (Reproduced with permission
from A new computational model for Tresca plasticity at finite strains with an optimal parametrization
in the principal space, D Perić and EA de Souza Neto, Computer Methods in Applied Mechanics and
Engineering, Vol 171 c© 1999 Elsevier Science S.A.)
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Figure 8.20. Bending of a V-notched bar: (a) slip-line field of the upper bound solution by Green (1953);
(b) finite element result under collapse (increment 12): incremental accumulated plastic strain, ∆ε̄p.
(Reproduced with permission from A new computational model for Tresca plasticity at finite strains
with an optimal parametrization in the principal space, D Perić and EA de Souza Neto, Computer
Methods in Applied Mechanics and Engineering, Vol 171 c© 1999 Elsevier Science S.A.)

illustrated in Figure 8.21. The width of the cantilever is assumed sufficiently large so that a
plane strain analysis is carried out. The cantilever is firmly supported (clamped) on one edge
and the applied load is a uniformly distributed shearing traction, of intensity S, acting on
the opposite edge. The cantilever is assumed to be made of a Tresca elastic-perfectly plastic
material with the same constants as in the previous example. Upper bound limit loads for
tapered cantilevers have been obtained analytically by Green (1954) by means of slip-line
field theory.¶ For the present geometry, the normalised upper bound for the shear traction

¶Green’s limit loads are exact for taper angles θ ≤ 75o. His solution for θ > 75o, such as in the present example,
are only upper bounds. Nevertheless, due to experimental confirmation of the proposed slip-line fields, Green argues
that it is unlikely that his upper-bound solutions will be above the exact theoretical limit load.
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Figure 8.21. End-loaded tapered cantilever. Problem definition and finite element mesh.

found by Green is
Su
c

≈ 0.775 (8.144)

where c is the shear strength given, for the Tresca model, by c = σy/2. In the finite element
analysis, the load is applied incrementally until collapse occurs. A diagram showing the
vertical deflection, u, of the mid-node of the free edge versus the applied force, S, obtained
in the finite element analysis is plotted in Figure 8.22. The corresponding collapse load (i.e.
the load above which convergence of equilibrium iterations cannot be attained for sufficiently
small increments) is

Sfelim ≈ 0.786, (8.145)

which is about 1.4% above Green’s upper bound. The present limit load has been reached in
eight increments. The slip-line field proposed by Green (1954) is schematically illustrated in
Figure 8.23(a). The associated collapse mechanism is of the plastic hinge type. At collapse,
the portion to the right of the slip-line field rotates by sliding over the circular arc BC.
Figure 8.23(b) shows the incremental nodal displacements obtained in the last increment
(increment 8), when the cantilever is effectively collapsing. It can be seen that the finite
element solution has captured Green’s collapse mechanism quite accurately. In this plot, the
sizes of the vectors have been largely exaggerated and do not correspond to the norms of the
actual nodal displacements. The increment of accumulated plastic strain, ∆ε̄p, obtained in the
same load increment is illustrated in Figure 8.23(c). The contour plot shows that, at collapse,
the plastic process predicted by the finite element analysis is confined to an area which is in
very close agreement with Green’s slip-line field.

8.4.3. STRIP-FOOTING COLLAPSE

The plane strain analysis of a strip footing has been carried out in detail in Example 7.5.4
(page 252) of Chapter 7, where the suitability of the finite element framework of program
HYPLAS for the determination of collapse loads has been made evident. However, the analysis
performed in that example was restricted to the use of the von Mises material model. In the
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Figure 8.22. End-loaded tapered cantilever. Force-deflection diagram.

present example, the same strip-footing problem is analysed but the soil is now modelled
as a Tresca, Mohr–Coulomb and Drucker–Prager material. The objective is to illustrate the
performance of the algorithms described earlier in the present chapter for these models. The
adopted common material parameters are

Young’s modulus E = 107 kPa
Poisson’s ratio ν = 0.48

Cohesion c = 490 kPa

The dimensions, boundary conditions and the finite element mesh adopted are identical to
those of Example 7.5.4 (see Figure 7.24). The soil is assumed to be weightless. Note that
due to symmetry, only half of the problem is discretised. The mesh contains 135 eight-
noded quadrilaterals (four Gauss point quadrature) and a total of 446 nodes. The footing
is assumed to be rigid and perfectly smooth (no friction). Thus, the loading consists of the
prescribed vertical displacement, u, of the nodes under the footing as shown in Figure 7.24.
The horizontal displacement of these nodes is unconstrained.

Tresca

Firstly, the analysis is carried out using the Tresca model. The corresponding uniaxial yield
stress (required by the input data procedure for the Tresca material in HYPLAS) is σy = 2c =
980 kPa. A final settlement u/B = 0.002 is applied in 14 increments. The resulting load-
settlement curve is plotted in Figure 8.24. This curve and the corresponding limit load

P felim
c

≈ 5.19, (8.146)

are practically identical to those obtained with the von Mises model in Example 7.5.4
(plotted in Figure 7.26, page 253), where the same material parameters have been used. The
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Figure 8.23. End-loaded tapered cantilever. Analytical solution: (a) slip-line field proposed by
Green (1954); finite element results under collapse (increment 8): (b) incremental nodal displacements;
(c) incremental accumulated plastic strain, ∆ε̄p.

numerically determined limit pressure is less than 1% above the slip-line theory solution

Plim
c

≈ 5.14. (8.147)

The failure mechanism captured in the finite element analysis with the Tresca model is in
agreement with that proposed by Hill (1950) for perfectly smooth footings (unconstrained
horizontal displacements under the footing). This mechanism, as obtained in the simulation
with the von Mises model carried out in the previous chapter, is illustrated in Figure 7.28.

Mohr–Coulomb

The analysis of the strip-footing problem with the Mohr–Coulomb material model is carried
out assuming a frictional angle

φ = 20o. (8.148)
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Figure 8.24. Strip footing with Tresca model. Load–displacement curve.

Two flow rules are considered:

• associative (φ = ψ = 20o);

• non-associative with dilatancy angle ψ = 10o.

The prescribed final settlement u/B = 0.0025 is applied in six and seven increments,
respectively, for the associative and non-associative laws. The corresponding load–settlement
curves obtained in the analyses are plotted in Figure 8.25. The limit loads obtained with the
associative and non-associative law are virtually identical

P felim
c

≈ 15.0. (8.149)

This value is in excellent agreement (about 1.4% higher) with Prandtl’s solution

Plim
c

≈ 14.8. (8.150)

Drucker–Prager

Three of the Drucker–Prager approximations to the Mohr–Coulomb criterion discussed in
Section 6.4.4 (and implemented in program HYPLAS) are used here in the analysis of the
footing:

• the outer (or extension) cone;

• the inner (or compression) cone; and



350 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APPLICATIONS

no
rm

al
is

ed
pr

es
su

re
,P

/
c

0

4

8

12

16

0 0.001 0.002 0.003

MOHR–COULOMB:

associative
non-associative

Prandtl solution: 14.8

normalised settlement, u/B

Figure 8.25. Strip footing with Mohr–Coulomb model. Load-displacement curves.

• the plane strain match to the Mohr–Coulomb model.

Only the associative law (φ = ψ = 20o) is considered. For all approximations, a total set-
tlement u/B = 0.004 is imposed gradually in 10 increments. The load-settlement diagrams
obtained are shown in Figure 8.26. The limit load predicted by the outer cone approximation
is well above Prandtl’s solution. The normalised limit pressure in this case is approximately
35.7 (about 140% above Prandtl’s solution). The normalised limit pressure predicted by the
inner cone is around 17.3 (about 17% above Prandtl’s solution). For the plane strain match
on the other hand, the results are in excellent agreement with Prandtl’s solution. In this case,
the predicted limit pressure is

P felim/c ≈ 15.0, (8.151)

which is practically identical to the limit loads obtained with the Mohr–Coulomb model.

8.4.4. CIRCULAR-FOOTING COLLAPSE

This section considers the axisymmetric analogue of the footing collapse problem described
in the previous section. It consists of a circular footing of diameter B = 1 m (assumed
rigid and smooth) lying on soil. The geometry is shown in Figure 8.27. The mesh, loading
and boundary conditions are the same as in the previous example (these are illustrated in
Figure 7.24, page 252). The load consists of the prescribed vertical displacements (settlement)
of the nodes under the foot. In the present analysis, a total settlement u/B = 0.002 is reached
in nine increments. The corresponding load-displacement diagram obtained is depicted in
Figure 8.28. The collapse load

P felim/c ≈ 20.5, (8.152)

is effectively attained in seven increments. A complete solution to the circular (rigid smooth)
footing problem has been obtained by Cox et al. (1961). The corresponding limit loads are
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Figure 8.26. Strip footing with Drucker–Prager model. Load-displacement curves.

determined (to any desired accuracy) by the finite difference method (the limit loads for
several frictional angles are tabulated in Chen, 1975). For the present frictional angle (φ =
20o) the limit average pressure on the footing is

Plim/c ≈ 20.1. (8.153)

The corresponding slip-line net is schematically illustrated in Figure 8.27. The limit load
obtained in the finite element analysis is in close agreement with (8.153). The relative error
is less than 2%. The incremental nodal displacement vectors near the footing obtained in
increment 8 (where the collapse load has effectively been reached) are plotted in Figure 8.29.
The vector sizes have been amplified to ease visualisation. The failure mechanism captured
in the finite element analysis is in agreement with the slip-line field of Cox et al. (1961).

8.4.5. SLOPE STABILITY

In this example, the plane strain analysis of an inclined earth embankment subjected to
self-weight is carried out. The objective is to assess the safety of the slope illustrated in
Figure 8.30. The soil is modelled as a (perfectly plastic) Mohr–Coulomb material with the
constants shown in Figure 8.30.

Limit analysis solution

The limit analysis of slopes under gravity load is described by Chen (1975). If the slope
angle, β, is greater than the internal friction angle, φ, as in the present problem, the slope will
collapse when the ratio

N = h
γ

c
(8.154)
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Figure 8.29. Circular footing. Incremental nodal displacement vectors at increment 8.
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Figure 8.31. Slope stability. Finite element mesh.

reaches a critical limit. Here, h denotes the slope height, c is the cohesion and γ is the specific
weight of the soil

γ = ρ g, (8.155)

with ρ being the mass density and g the gravitational acceleration. For the present geometry
and material constants, the ratio N is

N = 4. (8.156)

The critical value of N , denoted Ns, is called the stability factor. The stability factor tabulated
by Chen (1975) for the angles β = 45o and φ = 20o, adopted in the present example, is

Ns ≈ 16.18.
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This value corresponds to a collapse mechanism (Figure 8.30) in which the portion ABC
of the embankment slides along a logarithmic spiral discontinuity line (the dotted line) that
passes through the toe (point C). A safety factor based on limit analysis can be defined as
αlim = Ns/N . For the present dimensions and material properties it gives

αlim ≈ 4.045. (8.157)

Finite element analysis

The determination of the safety factor by means of the Finite Element Method with program
HYPLAS is carried out by using the gravity load option. With

ḡ = α g (8.158)

denoting the applied gravity acceleration, the loading process starts from α = 0 (completely
unloaded). The load factor, α, is then increased gradually until collapse occurs. The value of
α at collapse is the safety factor.

The adopted mesh, shown in Figure 8.31, consists of 221 eight-noded quadrilaterals (2 ×
2 integration quadrature) with a total of 718 nodes. The discretised domain is made large
enough to avoid interference of the collapse mechanism with the boundaries of the finite
element mesh. In the finite element analysis, a total of seven load increments are applied. The
settlement at the top corner of the slope (point A of Figure 8.30) is plotted in Figure 8.32
against the load factor α. The limit value of α, i.e. the safety factor, found in the incremental
finite element analysis is

αfelim ≈ 4.2. (8.159)

It is about 3.8% above the limit analysis solution. The contour plot of incremental accumu-
lated plastic strain, ∆ε̄p, as well as the incremental nodal displacements obtained at increment
6 are depicted in Figure 8.33. The slope is effectively collapsing during this increment. The
failure mechanism captured by the finite element simulation is in good agreement with the
logarithmic spiral slide line referred to above.





9 PLANE STRESS PLASTICITY

IN the numerical solution of elastoplastic initial value problems addressed in the previous
two chapters, attention has been focused on generic three-dimensional states of stress

and strain – conditions under which the elastoplastic models were formulated in Chapter 6.
In spite of the generality of the algorithmic formulations presented in Chapters 7 and 8,
the actual computational implementation of the elastic predictor/return-mapping algorithms
shown in the corresponding subroutines of program HYPLAS has been restricted to states of
plane strain and axisymmetric deformation. From the theoretical point of view, the classes of
problem with such constraints on the possible strains are those in which certain components
of the strain tensor vanish during the given history of strains in the general elastoplastic initial
value problem – stated in Problem 7.1, page 193. Clearly, having formulated the generic
three-dimensional integration algorithms (as we did in Chapters 7 and 8), particularisation for
states of constrained strain (used in the HYPLAS subroutines presented) is trivially obtained
simply by eliminating the relevant strain components from the formulation. Note that, if the
corresponding stress component is generally non-vanishing (such as the normal out-of-plane
stress in plane strain problems), then it will be determined naturally as an outcome of the
numerical integration algorithm.

The conditions addressed in the present chapter are quite different from those discussed
in Chapters 7 and 8. Here, we are concerned with plane stress problems in which certain
components of stress, rather than strain, are constrained to be zero. In spite of its triviality
within the realm of linear elasticity, the treatment of the plane stress constraint in elastoplastic
problems requires further consideration and justifies a chapter of its own. The main difficulty
lies in the fact that as some components of the stress tensor are now prescribed, the original
statement of the elastoplastic initial value problem – Problem 7.1 (page 193), where all stress
components are unknown – no longer applies and needs to be reformulated. As a result, the
three-dimensional numerical integration algorithms of Chapters 7 and 8, which have been
developed specifically to solve Problem 7.1, cannot be used in general without modifications.

9.1. The basic plane stress plasticity problem

The plane stress assumption is typically introduced in the analysis of bodies in which one of
the dimensions – the thickness – is much smaller than the others and is subjected to loads
that generate dominant stresses perpendicular to the thickness direction (Figure 9.1). Typical
situations of engineering interest where the plane stress assumption is applicable are found in
the analysis of plates subjected to in-plane loads and thin membranes with negligible stiffness
in bending and transverse shear. With indices 1 and 2 associated with the in-plane directions
and index 3 corresponding to the normal (transverse or thickness) direction, a generic plane

Computational Methods for Plasticity: Theory and Applications EA de Souza Neto, D Perić and DRJ Owen
c© 2008 John Wiley & Sons, Ltd
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Figure 9.1. The plane stress state.

stress state is defined by a stress tensor

[σ] =


σ11 σ12 0

σ12 σ22 0
0 0 0


. (9.1)

The corresponding subspace of plane stress states can be defined as

Spl ≡ {σ | σ13 = σ23 = σ33 = 0}. (9.2)

9.1.1. PLANE STRESS LINEAR ELASTICITY

Before going further, let us now review the simple case of linear isotropic plane stress
elasticity. The relationship between the non-zero stress components and the in-plane strains
is given by the well-known expression




σ11
σ22
σ12


=

E

1 − ν2




1 ν 0
ν 1 0

0 0
1 − ν

2






ε11
ε22
2ε12


 , (9.3)

which, equivalently, in terms of the shear and bulk moduli reads


σ11
σ22
σ12


= 2G


1 + α α 0

α 1 + α 0
0 0 1

2






ε11
ε22
2ε12


 , (9.4)

where

α =
3K − 2G

3K + 4G
. (9.5)
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This relationship is derived directly from the three-dimensional elastic law as follows.
Firstly, in the three-dimensional law




σ11
σ22
σ33
σ12
σ23
σ13




=




K + 4
3G K − 2

3G K − 2
3G 0 0 0

K − 2
3G K + 4

3G K − 2
3G 0 0 0

K − 2
3G K − 2

3G K + 4
3G 0 0 0

0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G







ε11
ε22
ε33
2ε12
2ε23
2ε13




, (9.6)

we prescribe the in-plane strain components, ε11, ε22 and ε12 together with the (zero) out-
of-plane stress components, σ33, σ23 and σ13. This gives the system




σ∗
11

σ∗
22

0
σ∗
12

0
0




=




K + 4
3G K − 2

3G K − 2
3G 0 0 0

K − 2
3G K + 4

3G K − 2
3G 0 0 0

K − 2
3G K − 2

3G K + 4
3G 0 0 0

0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G







ε11
ε22
ε∗33
2ε12
2ε∗23
2ε∗13




, (9.7)

where the star superscript has been used to point out the unknown quantities. Solution of the
above system yields the plane stress elastic law together with the well-known expressions for
the out-of-plane strains

ε13 = 0, ε23 = 0,

ε33 = −3K − 2G

3K + 4G
(ε11 + ε22) = − ν

1 − ν
(ε11 + ε22).

(9.8)

In summary, the constitutive equations of plane stress elasticity are obtained by prescribing
the in-plane strains and enforcing the plane stress constraint on the three-dimensional law,
and then obtaining, as a result, the in-plane stresses and out-of-plane strains.

9.1.2. THE CONSTRAINED ELASTOPLASTIC INITIAL VALUE PROBLEM

The concept of constraining the original three-dimensional constitutive equation in order to
obtain its plane stress counterpart can be extended to the elastoplastic case. The underlying
idea is the same: we prescribe only the in-plane strains in the three-dimensional equation
and use the plane stress constraint as an additional condition so as to determine the in-plane
stresses and out-of-plane strains. The original three-dimensional elastoplastic initial value
problem (Problem 7.1, page 193) is accordingly redefined in constrained form as follows.

Problem 9.1 (The plane stress elastoplastic initial value problem). Given the initial values
εe(t0) and α(t0), of the elastic strain tensor and internal variable set, and given the history
of the in-plane components of the strain tensor

{ε11(t), ε22(t), ε12(t)}, t ∈ [t0, T ],
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find the functions εe(t), α(t) and γ̇(t), for the elastic strain, internal variable set and
plastic multiplier that satisfy the reduced general elastoplastic three-dimensional constitutive
equations

ε̇(t) = ε̇e(t) − γ̇(t) N(σ(t), A(t))

α̇(t) = γ̇(t) H(σ(t), A(t))
(9.9)

and
γ̇(t) ≥ 0, Φ(σ(t), A(t)) ≤ 0, γ̇(t) Φ(σ(t), A(t)) = 0, (9.10)

with

σ(t) = ρ̄
∂ψ

∂εe
, A(t) = ρ̄

∂ψ

∂α
, (9.11)

and, in addition, satisfy the plane stress constraint

σ(t) ∈ Spl (9.12)

for each instant t ∈ [t0, T ].

9.1.3. PROCEDURES FOR PLANE STRESS PLASTICITY

In order to find a numerical approximation to the solution of the above plane stress elastoplas-
tic evolution problem, some modification is required in the elastic predictor/return-mapping
algorithms discussed in Chapters 7 and 8. Issues related to the explicit implementation of
plane stress models are addressed by Marques (1984). For the implicit scheme, to which the
present chapter is restricted, three main general approaches may be adopted to deal with the
problem (these have been reviewed and compared by Millard 1995):

(a) direct inclusion of the plane stress constraint into the three-dimensional elastic pre-
dictor and plastic corrector algorithm equations (7.21), (7.22) and (7.25) (refer to
page 196) applied at the Gauss point level. This approach can also be implemented by
means of a nested Newton return-mapping iteration for plane stress enforcement. The
nested iteration procedure is implemented in program HYPLAS for the Drucker–Prager
model;

(b) use of the standard three-dimensional return mapping at the Gauss point level with the
plane stress condition added as a structural constraint at the global structural level;

(c) use of plane stress-projected constitutive equations where, similarly to the procedure of
item (a), the plane stress constraint is enforced at the Gauss point level. This strategy
has been implemented in program HYPLAS for the von Mises isotropically hardening
model.

Remark 9.1. Approaches (a), (b) and (c) are equivalent in that, provided the same
numerical scheme is used in the discretisation of the elastoplastic evolution equations, the
three methodologies produce identical incremental plane stress constitutive equations. The
essential difference between distinct approaches in this case lies in the way that the plane
stress constraint (9.12) imposed upon the three-dimensional model is enforced.
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Having the general three-dimensional plasticity model of Chapter 6 and the implicit
elastic predictor/return-mapping scheme of Section 7.2.3 as the underlying model/algorithm,
approaches (a) and (b) are discussed below in Sections 9.2, and 9.3, respectively. In
Section 9.2, an outline of the FORTRAN code of the von Mises model implementation with
nested iterations is shown. The third strategy is described in Section 9.4 where the von Mises
model is used as an example for completeness. The complete description of the computational
implementation, including the FORTRAN code, is also given in Section 9.4.

9.2. Plane stress constraint at the Gauss point level

Approach (a) is a direct extension of the elastic predictor/return-mapping algorithms dis-
cussed in Chapter 7 in order to solve the plane stress elastoplastic evolution problem stated in
Problem 9.1 above. This procedure appears to have been suggested firstly by Aravas (1987)
in the context of pressure-dependent plasticity. For the fully implicit algorithm, it consists of
simply adding the extra equations

σ13(εe
n+1, αn+1) = 0

σ23(εe
n+1, αn+1) = 0

σ33(εe
n+1, αn+1) = 0

(9.13)

to the general system of return-mapping equations (7.25) (page 196) and letting the out-of-
plane components of the elastic trial strain tensor become unknowns of the new system. After
performing a plane stress-constrained elastic trial state evaluation,† plastic consistency is
checked in the usual way. If plastic admissibility is violated, i.e. if

Φ(σtrialn+1, An) > 0, (9.14)

then the return-mapping procedure has to be applied. The return mapping now requires the
solution of the augmented algebraic system

εe
n+1 = εe trial

n+1 − ∆γ Nn+1

αn+1 = αn + ∆γ Hn+1

Φ(σn+1, An+1) = 0

σ13(εe
n+1, αn+1) = 0

σ23(εe
n+1, αn+1) = 0

σ33(εe
n+1, αn+1) = 0

(9.15)

for the variables εe
n+1, αn+1, ∆γ and the elastic trial components

εe trial
13 , εe trial

23 , εe trial
33 .

As in the standard non-constrained case, the solution of the above system can be undertaken
by the Newton–Raphson algorithm.

†Note that if the elastic behaviour is nonlinear, the plane stress-constrained elastic equations may not be obtained
as trivially as in the linear case reviewed in Section 9.1.
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9.2.1. IMPLEMENTATION ASPECTS

The above procedure can be implemented even for very complex plasticity models. It should
be noted that the number of unknowns of the system is increased (as compared to the standard
three-dimensional algorithm) which makes this approach computationally more expensive. It
should be emphasised, however, that, as for the three-dimensional case, considerable sim-
plification of the return-mapping algebraic system may be achieved by exploiting particular
properties of the material model in question. We note that such simplifications have reduced
the return mapping for the von Mises model to a single nonlinear equation (Section 7.3,
page 215). Under elastoplastic isotropy, for instance, the plane stress condition implies that

ε13 = εe
13 = εp

13 = 0, ε23 = εe
23 = εp

23 = 0, (9.16)

which ensures that σ13 and σ23 vanish. In this case the only extra equation to be added to the
general three-dimensional return mapping is‡

σ33(εe
n+1, αn+1) = 0, (9.17)

with the associated extra unknown εe trial
33 .

9.2.2. PLANE STRESS ENFORCEMENT WITH NESTED ITERATIONS

It is also possible to deal with the plane stress problem by using the original three-dimensional
algorithm (without modification) within a Newton–Raphson loop for the enforcement of the
plane stress constraint at the Gauss point level. This approach, introduced by Dodds (1987)
within the implicit implementation of the von Mises model, is described in the following.
For simplicity, let us consider the isotropic case where stress and strain transverse shear
components vanish identically as discussed above. In order to describe the procedure, it is
convenient to employ the matrix notation

σ = [σ11 σ22 σ12]T , ε = [ε11 ε22 2ε12]T . (9.18)

During a typical equilibrium iteration, the in-plane displacements are prescribed and so is the
in-plane strain array εn+1. Instead of giving εn+1 (or εe trial

n+1 ) as the input of an augmented
algebraic system (as described in the above), we proceed as follows. Firstly, we define
some initial guess for the unknown (εe

33)
trial
n+1. One possible guess can be the previously

(equilibrium) converged out-of-plane elastic strain, i.e. we can set

εe trial
33 := (εe

33)n. (9.19)

Here the subscript n + 1 has been dropped for notational convenience. Next, we use the
augmented strain array

[εe trialT εe trial
33 ]T

as the input of the integration algorithm for the axisymmetric case.§ Note that an out-of-plane
strain component must be prescribed for the axisymmetric algorithm.

‡The original algorithm proposed by Aravas (1987) was derived under such isotropy conditions, having Gurson’s
void growth model (described in Section 12.5, from page 496) as the underlying material.

§Axisymmetric implementations of the general integration algorithm have been included in the corresponding
routines for all material models discussed in Chapters 7 and 8.
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After application of the axisymmetric elastic predictor/return-mapping procedure, the
corresponding routine will return the augmented stress array

[σT
n+1 σ33]T .

If σ33 = 0 (or, in computational terms, |σ33| ≤ εtol) then the guess εe trial
33 indeed solves the

plane stress problem, and the solution obtained by the axisymmetric algorithm is the one we
are looking for. Otherwise, we apply a Newton–Raphson correction to obtain another guess

εe trial
33 := εe trial

33 − σ33
D22

, (9.20)

where D22 is the component of the axisymmetric consistent tangent matrix


dσ11

dσ22

dσ12

dσ33


=




D11 D12

D21 D22







dεe trial
11

dεe trial
22

2dεe trial
12

dεe trial
33


, (9.21)

that relates the transverse stress and strain components.¶ We repeat this process until we find
the elastic trial thickness strain εe trial

33 that, together with the in-plane strain kinematically
prescribed by the global equilibrium iteration, results in zero (or sufficiently small) transverse
stress upon application of the axisymmetric algorithm. The resulting overall algorithm is
shown in Box 9.1 in pseudo-code format. An outline of its specialisation to the von Mises
model is presented in the next section. Its complete computational implementation for the
Drucker–Prager model is included in program HYPLAS. The associated subroutine (not listed
in this text) is named SUDPPN (State Update procedure for the Drucker–Prager model in Plane
stress with Nested iterations).

Remark 9.2. The above methodology involves two nested Newton–Raphson iteration loops:
one (outer) global equilibrium loop having a nested (inner) iteration loop to enforce the
plane stress constraint with εe trial

33 as the unknown. Thus, for each global equilibrium loop, a
number of iterations will be required in each Gauss point to ensure that the final stress is plane
(to within a prescribed numerical tolerance). Since the axisymmetric integration algorithm is
applied in each iteration of the inner loop, the present procedure is computationally expensive.
It is important to remember, however, that the cost of the calculations carried out at the
Gauss point level increases approximately linearly with the problem size, whereas the cost
of the solution of the global linearised problem increases at a much higher nonlinear rate. In
other words, the relative cost of the Gauss point computations decreases considerably as the
problem size increases and the present procedure can be used efficiently in large problems.

Remark 9.3. The solution obtained by the nested iteration is identical to that obtained by
the previously discussed strategy based on the augmented return-mapping system. Its main
advantage over the augmented system procedure lies in its simplicity. Essentially, for any

¶The implementation of the axisymmetric consistent tangent for the material models of Chapters 7 and 8 is also
included in the corresponding routines of HYPLAS.
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Box 9.1. Plane stress constraint at the Gauss point level with nested iterations.

(i) Set initial guess for the elastic trial thickness strain

εe trial
33 := (εe

33)n

The in-plane elastic trial strain εe trial
n+1 is prescribed

(ii) Apply the axisymmetric integration algorithm and obtain the augmented stress array

[σT σ33]
T

(iii) Check plane stress convergence

IF |σ33| < εtol THEN EXIT

(iv) Compute component D22 of the axisymmetric consistent tangent matrix (see expres-
sion (9.21))

(v) Apply Newton–Raphson correction to the thickness trial strain

εe trial
33 := εe trial

33 − σ33

D22

(vi) GOTO (ii)

material model, the nested iteration approach allows a straightforward adaptation of existing
general procedures (which include the three-dimensional or axisymmetric implementations)
to cope with the plane stress problem, without the need for modification of the original
integration algorithms.

Remark 9.4. The present strategy is compatible with material models other than elasto-
plastic, such as generic nonlinear elastic materials. Note that for a linear elastic model, for
instance, the nested iteration loop produces the solution that satisfies the standard plane
equilibrium together with the trivial plane stress linear elastic law (9.3, 9.4). This is what
happens before plastic yielding in analyses involving linear elasticplastic materials such as
the von Mises model.

9.2.3. PLANE STRESS VON MISES WITH NESTED ITERATIONS

To illustrate the above concepts, the von Mises model is used as an example and a possible
FORTRAN implementation is outlined in this section. Basically the implementation of the
von Mises model within the present methodology requires the use of the generic elastic
predictor/return-mapping algorithm together with the corresponding consistent tangent calcu-
lation procedure. The generic (plane strain/axisymmetric) procedures are included in program
HYPLAS. The corresponding subroutines are, respectively, SUVM, described in Section 7.3.5
(page 224), and CTVM, whose complete description is given in Section 7.4.3 (page 235).
Following the steps of Box 9.1, an outline of the FORTRAN implementation of the von Mises
model in plane stress is given by
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1 C Newton-Raphson iteration loop for plane stress enforcement (Box 9.1)

2 C --------------------------------------------------------------------
3 C Set initial guess for elastic trial thickness strain. Use previously

4 C converged elastic thickness strain.

5 E33TRL=RSTAVA(4)
6 C Start N-R loop

7 DO 20 ITER=1,MXITER
8 C Set state variables to values at beginning of increment

9 DO 10 I=1,MSTRE+1

10 RSTAUX(I)=RSTAVA(I)
11 10 CONTINUE
12 C Use axisymmetric integration algorithm to compute stresses

13 STRAT(4)=E33TRL
14 CALL SUVM
15 1( DGAMA ,IPROPS ,LALGVA ,3 ,RPROPS ,

16 2 RSTAUX ,STRAT ,STRES )

17 IFPLAS=LALGVA(1)

18 SUFAIL=LALGVA(2)

19 IF(SUFAIL)GOTO 999
20 C Check plane stress convergence

21 IF(ABS(STRES(4)).LE.TOL)THEN
22 C...and break N-R loop in case of convergence

23 GOTO 30
24 ENDIF
25 C Compute axisymmetric consistent tangent components

26 EPFLAG=IFPLAS
27 CALL CTVM
28 1( DGAMA ,DMATX ,EPFLAG ,IPROPS ,3 ,

29 2 RPROPS ,RSTAUX ,STRES )
30 C Apply Newton-Raphson correction to normal elastic trial strain

31 D22=DMATX(4,4)

32 E33TRL=E33TRL-STRES(4)/D22
33 20 CONTINUE
34 WRITE(*,*)’Plane stress enforcement loop failed to converge’

35 SUFAIL=.TRUE.
36 LALGVA(2)=SUFAIL
37 GOTO 999
38 30 CONTINUE
39 C Set state variables to current updated values

40 DO 40 I=1,MSTRE+1

41 RSTAVA(I)=RSTAUX(I)
42 40 CONTINUE
43 999 CONTINUE
44 RETURN

The incorporation of the procedure into HYPLAS is a straightforward programming exercise.
In the above, we have created the local array RSTAUX to store the state variables temporarily.
The actual array of state variables, RSTAVA, is updated only if the plane stress enforcement
loop converges.

It should be emphasised that no effort has been made to optimise the FORTRAN code
suggested above. The purpose of the above code is solely to illustrate the simplicity of
the nested iteration approach in the plane stress implementation of models whose generic
implementation already exists. Note that when CTVM is called, all components of the
axisymmetric consistent tangent matrix are computed. The procedure can be made more
efficient if a new subroutine that computes only the scalar D22 is used instead. This is the
only component of the consistent tangent required in the plane stress enforcement loop.
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9.2.4. THE CONSISTENT TANGENT FOR THE NESTED ITERATION PROCEDURE

To obtain the tangent operator consistent with the above nested iteration algorithm, we first
differentiate the residual equation

σ33 = 0

of the plane stress enforcement loop. This, together with (9.21) gives

dσ33 = D21 dεe trial
n+1 + D22 dεe trial

33 = 0, (9.22)

which renders

dεe trial
33 =

−1
D22

D21 dεe trial. (9.23)

Substitution of the above expression into (9.21) results in the following consistent tangent
relation between the in-plane stress and strain components

dσn+1

dεe trial
n+1

= D11 −
1

D22
D12D21. (9.24)

9.2.5. CONSISTENT TANGENT COMPUTATION FOR THE VON MISES MODEL

For completeness, we outline below the implementation of the above expressions for the
von Mises model. Using the (existing) generic consistent tangent calculation routine for the
von Mises model, CTVM (Section 7.4.3, page 235), the corresponding plane stress consistent
tangent matrix can be computed by the following FORTRAN code:

1 C Compute the axisymmetric consistent tangent matrix

2 CALL CTVM
3 1( DGAMA ,DMATX ,EPFLAG ,IPROPS ,3 ,

4 2 RPROPS ,RSTAVA ,STRES )
5 C Decompose into submatrices

6 D12(1)=DMATX(1,4)

7 D12(2)=DMATX(2,4)

8 D12(3)=DMATX(3,4)

9 D21(1)=DMATX(4,1)

10 D21(2)=DMATX(4,2)

11 D21(3)=DMATX(4,3)

12 D22=DMATX(4,4)

13 C Assemble plane stress consistent tangent matrix

14 DO 20 I=1,3
15 DO 10 J=1,3

16 DMATX(I,J)=DMATX(I,J)-D12(I)*D21(J)/D22

17 10 CONTINUE
18 20 CONTINUE

Its incorporation into HYPLAS can be left as an exercise. We remark that the full implemen-
tation of a tangent matrix consistent with the nested iteration approach is already available
in HYPLAS for the Drucker–Prager model. The associated FORTRAN subroutine (not listed
here) is named CTDPPN (Consistent Tangent for the Drucker–Prager model in Plane stress
with Nested iterations).
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9.3. Plane stress constraint at the structural level

One interesting alternative to the above procedure consists in enforcing the plane stress
constraint at the structural level, rather than in the constitutive integration algorithm applied
at the Gauss point level. This approach has been proposed by de Borst (1991). Its main
advantage is the fact that, as the above described nested iteration approach, it does not
require the modification of the three-dimensional elastic predictor/return mapping algorithm.
The basic idea of the method is to use the standard three-dimensional algorithm (without
modification) at the Gauss points and to introduce the plane stress constraint in the global
finite element equations. At the Gauss point level, the plane stress constraint is satisfied only
at converged (equilibrium) configurations. The method is described in the following.

Firstly, let us write the general finite element equilibrium residual equation for plane
problems (plane stress/strain). At the generic (pseudo-) time station, tn+1, we have

r≡
∫
Ω

BT σn+1 dΩ − f extn+1 = 0, (9.25)

where B is the in-plane symmetric gradient operator (with only the three rows associated with
the in-plane strain components ε11, ε22 and ε12), f extn+1 is the applied external force vector at
tn+1, which contains only in-plane forces, and σ is the array of in-plane stress components

σn+1 ≡



σ̂11(εe trial

n+1 , εe trial
13 , εe trial

23 , εe trial
33 )

σ̂12(εe trial
n+1 , εe trial

13 , εe trial
23 , εe trial

33 )

σ̂22(εe trial
n+1 , εe trial

13 , εe trial
23 , εe trial

33 )


, (9.26)

where
εe trial

n+1 ≡ εe
n + B ∆u = [ εe trial

11 εe trial
22 εe trial

12 ]T , (9.27)

with ∆u denoting the array of incremental nodal displacements.

∆u = un+1 − un. (9.28)

Here and in what follows, σ̂ij (with the superimposed hat) denote the algorithmic constitutive
functionals for the stress components defined by the three-dimensional elastoplastic integra-
tion algorithm.‖ Note that in the plane strain case, the three-dimensional algorithm is used
with zero prescribed out-of-plane strains.

9.3.1. THE METHOD

Again, for simplicity, we shall restrict ourselves in what follows to the more usual situation
of elastoplastic isotropy where the transverse shear components of stress and (total, elastic,
elastic trial, and plastic) strain vanish identically

ε13 = ε23 = 0, σ13 = σ23 = 0.

In this case, the dependence of the in-plane stress components on the transverse shear strain
components is removed from (9.26). Under such a condition, the present strategy consists

‖For notational convenience, the functional dependence of the stress components on the state variables at tn is
not explicitly indicated.
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simply in adding the zero transverse stress constraint to the finite element equilibrium
equation (9.25). The resulting residual equations are accordingly redefined as


∫
Ω

BT σn+1 dΩ − fextn+1 = 0

σ̂33(εe trial
n+1 , εe trial

33 ) = 0 in each Gauss point,

(9.29)

where the unknowns are the nodal incremental displacements ∆u (which enter the equations
through the dependence of εe trial

n+1 upon it) and the thickness strain εe trial
33 in each Gauss point.

In the above, σ̂33 is the algorithmic constitutive function for the transverse stress component
resulting from the three-dimensional integration algorithm.

9.3.2. THE IMPLEMENTATION

In the finite element procedure, both the equilibrium and plane stress conditions are solved
simultaneously. The Newton–Raphson scheme for solution of the new residual equation is
obtained by linearising (9.29). The linearised version of (9.29), where the unknowns are the
iterative changes of nodal displacement and thickness strain (or elastic trial strain) at Gauss
points, reads



nelem

A
e=1

ngausp∑
i=1

w(i)B(i)
T {D(i)11B(i)δu(e) + D(i)12 δε

(i)
33 } = −r

D(i)21B
(i)δu(e) + D(i)22 δε

(i)
33 = −σ

(i)
33 for each g.p. i of each elem. e

(9.30)

where D11, D12, D21 and D22 are submatrices of the matrix form of the consistent tangent
operator associated with the axisymmetric integration algorithm (see expression (9.21)).

The linearised residual equation can be simplified as follows. Firstly, equation (9.30)2 can
be solved explicitly for δε33. This gives

δε33 = − 1
D22

[D21 B δu(e) + σ33] = − 1
D22

[D21δε + σ33], (9.31)

where the superscript i has been omitted. With the substitution of this result into (9.30)1 we
obtain the linearised equation for the iterative nodal displacement array

K∗ δu = −r∗, (9.32)

where the modified tangent stiffness matrix, K∗, is defined as

K∗ ≡
∫
Ω

BT

[
D11 −

1
D22

D12 D21

]
B dΩ, (9.33)

and the modified residual vector is defined by

r∗ ≡ r −
∫
Ω

BT

[
σ33
D22

D12

]
dΩ

=
∫
Ω

BT

[
σ − σ33

D22
D12

]
dΩ − fext. (9.34)
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Box 9.2. Plane stress constraint at the structural level. The modified global
equilibrium iteration loop.

(i) Compute modified tangent stiffness

K∗ :=

∫
Ω

BT

[
D11 − 1

D22
D12 D21

]
B dΩ

(ii) Apply Newton–Raphson correction to nodal displacements

δu := −[K∗]−1 r∗; u := u + δu

(iii) Update in-plane elastic trial strain

δε := B δu(e); ε
e trial
n+1 := ε

e trial
n+1 + δε

(iv) Apply Newton–Raphson correction to thickness elastic trial strain

δε33 := − 1

D22
[D21δε + σ33]

εe trial
33 := εe trial

33 + δε33

(v) Update stresses
σn+1 := σ̂(εe trial

n+1 , εe trial
33 )

σ33 := σ̂33(ε
e trial
n+1 , εe trial

33 )

using the three-dimensional elastoplastic algorithm

(vi) Compute modified residual vector

r∗ :=

∫
Ω

BT

[
σn+1 − σ33

D22
D12

]
dΩ

(vii) Modified convergence check

IF ||r∗|| < εtol AND |σ33| < εtol for all Gauss points of
the structure, THEN EXIT

ELSE GOTO (i)

In summary, the present procedure requires only a relatively simple modification of
the global equilibrium Newton–Raphson iteration loop. The main modification consists in
replacing the standard linearised equilibrium equation with (9.32) and using, after com-
putation of the iterative displacement δu, the explicit expression (9.31) to determine the
corresponding iterative change of thickness strain (or thickness elastic trial strain), δε33. The
overall algorithm is summarised in Box 9.2, where the modified Newton–Raphson global
equilibrium iteration loop is shown in standard pseudo-code format.

Remark 9.5. It is clear from the above that the global Newton–Raphson procedure now
searches for both nodal displacements and Gauss point transverse strains that satisfy equi-
librium and the plane stress constraint simultaneously. Thus, in general, the plane stress
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condition will be attained only at (converged) equilibrium configurations. This is at variance
with the procedures presented previously, in Section 9.2, where the plane stress constraint
is always enforced at each Gauss point, whether or not the global equilibrium convergence
criterion is satisfied.

Remark 9.6. The enforcement of the plane stress constraint at the structural level is
compatible only with the implicit finite element scheme – the only scheme discussed in
this book. Unlike the procedures discussed in Section 9.2 and the use of plane stress-
projected evolution equations (addressed in Section 9.4), the present strategy cannot be used
in conjunction with explicit transient dynamic finite element schemes. Explicit schemes do
not incorporate equilibrium iterations.

9.4. Plane stress-projected plasticity models

Finally, we address the methodology of item (c) on page 360: the use of plane stress-projected
plasticity models. Before proceeding, it is convenient to define precisely the meaning of
plane stress-projected model. A plane stress-projected plasticity model is defined by a set
of evolution equations that

(a) involve only in-plane stress and strain components and, at the same time;

(b) are equivalent to the three-dimensional model with the added plane stress constraint
defined in Problem 9.1.

In this case, the in-plane stress/strain components are the primary variables which have
to be determined directly by solving the rate evolution equations. The out-of-plane strains
are dependent variables which can be calculated ‘a posteriori’ as functions of the in-plane
variables that solve the equations of the plane stress-projected model. The situation here is
completely analogous to plane stress linear elasticity where expressions (9.3) or (9.4) define
the plane stress-projected elastic constitutive equation and the out-of-plane strains are given
in closed form by (9.8).

Remark 9.7. The use of plane-stress projected equations leads in general to more efficient
computational procedures. This is due to the use of a reduced set of equations involving
only the relevant in-plane components. However, plane stress-projected equations can only be
formulated if the underlying three-dimensional model is sufficiently simple to allow closed-
form relationships between in-plane and out-of-plane variables to be derived from the plane
stress constraint,

σ13 = σ23 = σ33 = 0.

For complex models, it may not be easy or feasible to derive such relations. In such cases, we
recommend the use of the methods discussed in Sections 9.2 and 9.3.

The methodology for derivation and implementation of plane stress-projected elastoplastic
models is made clear in the next section where the plane stress-projected von Mises model,
incorporating general nonlinear isotropic hardening, is derived in detail together with the
corresponding integration algorithm and consistent tangent operator. Plane stress-projected
equations for the von Mises model have been originally derived and used in a computational
context by Simo and Taylor (1986) and Jetteur (1986). The model adopted by Simo and Taylor
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includes combined isotropic and Prager’s linear kinematic hardening whereas the derivation
presented by Jetteur is restricted to purely isotropic hardening. Another application of the
projected equations concept is reported by Ramm and Matzenmiller (1987) in the context of
large deformation shell analysis. The equations and algorithms derived by these authors are
analogous to those presented here but account for transverse shear stresses and strains, which
become important in the analysis of thick shells.

9.4.1. THE PLANE STRESS-PROJECTED VON MISES MODEL

The reader who wishes to skip the details of the derivation of the plane stress-projected
von Mises model is referred directly to Box 9.3 (page 374) where the corresponding final
equations are summarised. The (three-dimensional) von Mises model with isotropic strain
hardening is defined by the following set of equations

ε̇ = ε̇e + ε̇p

σ = De : εe

Φ =
√

3J2(s) − σy(ε̄p)

ε̇p = γ̇
∂Φ
∂σ

= γ̇

√
3
2

s

‖s‖
˙̄εp = γ̇

γ̇ ≥ 0, Φ ≤ 0, γ̇ Φ = 0.

(9.35)

Under plane stress, the above equations are complemented with the constraints

σ13(εe) = 0, σ23(εe) = 0, σ33(εe) = 0. (9.36)

The plane stress-projected equations

To obtain the plane stress-projected von Mises equations, we firstly need to derive explicit
expressions relating the elastic and plastic out-of-plane strain components to the in-plane
components. We start by observing that, as the elastic behaviour is linear and isotropic, (9.36)
is equivalent to the well-known relations

εe
13 = 0, εe

23 = 0, εe
33 = − ν

1 − ν
(εe
11 + εe

22). (9.37)

In addition, the plastic incompressibility that follows from (9.35)4 gives

εp
33 = −(εp

11 + εp
22). (9.38)

As s13 = s23 = 0 under a plane stress state, it also follows from (9.35)4 that

εp
13 = εp

23 = 0. (9.39)

The above relations completely define the out-of-plane strain components as functions of the
in-plane values. Thus, under plane stress, the history of the out-of-plane strain components is
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automatically prescribed as

ε13(t) = εe
13(t) + εp

13(t) ≡ 0

ε23(t) = εe
23(t) + εp

23(t) ≡ 0

ε33(t) = −
[

ν

1 − ν
(εe
11(t) + εe

22(t)) + εp
11(t) + εp

22(t)
]
.

(9.40)

Finally, with the history of the out-of-plane (elastic and plastic) strain components completely
prescribed, we can now eliminate them from the original set of equations (9.35). This results
in the plane stress-projected set of equations which, in component form, is given by



ε̇αβ = ε̇e
αβ + ε̇p

αβ

σαβ = D̄
e
αβγδ εe

γδ

Φ =
√
3
2 [σαβ σαβ − 1

3 (σαα)2] − σy(ε̄p)

ε̇p
αβ = γ̇

√
3
2

sαβ√
σγδ σγδ − 1

3 (σγγ)2

˙̄εp = γ̇

γ̇ ≥ 0, Φ ≤ 0, γ̇ Φ = 0,

(9.41)

where summation on repeated indices is implied with Greek subscripts ranging between 1
and 2. In equation (9.41)2, D̄

e
αβγδ denote the components of the plane stress elasticity

tensor – the fourth-order counterpart of the matrix taking part in expressions (9.3, 9.4). In
deriving (9.41)3,4 we have made use of the identity

‖s‖ =
√

σαβ σαβ − 1
3 (σαα)2, (9.42)

which holds under plane stress condition. This identity is obtained by introducing the plane
stress constraint into the definition

‖s‖ ≡
√

s : s; s ≡ σ − 1
3 tr[σ] I. (9.43)

Matrix notation

A conveniently compact representation of the plane stress-projected von Mises equations can
be obtained by making use of the matrix notation

σ = [σ11 σ22 σ12]T , s = [s11 s22 s12]T

ε = [ε11 ε22 2ε12]T , εe = [εe
11 εe

22 2εe
12]

T

εp = [εp
11 εp

22 2εp
12]

T .

(9.44)

Note that upright bold-face characters are used to denote the matrix representation. From the
definition of the deviatoric stress tensor, the array s of plane deviator components can be
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expressed as
s = Pσ, (9.45)

where P is the matrix defined by

P ≡ 1
3




2 −1 0

−1 2 0

0 0 6


. (9.46)

With the above matrix/vector notation at hand, the plane stress-projected von Mises
equations (9.41) can be equivalently written in compact form as



ε̇ = ε̇e + ε̇
p

σ = De εe

Φ =
√
3
2σ

TPσ − σy(ε̄p)

ε̇
p = γ̇

∂Φ
∂σ

= γ̇

√
3
2

Pσ√
σT Pσ

˙̄εp = γ̇

γ̇ ≥ 0, Φ ≤ 0, γ̇ Φ = 0,

(9.47)

where De is the plane stress elasticity matrix. For the derivation of the integration algorithm
to be described in the next section, it is more convenient to use the squared form of the yield
function which, in the present case, can be handled more easily. Then, in the set (9.47) of the
evolution equations, we replace (9.47)3, (9.47)4 and (9.47)5, respectively, with

Φ = 1
2σ

T Pσ − 1
3σ
2
y(ε̄p)

ε̇
p = γ̇

∂Φ
∂σ

= γ̇ Pσ

˙̄εp = γ̇
√
2
3σ

TPσ.

(9.48)

The complete set of equations of the plane stress-projected von Mises model with
isotropic hardening is conveniently grouped in Box 9.3. The corresponding implicit elastic
predictor/return-mapping algorithm is derived subsequently.

9.4.2. THE PLANE STRESS-PROJECTED INTEGRATION ALGORITHM

The implicit integration algorithm for the plane stress-projected von Mises model is com-
pletely analogous to that derived in Section 7.3.2 (from page 217). Within the framework
of general elastic predictor/return-mapping schemes discussed in Chapter 7, and having
[tn, tn+1] as the underlying (pseudo-)time interval, we start by computing the elastic
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Box 9.3. Plane stress-projected von Mises model with isotropic hardening.

1. Elastoplastic strain split

ε̇ = ε̇e + ε̇p

ε ≡ [ε11 ε22 2ε12]
T , εe ≡ [εe

11 εe
22 2εe

12]
T , εp ≡ [εp

11 εp
22 2εp

12]
T

2. Elastic law

σ = De εe

σ ≡ [σ11 σ22 σ12]
T , De ≡ E

1 − ν2




1 ν 0
ν 1 0

0 0
1 − ν

2




3. Yield function definition

Φ = 1
2
σT Pσ − 1

3
σ2

y(ε̄p); P≡ 1
3


 2 −1 0
−1 2 0

0 0 6




4. Plastic flow rule

ε̇
p = γ̇

∂Φ

∂σ
= γ̇ Pσ

5. Hardening variable evolution

˙̄εp = γ̇
√

2
3
σT Pσ

6. Loading/unloading criterion

γ̇ ≥ 0, Φ ≤ 0, γ̇ Φ = 0

predictor state
εe trial

n+1 = εe
n + ∆ε

σtrialn+1 = De εe trial
n+1

ε̄p trial
n+1 = ε̄p

n,

(9.49)

where ∆ε is the given (in-plane) strain increment associated with the interval [tn, tn+1]

∆ε = εe
n+1 − εe

n. (9.50)

The next step is to check for plastic admissibility of the elastic trial state. We then compute

Φtrial = 1
2 (σ

trial
n+1)

T Pσtrialn+1 − 1
3σ
2
y(ε̄p trial

n+1 ). (9.51)

If the elastic trial state is admissible, i.e. if

Φtrial ≤ 0, (9.52)
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then the process is elastic within [tn, tn+1] and we update

(·)n+1 = (·)trialn+1. (9.53)

Otherwise, the return-mapping algorithm needs to be applied as described in the following.

The plane stress-projected return mapping

The implicit return mapping in the present case consists in solving the following system of
algebraic equations

εe
n+1 = εe trial

n+1 − ∆γ Pσn+1

ε̄p
n+1 = ε̄p

n + ∆γ
√
2
3 (σn+1)TPσn+1

1
2σ

T
n+1Pσn+1 − 1

3σ
2
y(ε̄p

n+1) = 0,

(9.54)

for εe
n+1, ε̄p

n+1 and ∆γ where σn+1 is a function of εe
n+1 defined by the elastic law.

As in the three-dimensional case discussed in Section 7.3.2 (page 217), it is also possible
to reduce the number of unknowns of the plane stress-projected return-mapping equations
for the von Mises model. The five-variable return-mapping system (9.54) can be reduced to
a single scalar nonlinear equation having the incremental plastic multiplier as the unknown.
To this end, we substitute (9.54)2 into (9.54)3 and rearrange (9.54)1 using the inverse elastic
law. The original return-mapping system reduces to

σn+1 = [C + ∆γ P]−1C σtrialn+1

1
2σ

T
n+1Pσn+1 − 1

3σ
2
y

(
ε̄p

n + ∆γ
√
2
3 (σn+1)TPσn+1

)
= 0,

(9.55)

where the unknowns now are the stress array, σn+1, and the plastic multiplier, ∆γ, and C is
the inverse of the elastic matrix

C≡ (De)−1. (9.56)

Finally, by substituting (9.55)1 into the consistency condition (9.55)2, the return mapping for
the plane stress von Mises model is reduced to the following scalar nonlinear equation having
∆γ as the only unknown

Φ̃(∆γ) ≡ 1
2ξ(∆γ) − 1

3σ
2
y

(
ε̄p

n + ∆γ
√
2
3ξ(∆γ)

)
= 0. (9.57)

Here we have conveniently defined

ξ(∆γ) ≡ (σtrialn+1)
TAT (∆γ) P A(∆γ)σtrialn+1, (9.58)

with
A(∆γ) ≡ [C + ∆γ P]−1C. (9.59)

Thus, the return mapping for the plane stress von Mises model is carried out as follows.
Firstly, we solve the consistency equation (9.57) using the Newton–Raphson algorithm. With
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the solution ∆γ at hand, we update the other variables

σn+1 = A(∆γ) σtrialn+1

εe
n+1 = C σn+1

ε̄p
n+1 = ε̄p

n + ∆γ
√
2
3ξ(∆γ).

(9.60)

If required, the in-plane plastic strains are updated by

ε
p
n+1 = εp

n + ∆γ Pσn+1. (9.61)

Remark 9.8. The plane stress-projected return-mapping equation (9.57) is always nonlinear
in ∆γ, regardless of the prescribed hardening function σy . This is in contrast with its three-
dimensional counterpart (see equation (7.91), page 219, and the comments made at the
beginning of Section 7.3.4, page 223) whose only source of nonlinearity is the hardening
curve and which becomes linear for perfectly plastic and linearly hardening models.

The plane stress-projected elastic predictor/return-mapping algorithm for the von Mises
model with isotropic hardening is summarised in Boxes 9.4 and 9.5 in pseudo-code format.
In program HYPLAS, the procedure is implemented in subroutine SUVMPS (State Update
procedure for the Von Mises model in Plane Stress), whose FORTRAN code is shown
in Section 9.4.3. The solution of the plane stress-projected consistency equation (9.57) is
undertaken by the Newton–Raphson algorithm. The Newton–Raphson procedure is shown
in Box 9.5. Its implementation follows the simplification obtained below by exploiting the
properties of matrices P and De.

Newton–Raphson return-mapping solution

The reader might have realised already that the Newton–Raphson algorithm for solution
of the consistency equation (9.57) is potentially cumbersome. This is because the scalar
function ξ defined in (9.58) depends on a matrix A(∆γ) which, in turn, is a function whose
definition (9.59) involves the sum, inversion and multiplication of other matrices. Fortunately,
in the present case where the elastic behaviour is isotropic, the explicit expression for (9.57)
can be significantly simplified. The key point to be observed is the fact that matrices P and
De share the same eigenvectors so that they both have diagonal representation on the same
basis (as do C and A). By applying the orthogonal transformation

Q =




1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1


 (9.62)
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Box 9.4. Implicit elastic predictor/return-mapping algorithm. Plane stress-
projected von Mises model with nonlinear isotropic hardening.

HYPLAS procedure: SUVMPS

(i) Elastic predictor. Given the in-plane incremental strains, ∆ε, and the state variables at
tn, evaluate the elastic trial state

εe trial
n+1 := εe

n + ∆ε

ε̄p trial
n+1 := ε̄p

n

σtrial
n+1 := De εe trial

n+1

(ii) Check plastic admissibility

a1 := (σtrial
11 + σtrial

22 )2; a2 := (σtrial
22 − σtrial

11 )2; a3 := (σtrial
12 )2

ξtrial := 1
6
a1 + 1

2
a2 + 2a3

IF Φtrial := 1
2
ξtrial − 1

3
σ2

y(ε̄p trial
n+1 ) ≤ 0

THEN set (·)n+1 := (·)trialn+1 and EXIT

(iii) Return mapping. Solve the nonlinear equation

Φ̃(∆γ) = 0

for ∆γ using the Newton–Raphson method – GOTO Box 9.5 – and update the state
variables

σn+1 := A(∆γ) σtrial
n+1

εe
n+1 := C σn+1

ε̄p
n+1 := ε̄p

n + ∆γ
√

2
3
ξ(∆γ)

where C ≡ [De]−1 and matrix A(∆γ) is given in (9.69)

(iv) EXIT

to P and De, we obtain the diagonal representations

P∗ ≡ QPQT =



1
3 0 0
0 1 0
0 0 2


 (9.63)

and

De∗ ≡ QDeQT =




E

1 − ν
0 0

0 2G 0

0 0 G


. (9.64)
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On the same basis, the matrix A(∆γ) has the diagonal representation

A∗(∆γ) ≡ [C∗ + ∆γP∗]−1C∗

=




3(1 − ν)
3(1 − ν) + E∆γ

0 0

0
1

1 + 2G ∆γ
0

0 0
1

1 + 2G ∆γ


, (9.65)

where C∗ = [De∗]−1. The corresponding representation of the elastic trial stress array reads

σtrialn+1

∗ ≡ Q σtrialn+1 =



1√
2
(σtrial11 + σtrial22 )

1√
2
(σtrial22 − σtrial11 )

σtrial12


. (9.66)

With the above transformed variables, expression (9.58) can be written in the simpler form

ξ(∆γ) ≡ (σtrialn+1)
TAT (∆γ) P A(∆γ)σtrialn+1

= (σtrialn+1

∗
)T [A∗(∆γ)]2 P∗ σtrialn+1

∗

=
(σtrial11 + σtrial22 )2

6
[
1 + E ∆γ

3(1−ν)

]2 +
1
2 (σ

trial
22 − σtrial11 )2 + 2(σtrial12 )2

(1 + 2G ∆γ)2
. (9.67)

The pseudo-code of the Newton–Raphson procedure for solution of the return-mapping
equation (9.57), using the above expression for ξ, is shown in Box 9.5.

Note that matrix A(∆γ), which takes part in the stress update formula (9.60)1, can be
written as

A(∆γ) = QT A∗(∆γ) Q. (9.68)

Thus, in view of (9.62) and (9.65), it can be expressed in the simple explicit form

A(∆γ) =



1
2 (A

∗
11 + A∗

22)
1
2 (A

∗
11 − A∗

22) 0
1
2 (A

∗
11 − A∗

22)
1
2 (A

∗
11 + A∗

22) 0

0 0 A∗
33


 (9.69)

with

A∗
11 =

3(1 − ν)
3(1 − ν) + E ∆γ

, A∗
22 =

1
1 + 2G ∆γ

, A∗
33 = A∗

22. (9.70)

9.4.3. SUBROUTINE SUVMPS

The above plane stress-projected elastic predictor/return-mapping algorithm is implemented
in subroutine SUVMPS of HYPLAS. The list of arguments of SUVMPS is identical to that of its
general (plane strain/axisymmetric) counterpart described in Section 7.3.5 (page 224). We
refer to that section for the description of the arguments. Note that the same approach to
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Box 9.5. Newton–Raphson algorithm for solution of the return-mapping equation
of the plane stress-projected von Mises model.

HYPLAS procedure: SUVMPS

(i) Set initial guess for ∆γ
∆γ := 0

and corresponding residual, Φ̃

ξ := 1
6
(σtrial

11 + σtrial
22 )2 + 1

2
(σtrial

22 − σtrial
11 )2 + 2(σtrial

12 )2

Φ̃ := 1
2
ξ − 1

3
σ2

y(ε̄p
n)

(ii) Perform Newton–Raphson iteration

H :=
dσy

dε̄p

∣∣∣∣
ε̄

p
n+∆γ

√
2ξ/3

(hardening slope)

ξ′ := − (σtrial
11 + σtrial

22 )2

9
[
1 + E ∆γ

3(1−ν)

]3 E
(1−ν)

− 2G
(σtrial

22 − σtrial
11 )2 + 4(σtrial

12 )2

(1 + 2G ∆γ)3

H̄ := 2 σy

(
ε̄p

n + ∆γ

√
2

3
ξ

)
H

√
2

3

(√
ξ +

∆γ ξ′

2
√

ξ

)

Φ̃′ := 1
2
ξ′ − 1

3
H̄ (residual derivative)

∆γ := ∆γ − Φ̃

Φ̃′ (new guess for ∆γ)

(iii) Check for convergence

ξ :=
(σtrial

11 + σtrial
22 )2

6
[
1 + E ∆γ

3(1−ν)

]2 +
1
2
(σtrial

22 − σtrial
11 )2 + 2(σtrial

12 )2

(1 + 2G ∆γ)2

Φ̃ := 1
2
ξ − 1

3
σ2

y

(
ε̄p

n + ∆γ
√

2
3
ξ

)

IF |Φ̃| ≤ εtol THEN RETURN to Box 9.4

(iv) GOTO (ii)

the description of nonlinear isotropic hardening, which uses a piecewise linear hardening
curve, is adopted here. Again, the symbolic names of most variables resemble those of
the corresponding name given in the text. This should allow readers easily to correlate the
FORTRAN instructions with the corresponding expressions of Boxes 9.4 and 9.5, where the
plane stress integration algorithm is summarised. The complete list of the FORTRAN source
code of SUVMPS is given below.
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1 SUBROUTINE SUVMPS
2 1( DGAMA ,IPROPS ,LALGVA ,NTYPE ,RPROPS ,

3 2 RSTAVA ,STRAT ,STRES )

4 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

5 PARAMETER( IPHARD=4 ,MSTRE=4 ,NSTRE=3 )

6 LOGICAL IFPLAS, LALGVA(2), SUFAIL
7 DIMENSION
8 1 IPROPS(*) ,RPROPS(*) ,RSTAVA(MSTRE+1) ,

9 2 STRAT(MSTRE) ,STRES(MSTRE)
10 DIMENSION
11 1 EET(MSTRE) ,STREST(NSTRE)
12 DATA
13 1 R0 ,RP5 ,R1 ,R2 ,R3 ,R4 ,R6 ,TOL /

14 2 0.0D0,0.5D0,1.0D0,2.0D0,3.0D0,4.0D0,6.0D0,1.D-08/

15 DATA MXITER / 50 /
16 C***********************************************************************
17 C STATE UPDATE PROCEDURE FOR THE VON MISES ELASTO-PLASTIC MODEL WITH
18 C NON-LINEAR (PIECEWISE LINEAR) ISOTROPIC HARDENING IN PLANE STRESS:
19 C IMPLICIT PLANE STRESS-PROJECTED ELASTIC PREDICTOR/RETURN MAPPING
20 C ALGORITHM (BOXES 9.4-5).
21 C***********************************************************************
22 C Stop program if not plane stress

23 IF(NTYPE.NE.1)CALL ERRPRT(’EI0031’)
24 C Initialise some algorithmic and internal variables

25 DGAMA=R0
26 IFPLAS=.FALSE.
27 SUFAIL=.FALSE.
28 C...set previously (equilibrium) converged accumulated plastic strain

29 EPBARN=RSTAVA(MSTRE+1)
30 C Set some material properties

31 YOUNG=RPROPS(2)
32 POISS=RPROPS(3)
33 NHARD=IPROPS(3)
34 C Shear and bulk moduli and other necessary constants

35 GMODU=YOUNG/(R2*(R1+POISS))
36 BULK=YOUNG/(R3*(R1-R2*POISS))
37 R2G=R2*GMODU
38 R4G=R4*GMODU
39 R1D3=R1/R3
40 R1D6=R1/R6
41 R2D3=R2*R1D3
42 SQR2D3=SQRT(R2D3)
43 R4GD3=R4G*R1D3
44 C Elastic predictor: Compute elastic trial state

45 C ----------------------------------------------
46 C Volumetric strain
47 FACTOR=R2G/(BULK+R4GD3)
48 EEV=(STRAT(1)+STRAT(2))*FACTOR
49 C Elastic trial deviatoric strain
50 EEVD3=EEV/R3
51 EET(1)=STRAT(1)-EEVD3
52 EET(2)=STRAT(2)-EEVD3
53 C Convert engineering shear component into physical component

54 EET(3)=STRAT(3)*RP5
55 C Elastic trial stress components

56 PT=BULK*EEV
57 STREST(1)=R2G*EET(1)+PT
58 STREST(2)=R2G*EET(2)+PT
59 STREST(3)=R2G*EET(3)
60 C Compute yield function value at trial state

61 A1=(STREST(1)+STREST(2))*(STREST(1)+STREST(2))
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62 A2=(STREST(2)-STREST(1))*(STREST(2)-STREST(1))
63 A3=STREST(3)*STREST(3)
64 XI=R1D6*A1+RP5*A2+R2*A3
65 SIGMAY=PLFUN(EPBARN,NHARD,RPROPS(IPHARD))
66 C...yield function

67 PHI=RP5*XI-R1D3*SIGMAY*SIGMAY
68 C Check for plastic admissibility

69 C -------------------------------
70 IF(PHI/SIGMAY.GT.TOL)THEN
71 C Plastic step: Apply return mapping - use Newton-Raphson algorithm

72 C to solve the plane stress-projected return mapping

73 C equation for the plastic multiplier (Box 9.5)

74 C -----------------------------------------------------------------
75 IFPLAS=.TRUE.
76 EPBAR=EPBARN
77 SQRTXI=SQRT(XI)
78 B1=R1
79 B2=R1
80 FMODU=YOUNG/(R3*(R1-POISS))
81 DO 10 NRITER=1,MXITER
82 C Compute residual derivative

83 HSLOPE=DPLFUN(EPBAR,NHARD,RPROPS(IPHARD))

84 DXI=-A1*FMODU/(R3*B1*B1*B1)-R2G*(A2+R4*A3)/(B2*B2*B2)
85 HBAR=R2*SIGMAY*HSLOPE*SQR2D3*(SQRTXI+DGAMA*DXI/(R2*SQRTXI))
86 DPHI=RP5*DXI-R1D3*HBAR
87 C Compute Newton-Raphson increment and update equation variable DGAMA

88 DGAMA=DGAMA-PHI/DPHI
89 C Compute new residual (yield function value)

90 B1=R1+FMODU*DGAMA
91 B2=R1+R2G*DGAMA
92 XI=R1D6*A1/(B1*B1)+(RP5*A2+R2*A3)/(B2*B2)
93 SQRTXI=SQRT(XI)
94 EPBAR=EPBARN+DGAMA*SQR2D3*SQRTXI

95 SIGMAY=PLFUN(EPBAR,NHARD,RPROPS(IPHARD))
96 PHI=RP5*XI-R1D3*SIGMAY*SIGMAY
97 C Check for convergence

98 RESNOR=ABS(PHI/SIGMAY)
99 IF(RESNOR.LE.TOL)THEN

100 C update accumulated plastic strain

101 RSTAVA(MSTRE+1)=EPBAR
102 C update stress components: sigma := A sigma^trial

103 ASTAR1=R3*(R1-POISS)/(R3*(R1-POISS)+YOUNG*DGAMA)
104 ASTAR2=R1/(R1+R2G*DGAMA)
105 A11=RP5*(ASTAR1+ASTAR2)
106 A22=A11
107 A12=RP5*(ASTAR1-ASTAR2)
108 A21=A12
109 A33=ASTAR2
110 STRES(1)=A11*STREST(1)+A12*STREST(2)
111 STRES(2)=A21*STREST(1)+A22*STREST(2)
112 STRES(3)=A33*STREST(3)
113 C compute corresponding elastic (engineering) strain components

114 FACTG=R1/R2G
115 P=R1D3*(STRES(1)+STRES(2))
116 EEV=P/BULK
117 EEVD3=R1D3*EEV
118 RSTAVA(1)=FACTG*(R2D3*STRES(1)-R1D3*STRES(2))+EEVD3
119 RSTAVA(2)=FACTG*(R2D3*STRES(2)-R1D3*STRES(1))+EEVD3
120 RSTAVA(3)=FACTG*STRES(3)*R2
121 RSTAVA(4)=-POISS/(R1-POISS)*(RSTAVA(1)+RSTAVA(2))
122 GOTO 999
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123 ENDIF
124 10 CONTINUE
125 C reset failure flag and print warning message if N-R algorithm fails

126 SUFAIL=.TRUE.
127 CALL ERRPRT(’WE0013’)
128 ELSE
129 C Elastic step: Update stress using linear elastic law

130 C ----------------------------------------------------
131 STRES(1)=STREST(1)

132 STRES(2)=STREST(2)
133 STRES(3)=STREST(3)
134 C elastic engineering strain

135 RSTAVA(1)=STRAT(1)
136 RSTAVA(2)=STRAT(2)

137 RSTAVA(3)=STRAT(3)
138 RSTAVA(4)=-POISS/(R1-POISS)*(STRAT(1)+STRAT(2))
139 ENDIF
140 999 CONTINUE
141 C Update some algorithmic variables before exit

142 LALGVA(1)=IFPLAS
143 LALGVA(2)=SUFAIL
144 RETURN
145 END

9.4.4. THE ELASTOPLASTIC CONSISTENT TANGENT OPERATOR

With the matrix notation adopted throughout the preceding sections, the elastoplastic consis-
tent tangent matrix is defined as

Dep ≡ dσn+1

dεn+1
=

dσn+1

dεtrialn+1

, (9.71)

where σn+1 is the outcome of the plane stress-projected return-mapping algorithm. The
explicit expression for Dep is derived analogously to its three-dimensional counterpart
discussed in Section 7.4.2 (page 232). We start by differentiating (9.54)1 which, together
with the elastic law, gives

dσn+1 = E[dεtrialn+1 − d∆γ Pσn+1], (9.72)

where we have defined
E ≡ [C + ∆γP]−1. (9.73)

Differentiation of the plastic consistency (9.57) yields the equation

dΦ̃ = 1
2 dξ − 2

3 σy H

√
2
3

(
d∆γ

√
ξ +

∆γ

2
√

ξ
dξ

)
= 1
2 dξ − 2

3 H (ξ d∆γ + 1
2∆γ dξ) = 0. (9.74)

In the above, we have used the identity σy =
√
3
2ξ, which holds under plastic flow. From the

above equation, it immediately follows that

d∆γ =
3

4Hξ
(1 − 2

3 H ∆γ) dξ. (9.75)
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By using the elastic law and the above definition of matrix E, the scalar ξ defined by (9.58)
can be equivalently written as

ξ = (εtrialn+1)
T E P E εtrialn+1. (9.76)

Straightforward differentiation of the above expression gives:∗∗

dξ = 2(εtrialn+1)
T E P E dεtrialn+1 + 2(εtrialn+1)

T dE P E εtrialn+1

= 2(σT
n+1P E dεtrialn+1 − σT

n+1P E P σn+1 d∆γ). (9.77)

Substitution of the above formula into (9.75) followed by the substitution of the resulting
expression into (9.72) and straightforward algebraic manipulations gives

dσn+1 = [E− α (EPσn+1) ⊗ (EPσn+1)] dεtrialn+1, (9.78)

where the scalar α is defined as

α =
1

σT
n+1PEPσn+1 + 2ξH

3−2H ∆γ

. (9.79)

The explicit expression for the matrix form of the elastoplastic tangent operator consistent
with the von Mises plane stress-projected return mapping is then given by

Dep = E− α (EPσn+1) ⊗ (EPσn+1). (9.80)

The step-by-step procedure for evaluation of the above elastoplastic tangent is summarised
in Box 9.6 in pseudo-code format. Its computation in program HYPLAS is carried out in
subroutine CTVMPS (Consistent Tangent operator for the Von Mises model in Plane Stress).
This subroutine is described in the next section.

9.4.5. SUBROUTINE CTVMPS

The FORTRAN implementation of the tangent operator consistent with the implicit plane
stress-projected integration algorithm for the von Mises model is described in this sec-
tion. As in the standard implementation (plane strain/axisymmetric) of routine CTVM (see
Section 7.4.3, page 235), the present routine returns either the elastic or the elastoplastic
tangent operator. The elastic tangent is the standard plane stress linear elasticity matrix. The
elastoplastic tangent is that given by expression (9.80) and its evaluation follows the flow of
Box 9.6. The argument list of CTVMPS is identical to that of its general counterpart CTVM. The
reader is therefore referred to Section 7.4.3 for a complete description of the arguments of
CTVMPS.

∗∗In deriving (9.77) we have made use of the standard relation for the differential of the inverse of a matrix

d(M−1) = −M−1 dM M−1,

valid for any invertible M. This relation, together with the use of the chain rule in (9.73), yields the identity

dE = −E P E d∆γ.
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Box 9.6. Computation of the elastoplastic tangent operator for the plane stress-
projected von Mises model.

HYPLAS procedure: CTVMPS

(i) Given σn+1, ε̄p
n+1 and ∆γ (outcome of the return mapping of Box 9.4), compute

ξ := σT
n+1Pσn+1

H :=
dσy

dε̄p

∣∣∣∣
ε̄

p
n+1

(hardening slope)

E := [C + ∆γ P]−1

n := EPσn+1

α :=
1

σT
n+1Pn + 2ξH

3−2H ∆γ

(ii) Assemble the elastoplastic tangent

Dep := E − α n ⊗ n

Note that analogously to matrix A expressed in (9.69), matrix E appearing in the
procedure of Box 9.6 can be represented as

E(∆γ) =



1
2 (E

∗
11 + E∗

22)
1
2 (E

∗
11 − E∗

22) 0
1
2 (E

∗
11 − E∗

22)
1
2 (E

∗
11 + E∗

22) 0

0 0 E∗
33


 (9.81)

with

E∗
11 =

3E

3(1 − ν) + E ∆γ
, E∗

22 =
2G

1 + 2G ∆γ
, E∗

33 =
E∗
22

2
. (9.82)

A similar expression is obtained for the product EP. This representation is exploited in
subroutine CTVMPS, whose FORTRAN source code is listed below.

1 SUBROUTINE CTVMPS
2 1( DGAMA ,DMATX ,EPFLAG ,IPROPS ,NTYPE ,

3 2 RPROPS ,RSTAVA ,STRES )

4 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

5 PARAMETER(IPHARD=4 ,MSTRE=4)
6 LOGICAL EPFLAG
7 C Array arguments

8 DIMENSION
9 1 DMATX(MSTRE,MSTRE),IPROPS(*) ,RPROPS(*) ,

10 2 RSTAVA(MSTRE+1) ,STRES(MSTRE)
11 C Local arrays

12 DIMENSION
13 1 FOID(MSTRE,MSTRE) ,SOID(MSTRE) ,VECN(3)
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14 DATA
15 1 FOID(1,1),FOID(1,2),FOID(1,3),FOID(1,4)/

16 2 1.0D0 ,0.0D0 ,0.0D0 ,0.0D0 /

17 3 FOID(2,1),FOID(2,2),FOID(2,3),FOID(2,4)/

18 4 0.0D0 ,1.0D0 ,0.0D0 ,0.0D0 /

19 5 FOID(3,1),FOID(3,2),FOID(3,3),FOID(3,4)/

20 6 0.0D0 ,0.0D0 ,0.5D0 ,0.0D0 /

21 7 FOID(4,1),FOID(4,2),FOID(4,3),FOID(4,4)/

22 8 0.0D0 ,0.0D0 ,0.0D0 ,1.0D0 /
23 DATA
24 1 SOID(1) ,SOID(2) ,SOID(3) ,SOID(4) /

25 2 1.0D0 ,1.0D0 ,0.0D0 ,1.0D0 /
26 DATA
27 1 RP5 ,R1 ,R2 ,R3 ,R4 /

28 2 0.5D0,1.0D0,2.0D0,3.0D0,4.0D0/
29 C***********************************************************************
30 C COMPUTATION OF THE CONSISTENT TANGENT MODULUS FOR VON MISES TYPE
31 C ELASTO-PLASTIC MATERIAL WITH PIECE-WISE LINEAR ISOTROPIC HARDENING.
32 C PLANE STRESS IMPLEMENTATION ONLY.
33 C***********************************************************************
34 C Stops program if not plane stress

35 IF(NTYPE.NE.1)CALL ERRPRT(’EI0032’)
36 C Current accumulated plastic strain

37 EPBAR=RSTAVA(MSTRE+1)
38 C Set material properties

39 YOUNG=RPROPS(2)
40 POISS=RPROPS(3)

41 NHARD=IPROPS(3)
42 C Shear and bulk moduli
43 GMODU=YOUNG/(R2*(R1+POISS))

44 BULK=YOUNG/(R3*(R1-R2*POISS))
45 R2G=R2*GMODU
46 R1D3=R1/R3
47 R2D3=R2*R1D3
48 IF(EPFLAG)THEN
49 C Compute elastoplastic consistent tangent (Box 9.6)

50 C ==================================================
51 C Item (i):
52 C ---------
53 C Compute XI

54 XI=R2D3*(STRES(1)*STRES(1)+STRES(2)*STRES(2)-STRES(1)*STRES(2))+
55 1 R2*STRES(3)*STRES(3)
56 C Hardening slope

57 HSLOPE=DPLFUN(EPBAR,NHARD,RPROPS(IPHARD))
58 C Matrix E components

59 ESTAR1=R3*YOUNG/(R3*(R1-POISS)+YOUNG*DGAMA)

60 ESTAR2=R2G/(R1+R2G*DGAMA)
61 ESTAR3=GMODU/(R1+R2G*DGAMA)

62 E11=RP5*(ESTAR1+ESTAR2)
63 E22=E11
64 E12=RP5*(ESTAR1-ESTAR2)
65 E33=ESTAR3
66 C Components of the matrix product EP

67 EPSTA1=R1D3*ESTAR1
68 EPSTA2=ESTAR2
69 EPSTA3=EPSTA2
70 EP11=RP5*(EPSTA1+EPSTA2)
71 EP22=EP11
72 EP12=RP5*(EPSTA1-EPSTA2)
73 EP21=EP12
74 EP33=EPSTA3
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75 C Vector n

76 VECN(1)=EP11*STRES(1)+EP12*STRES(2)

77 VECN(2)=EP21*STRES(1)+EP22*STRES(2)

78 VECN(3)=EP33*STRES(3)

79 C Scalar alpha

80 DENOM1=STRES(1)*(R2D3*VECN(1)-R1D3*VECN(2))+

81 1 STRES(2)*(R2D3*VECN(2)-R1D3*VECN(1))+

82 2 STRES(3)*R2*VECN(3)

83 DENOM2=R2*XI*HSLOPE/(R3-R2*HSLOPE*DGAMA)

84 ALPHA=R1/(DENOM1+DENOM2)

85 C Item (ii): Assemble elasto-plastic tangent

86 C ------------------------------------------

87 DMATX(1,1)=E11-ALPHA*VECN(1)*VECN(1)

88 DMATX(1,2)=E12-ALPHA*VECN(1)*VECN(2)

89 DMATX(1,3)=-ALPHA*VECN(1)*VECN(3)

90 DMATX(2,1)=DMATX(1,2)

91 DMATX(2,2)=E22-ALPHA*VECN(2)*VECN(2)

92 DMATX(2,3)=-ALPHA*VECN(2)*VECN(3)

93 DMATX(3,1)=DMATX(1,3)

94 DMATX(3,2)=DMATX(2,3)

95 DMATX(3,3)=E33-ALPHA*VECN(3)*VECN(3)

96 ELSE
97 C Compute plane stress elasticity matrix

98 C ======================================
99 NSTRE=3

100 R4GD3=R4*GMODU/R3

101 FACTOR=(BULK-R2G/R3)*(R2G/(BULK+R4GD3))

102 DO 20 I=1,NSTRE

103 DO 10 J=I,NSTRE

104 DMATX(I,J)=R2G*FOID(I,J)+FACTOR*SOID(I)*SOID(J)

105 10 CONTINUE
106 20 CONTINUE
107 C lower triangle

108 DO 40 J=1,NSTRE-1

109 DO 30 I=J+1,NSTRE

110 DMATX(I,J)=DMATX(J,I)

111 30 CONTINUE
112 40 CONTINUE
113 ENDIF
114 RETURN
115 END

9.5. Numerical examples

In this section, we present a selected set of benchmarking numerical examples involving plane
stress plasticity. The results have been obtained with program HYPLAS with the full Newton–
Raphson scheme selected for the equilibrium iterations. In all examples, the equilibrium
convergence tolerance for the relative residual norm was set to 10−7%. It is important to
remark that such a small convergence tolerance is used essentially to emphasise the quadratic
rates of convergence obtained by adopting the tangent modulus consistent with the relevant
integration algorithm. The numerical results obtained in the first two examples is compared
with existing analytical solutions.
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9.5.1. COLLAPSE OF AN END-LOADED CANTILEVER

In this example, we study the problem of the plastic collapse of an end-loaded cantilever beam
with a rectangular cross-section. The geometry, boundary conditions, finite element model
and material properties are illustrated in Figure 9.2. A perfectly plastic von Mises material
model in plane stress is assumed. The plane stress implementation of the von Mises model,
which follows the plane-stress projected approach, has been fully described in Sections 9.4.2
and 9.4.4. The cantilever is modelled with 2 × 50 eight-noded quadrilaterals (element type
QUAD 8 of HYPLAS) with 2×2-point (reduced) Gauss quadrature. The analytical limit load for
this problem is given by

Flim =
σy bh2

4L
,

where b, h are, respectively, the breadth and width of the cross-section and L is the length of
the cantilever. The above solution is derived in detail in section 4.2.2 of Lubliner (1990). For
the present geometry and material properties, the analytical limit load is

Flim = 30 KN.

The numerical solution is obtained here by applying six load increments to the loaded node
shown in Figure 9.2. The resulting vertical deflection of the loaded node is plotted against the
applied force for each increment in Figure 9.3. The load level at the end of the last increment
is F = 30.3594 KN. At this point, the cantilever is effectively collapsing and equilibrium
can no longer be found for reasonably sized load increments. It should be noted that the
numerically obtained collapse load is in excellent agreement with the theoretical limit. The
relative error is approximately 1.2%. Finally, to emphasise the quadratic rates of equilibrium
convergence attained as a result of the consistent linearisation of the algorithmic constitutive
rule, the evolution of the residuals (out-of-balance forces) during the global Newton–Raphson
iterations is shown in Table 9.1 for increments 2, 4 and 6. Note that for increment 6 (the
last load increment) the cantilever is effectively collapsing (see the load-deflection diagram
of Figure 9.3). At that stage, substantial diagonal decay (with consequent round-off errors)
is found in the linearised finite element system of equations requiring a larger number of
iterations for convergence.

9.5.2. INFINITE PLATE WITH A CIRCULAR HOLE

The problem considered in this numerical example consists of a large flat plate containing
a circular hole which is expanded by the action of a gradually increasing uniform radial
pressure applied on its edge. The plate is made from a von Mises perfectly plastic material.
The analytical solution to this problem, where the plate is considered to be an infinite medium
in plane stress state, is found in Section 5.7 of Chakrabarty (1987). Here, the problem is
solved by using the mesh shown in Figure 9.4. In the finite element model, the plate has a
large radius (as compared to the radius of the hole) in order to emulate the infinite planar
medium. Due to the symmetry of the problem around the centre of the hole only a 10o slice
of the geometry is discretised. A total number of 11 eight-noded quadrilaterals (element type
QUAD 8 of HYPLAS) with five-point quadrature are used (the quadrature points are indicated
by crosses within a typical element in Figure 9.4). Under plane stress conditions, eight-noded
quadrilaterals are usually employed in conjunction with the nine-point Gaussian quadrature.
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Figure 9.2. End-loaded cantilever. Problem definition and finite element model.
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Figure 9.3. End-loaded cantilever. Load-deflection diagram.

As opposed to plane strain applications, underintegration is not required here, as locking is
not an issue in plane stress problems. The choice of the five-point integration rule in the
present example, is informed by the fact that it produces, with less computational effort,
results virtually identical to those obtained by the nine-point Gauss quadrature. In the finite
element simulation, the pressure p is increased gradually until a limit load is attained. Seven
load increments are used to reach p = 0.2853 – the numerical pressure limit at which global
convergence cannot be obtained for any significant load increment. The resulting normalised
radial expansion – u/a, where u is the radial displacement of the mid-side node of the loaded
edge – is plotted in Figure 9.5 against the normalised applied pressure, p/σy . The analytical
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Table 9.1. End-loaded cantilever. Convergence table.

Normalised residuals (%)

Iteration Increment 2 Increment 4 Increment 6
number ∆F = 10 KN ∆F = 0.0625 KN ∆F = 0.015625 KN

1 0.895831 E + 01 0.464825 E + 00 0.205624 E + 01
2 0.380886 E + 01 0.634491 E + 00 0.248066 E + 01
3 0.629249 E − 01 0.295108 E − 01 0.128691 E + 01
4 0.486441 E − 04 0.139026 E − 03 0.533184 E + 00
5 0.526293 E − 10 0.414654 E − 08 0.717926 E − 01
6 0.104585 E − 02
7 0.162250 E − 06
8 0.549382 E − 09

normalised limit pressure is
plim
σy

=
2√
3
≈ 1.155.

The limit pressure obtained in the simulation is about 3% higher than the analytical value.
The hoop and radial stress distribution along the radial direction obtained at different stages of
loading is shown in Figure 9.6. The numerical results shown on the graph are those obtained at
the central integration point of each of the first five elements on the left side of the mesh. The
corresponding analytical solution is also plotted for comparison. Similarly to the problem
studied in Section 7.5.1 (page 244), plastification here starts at the edge of the hole and
progresses as a cylindrical plastic front whose radius c increases as the load is increased. In
the present problem, when the above limit pressure is reached, the radius of the plastic zone
has the limit value

clim
a

=
√

eπ/
√
3 cos

π

3
≈ 1.751.

In the elastic region – where the radial coordinate r satisfies r ≥ c – the radial and hoop
stresses are given, respectively, by

σr = − σy c2√
3 r2

and σθ =
σy c2√

3 r2
.

Within the plastic region of the plate – where a ≥ r ≥ c – the analytical stress distributions
are given by

σr = −2σy√
3

sin
(

π

6
+ φ

)
and σθ =

2σy√
3

sin
(

π

6
− φ

)
,

where, for a given c ≤ clim, φ is the implicit function of r defined by

c2

r2
= e

√
3φ cos φ.
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Figure 9.4. Infinite plate with a hole. Problem definition and finite element model.
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Figure 9.5. Infinite plate with a hole. Pressure-expansion diagram.

9.5.3. STRETCHING OF A PERFORATED RECTANGULAR PLATE

This example presents the numerical simulation of a thin perforated plate under plane stress
subjected to stretching along its longitudinal axis. This classical example is frequently used
as a benchmark for the plane stress implementation of plasticity models (Fuschi et al., 1992;
Simo and Taylor, 1986). A linearly hardening von Mises law is adopted. The geometry,
boundary conditions and material properties are shown in Figure 9.7. The finite element mesh
used contains 576 three-noded constant strain triangles (element type TRI 3 of HYPLAS) with
a total number of 325 nodes. For symmetry reasons, only one quarter of the complete domain
is discretised with the appropriate kinematic constraints being imposed along the symmetry
edges. A total vertical displacement u = 0.14 mm is imposed on the constrained edge in seven



PLANE STRESS PLASTICITY 391

st
re

ss
es

,σ
r

an
d

σ
θ

(G
P

a)

0

0.1

0.2

-0.1

-0.2

-0.3

1 1.2 1.4 1.6 1.8 2

p=0.15

p=0.20

p=0.25

p=0.15 p=0.20 p=0.25

analytical (hoop)
analytical (radial)

FE results

radial position, r/a

Figure 9.6. Infinite plate with a hole. Stress distribution in the radial direction (r denotes the radial
coordinate). Analytical and finite element results for different applied pressures (indicated pressures
levels in GPa).

increments ∆u = 0.02 mm. The top edge nodes (except that on the symmetry line) are free to
move horizontally. The reaction force obtained over the complete edge is plotted in Figure 9.8
versus the prescribed displacement. In this problem, plastic yielding starts at the intersection
between the bottom symmetry line and the edge of the hole and spreads in an oblique front
until the entire cross-section becomes plastic. The evolution of the plastic front is depicted in
Figure 9.9, which shows contour plots of accumulated plastic strain at different stages of the
loading process.

9.5.4. UNIFORM LOADING OF A CONCRETE SHEAR WALL

A plain concrete shear wall subjected to uniformly distributed load on its upper edge is
analysed in this example. The geometry, boundary conditions and the finite element mesh
adopted are shown in Figure 9.10. The mesh used to discretise the symmetric half of the
problem contains 12 × 24 equally sized eight-noded quadrilaterals with four-point Gauss
quadrature. The given material properties for the concrete (also shown in Figure 9.10) are
its uniaxial compression and tensile strengths, denoted f ′

c and f ′
t , respectively. Here, the

concrete is modelled as an associative perfectly plastic Drucker–Prager material in plane
stress. We remark that, in contrast to the plane stress-projected approach of the von Mises
implementation used in the previous examples, the HYPLAS implementation of the plane stress
Drucker–Prager model follows the nested iteration methodology described in Section 9.2.2.
Two different sets of material parameters are adopted with the plane stress section of the
Drucker–Prager surface matching:
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Figure 9.9. Stretching of a perforated rectangular plate. Contour plots of accumulated plastic strain, ε̄p.

(a) the given uniaxial data;

(b) the biaxial tension and compression limits of the Mohr–Coulomb surface that matches
the given uniaxial data.

A schematic representation of the corresponding yield surfaces is given in Figure 6.16
(page 169). The frictional angle, φ, and the cohesion, c, for the above are given by (refer
to expressions (6.125–6.127))

φ = 56.57o, c = 4.58 MPa.
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Table 9.2. Shear wall. Convergence table.

Normalised residuals (%)

Iteration number Increment 2 Increment 6 Increment 9

1 0.102911 E + 02 0.101283 E + 02 0.567046 E + 01

2 0.495802 E + 00 0.557241 E + 01 0.134854 E + 01

3 0.822378 E − 03 0.198868 E − 00 0.904595 E − 02

4 0.447672 E − 08 0.653716 E − 04 0.282426 E − 05

5 0.541467 E − 10 0.132435 E − 10

The Drucker–Prager parameters η and ξ for cases (a) and (b) are automatically set to the
correct values by selecting the flag for the appropriate Drucker–Prager match of the Mohr–
Coulomb surface in the input data file for HYPLAS. In the numerical simulation, the load
is applied incrementally, with arc-length control, until collapse occurs. A total of 16 and
10 increments are used, respectively, in cases (a) and (b) to reach a numerical limit load.
To emphasise the quadratic (equilibrium) convergence rates resulting from the consistent
linearisation of the nested iteration-based integration algorithm, Table 9.2 shows the evolution
of the normalised residuals (out-of-balance forces) during typical global Newton iterations
at sample load increments. The applied load versus vertical deflection of the midpoint of the
lower edge (point A of Figure 9.10) is shown in Figure 9.11. This example illustrates the huge
discrepancy that may exist between results obtained with different types of Drucker–Prager
approximations to the Mohr–Coulomb criterion. The limit load obtained with the uniaxial
match is about nine times that obtained with the biaxial match. The numerical limit load
in the uniaxial match case is 3045 KN/m whereas with the biaxial match the limit load is
335.5 KN/m. In the present example, failure occurs by crushing of the material near the
support under a combination of shear and compressive stresses. The failure mechanism is
illustrated in Figure 9.12 where the direction of the incremental nodal displacements at failure
are plotted for the biaxial match case. As pointed out in Section 6.4.4, limit loads can be
significantly overestimated when the uniaxial match is used under such conditions, becoming
worse towards the biaxial compression state. This is particularly true in the present case
where the ratio f ′

c/f ′
t is high. The biaxial match on the other hand produces a conservative

prediction. Other predictions can be obtained by using the outer or inner edge Drucker–
Prager approximations to the Mohr–Coulomb surface (refer to Section 6.4.4, from page 166)
corresponding to the given uniaxial data. In these cases (not shown on the load-deflection
graphs) the predicted limit loads are, respectively, 2539 KN/m and 276 KN/m. The most
conservative one is that produced by the inner match approximation.

It should be emphasised that, in practice, shear walls are made from reinforced rather
than plain concrete. Thus, the present example is not meant to be a practical engineering
application. Instead, it serves to illustrate the performance of the (nested iteration) plane
stress Drucker–Prager model. Within the finite element environment of HYPLAS, effects of
reinforcement could be accounted for by adding steel elements (the reinforcement) on top of
an appropriately designed background plain concrete mesh.
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Figure 9.10. Shear wall. Geometry and finite element model.
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match.
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Figure 9.12. Shear wall. Incremental displacements at failure.

9.6. Other stress-constrained states

Plane stress is certainly not the only stress-constrained state of practical interest in engineer-
ing analysis and design. States of stress arising typically in structures such as beams, plates
and shells can, under many practical conditions, be approximated by constraining appropriate
components of the stress tensor. Within the context of linear elasticity, the classical Bernoulli
and Timoshenko beam theories as well as plates and shells theories such as the Mindlin–
Reissner and Kirchhoff–Love models are clear examples where certain components of the
stress tensor are assumed to vanish. The extension of such theories to the elastoplastic range
can be derived by means of the concepts reviewed in the previous sections of this chapter.
To illustrate further applications of those concepts, we derive in the following a set of
stress-constrained elastoplastic constitutive equations suitable for implementation with three-
dimensional Timoshenko beam finite elements. The equations derived here are completely
analogous to the plane-stress projected equations discussed earlier. In the present case we will
end up with a beam state-projected set of evolution equations for von Mises plasticity. The
corresponding integration algorithm and consistent tangent operator, which have the same
format as those of the plane stress-projected model, are also derived.

9.6.1. A THREE-DIMENSIONAL VON MISES TIMOSHENKO BEAM

Let us consider here a three-dimensional beam with plane cross-sections C orthogonal to the
centroidal axis (Figure 9.13). Following the standard kinematic hypotheses that characterise
two-dimensional Timoshenko beams, it is assumed that upon a generic three-dimensional
deformation the cross-sections remain plane. This assumption results in the following
representation for the strain components ε13, ε23 and ε33 at any point with local coordinates
(η1, η2, ζ)

ε13 = 1
2 [γ1(ζ) − η2 κ3(ζ) − ω2(ζ)]

ε23 = 1
2 [γ2(ζ) + η1 κ3(ζ) + ω1(ζ)]

ε33 = γ3(ζ) + η2 κ1(ζ) − η1 κ2(ζ)

(9.83)
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Figure 9.13. Three-dimensional Timoshenko beam state.

where γi and κi are the components of the generalised strain arrays

γ ≡ ∂ū

∂ζ
, κ ≡ ∂ω

∂ζ
(9.84)

with ū(ζ) and ω(ζ) denoting, respectively, the displacement of the centroidal axis and the
three-dimensional rotation of the cross-section. The components γ1 and γ2 are associated
with transverse shear and γ3 is the longitudinal strain at the centroidal axis. Components κ1
and κ2 correspond to the beam curvature deformation whereas κ3 is the torsional strain.

The constraint on the stress tensor

In addition, a three-dimensional Timoshenko beam stress state is characterised by the
following constraints on the stress tensor components

σ11 = σ22 = σ12 = 0 (9.85)

so that a generic stress state is given by

σ =


 0 0 σ13

0 0 σ23
σ13 σ23 σ33


 (9.86)

with σ13, σ23 and σ33 being the only possible non-vanishing components.

Resultant forces

The generalised forces associated with the generalised strain vectors γ and κ are, respectively,
the resultant force, denoted n, and the resultant moment, denoted m. These are obtained by
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integration of the non-vanishing stress components over the beam cross-section. The resultant
force has the local components

n1 =
∫

C

σ13 dA

n2 =
∫

C

σ23 dA

n3 =
∫

C

σ33 dA

(9.87)

whereas the resultant moment is defined by

m1 =
∫

C

η2 σ33 dA

m2 = −
∫

C

η1 σ33 dA

m3 =
∫

C

(η1 σ23 − η2 σ13) dA.

(9.88)

Resultant forces/generalised strains constitutive relation

In the present context, the constitutive relationship between the history of the generalised
strains and the resultant forces is obtained as follows. Given the history of γ and κ (directly
obtained from the history of generalised displacements, ū and ω) the history of the strain
components ε13, ε23 and ε33 is automatically prescribed by (9.83). With the prescribed strain
components, we need to integrate the elastoplastic evolution equations so as to produce the
corresponding stress σ. Having done so, the resultant forces n and m are then obtained by
integration of the stresses over the cross-section according to their definition. At the element
level, the cross-section integration can be performed numerically by means of, say, a Gauss
quadrature. Clearly, the only step that depends on the material model is the integration of
the elastoplastic evolution problem. In the present case only the history of strain components
ε13, ε23 and ε33 is prescribed and the constraint (9.85) has to be satisfied. The dependent
variables are the strain components ε11, ε22 and ε12 which can be calculated a posteriori.
In what follows, we concentrate on the definition of the von Mises elastoplastic evolution
problem subjected to the present stress constraint.

The beam state-projected von Mises model

Analogously to what has been done in the derivation of the plane stress-projected von Mises
model, it is convenient here to introduce the matrix notation

σ ≡




σ13
σ23
σ33


 , s≡




2s13
2s23
s33


=




2σ13
2σ23
2
3σ33


 , (9.89)

where sij denote components of the deviatoric stress tensor. Note that the generally non-
vanishing components s11 and s22, missing in the above representation of the stress deviator,
are dependent on s33

s11 = s22 = − 12 s33 = − 13σ33. (9.90)
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The stress and stress deviator arrays are related by

s = P σ, (9.91)

where the projection matrix P is here given by

P≡


2 0 0

0 2 0
0 0 2

3


. (9.92)

In order to formulate the constrained evolution equations, it is also convenient to define
the following notation for the independent (engineering) strain components

ε ≡




2ε13
2ε23
ε33


 , εe ≡




2εe
13

2εe
23

εe
33


 , εp ≡




2εp
13

2εp
23

εp
33


 . (9.93)

The yield function.

With the above notation, the projected version of the von Mises yield function can be
defined as

Φ(σ, ε̄p) ≡
√
3
2 σT P σ − σy(ε̄p). (9.94)

The projected yield function has values identical to those of the three-dimensional von Mises
function for stress states satisfying the three-dimensional Timoshenko beam constraint (9.86)
and has only the relevant non-vanishing stress components as arguments.

The beam state-projected von Mises equations.

Finally, the beam state-projected von Mises evolution equations are defined as follows. Given
the history of the total independent strain components, ε13(t), ε23(t), and ε33(t) – the history
of the strain arrays ε – the basic initial value problem now consists of finding the functions
εp(t), εe(t), σ(t) and ε̄p(t) such that the following constrained plasticity equations are
satisfied

ε̇
e = ε̇ − ε̇

p

σ = De εe

ε̇
p = γ̇

∂Φ
∂σ

= γ̇
√
3
2

Pσ√
σTPσ

˙̄εp = γ̇

(9.95)

where
Φ(σ, ε̄p) ≥ 0, γ̇ ≥ 0, γ̇ Φ(σ, ε̄p) > 0. (9.96)

The elastic matrix, De, for the three-dimensional Timoshenko beam is given simply by

De =


G 0 0

0 G 0
0 0 E


. (9.97)
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The above set of evolution equations is analogous to that of the plane stress-projected
von Mises model of Box 9.3. Under stress states that satisfy the constraint (9.86), the rates
ε̇p
13, ε̇p

23 and ε̇p
33 resulting from the original three-dimensional elastoplastic equations are

identical to the rates resulting from the above constrained equations. The main difference
between the two formulations is the fact that, in the three-dimensional case, the history of
the total strain components, ε11, ε22 and ε12, is prescribed in the underlying initial value
problem, whereas, in the constrained case, these components are dependent variables whose
evolution is a consequence of the constraint on the stress state.

Evolution of the dependent strain components.

Having determined the history of the independent strains by integrating the constrained
elastoplastic evolution equations, the history of the dependent strain components, ε11, ε12
and ε22, is obtained as follows. As σ12 = 0 and, consequently, ε̇p

12 = 0 for constrained
stress states, the elastoplastic additive strain decomposition together with the elastic relation,
σ12 = 2G εe

12, implies that

ε12 = εe
12 = εp

12 = 0. (9.98)

The three-dimensional Timoshenko beam constraint on stresses also imply that

εe
11 = εe

22 =
−K

2(G + K)
εe
33. (9.99)

From the three-dimensional von Mises equations, it follows that, for constrained stress states,
we have ε̇p

11 = ε̇p
22 = − 12 ε̇

p
33, so that the components εp

11 and εp
22 are promptly found to be

given by

εp
11 = εp

22 = − 12ε
p
33. (9.100)

Finally, the total strain components ε11 and ε22 are obtained from the additive elastoplastic
split of the total strain tensor

ε11 = ε22 = εe
11 + εp

11. (9.101)

9.6.2. THE BEAM STATE-PROJECTED INTEGRATION ALGORITHM

The derivation of the implicit integration algorithm for the beam state-projected von Mises
model follows the same steps as the derivation of the plane stress-projected algorithm
described in Section 9.4.2. The final return-mapping equation for the plastic multiplier can
be cast in the same format as equations (9.57, 9.58), with matrix P redefined by (9.92) and
matrix A(∆γ) now given by the simpler diagonal form

A(∆γ) =




1
1 + 2G ∆γ

0 0

0
1

1 + 2G ∆γ
0

0 0
1

1 + 2
3E ∆γ


. (9.102)
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With the above matrix, the function ξ(∆γ) defined in (9.58) has the following explicit
expression

ξ(∆γ) ≡ 2[(σtrial13 )2 + (σtrial23 )2]
(1 + 2G ∆γ)2

+
2(σtrial33 )2

3(1 + 2
3E ∆γ)2

. (9.103)

The overall elastic predictor/return-mapping algorithm is identical to that shown in
Boxes 9.4 and 9.5 except that A and ξ (as well as De and the stress and strain arrays) have
now the above new definitions and

ξtrial := 2[(σtrial13 )2 + (σtrial23 )2] + 2
3 (σ

trial
33 )2. (9.104)

In the Newton algorithm of Box 9.5, the computation of the derivative ξ′ is replaced by

ξ′ :=
−8G[(σtrial13 )2 + (σtrial23 )2]

(1 + 2G ∆γ)3
− 8E (σtrial33 )2

9(1 + 2
3E ∆γ)3

. (9.105)

The elastoplastic consistent tangent modulus.

As in the return mapping described above, the derivation of the corresponding elastoplastic
consistent tangent, Dep, is analogous to that of the plane stress-projected model addressed in
Section 9.4.4. The final expression has the same format as (9.80) where the matrix E is here
redefined as

E(∆γ) =




G

1 + 2G ∆γ
0 0

0
G

1 + 2G ∆γ
0

0 0
E

1 + 2
3E ∆γ


. (9.106)

With the appropriate redefinition of the relevant terms, the elastoplastic consistent tangent
can be computed as in Box 9.6.





10 ADVANCED PLASTICITY
MODELS

THIS chapter is devoted to more advanced plasticity models. Recall that, in Chapters 7–
9, all examples of numerical implementation of plasticity models have been limited

to basic theories. Here, we move one step further and apply the same underlying concepts
to more advanced models. Sections 10.1 and 10.2 describe, respectively, the treatment of a
modified Cam-Clay model and a capped Drucker–Prager model – both mainly applicable
to the description of geomaterials. Section 10.3 introduces the modelling of anisotropic
plasticity. In this context, the Hill model (Hill, 1950), a model based on the Hoffman
anisotropic criterion (Hoffman, 1967) – here referred to as the Hoffman model – and the
Barlat–Lian model for sheet metals (Barlat and Lian, 1989) are discussed in detail, together
with the computational treatment of the Hoffman and Barlat–Lian models with isotropic
strain hardening.

The new theoretical concepts introduced in this chapter are, essentially, the modelling of
plastic compaction – a phenomenon of particular relevance in the behaviour of geomaterials
– and the modelling of plastic anisotropy. Note, however, that the computational implemen-
tation of elastoplastic models possessing such new features reduces to mere specialisations
of the general framework discussed in the preceding chapters.

10.1. A modified Cam-Clay model for soils

The modified Cam-Clay model was originally proposed by Roscoe and Burland (1968) to
model the plastic behaviour of soils. Models of this type are frequently used in the finite
element modelling of soil mechanics problems. These models are characterised by plastic
compressibility, hardening (softening) associated with compressive (dilatant) plastic flow and
a possibly nonlinear elasticity law to model the hydrostatic pressure/volumetric elastic strain
relation (refer, for instance, to Naylor et al. 1981, and Muir Wood 1990). In many cases,
when dealing with soil consolidation problems, Cam-Clay-type models can be used within
a multiphase environment with coupling between solid behaviour and flow through porous
media. Such problems are outside the scope of this book and we shall describe in this section
a version of the modified Cam-Clay plasticity model featuring a linear elasticity law and
a standard volumetric plastic strain-dependent isotropic hardening rule. In soil mechanics
applications, the use of a linear elastic law can be justified whenever the considered range of
hydrostatic pressures is sufficiently narrow.

Computational Methods for Plasticity: Theory and Applications EA de Souza Neto, D Perić and DRJ Owen
c© 2008 John Wiley & Sons, Ltd
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Figure 10.1. Modified Cam-Clay model. Yield surface.

10.1.1. THE MODEL

Let p and q denote, respectively, the hydrostatic stress and the von Mises effective stress. The
elastic domain of the modified Cam-Clay model is delimited by an elliptic yield surface in
the p–q space. Here, we will focus on a version of the modified Cam-Clay model whose yield
surface (refer to Figure 10.1) is defined by a yield function of the form

Φ(σ, a) =
1
b2

[p(σ) − pt + a]2 +
[
q(σ)
M

]2
− a2, (10.1)

where the constant M is the ratio between the two radii of the Cam-Clay ellipse, a is the
radius of the ellipse along the pressure axis and pt is the tensile yield hydrostatic stress. The
parameter b takes the values

b =

{
1 if p ≥ pt − a

β if p < pt − a,
(10.2)

where β is a material constant. This parameter modifies the radius of the second half of the
ellipse on the compressive side of the hydrostatic axis. If β = 1, the yield locus becomes
an ellipse with radii a and Ma, respectively, along directions p and q. Note that, for any
β > 0, the two horizontal halves of the surface intersect in a smooth fashion at (p, q) = (pt −
a, Ma). The dashed line in Figure 10.1 is named the critical state line. The parameter M is
the slope of the critical state line. The portion of the p–q plane on the right of the intersection
between the critical state line and the Cam-Clay ellipse is named the supercritical region and
the portion on its left is the subcritical region.
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Flow rule

The plastic flow equation can be defined by postulating associativity, which gives

ε̇p = γ̇
∂Φ
∂σ

= γ̇ N = γ̇ (Nd + NvI ), (10.3)

where we have conveniently split the flow vector, N = ∂Φ/∂σ, into deviatoric and volumet-
ric components, respectively denoted Nd and Nv:

Nd =
3

M2
s; Nv =

2
b2

(p − pt + a). (10.4)

The deviatoric and volumetric plastic strain rates then read

ε̇p
d = γ̇ Nd; ε̇p

v = γ̇ Nv. (10.5)

The plastic flow defined by the above associative rule is compressive† (ε̇p
v < 0) if p < pt − a

(subcritical states), dilatant (ε̇p
v > 0) if p > pt − a (supercritical states) and isochoric (ε̇p

v = 0)
at p = pt − a (critical state).

Hardening law

A simple way of incorporating hardening into the model consists in letting the yield
surface parameter a be a function of a hardening internal variable,‡ α. For many plastically
compressible materials, and for soils in particular, the state of hardening is largely dependent
upon the volumetric plastic strain (or plastic compaction),

εp
v ≡ tr[εp]. (10.6)

Because in actual applications, soils will be predominantly subjected to compressive strains,
the hardening variable, α, will be chosen as the compressive-positive volumetric plastic strain:

α ≡−εp
v (10.7)

and the hardening behaviour will be defined by means of the experimentally determined
hardening function

a = a(α). (10.8)

Equivalently, in terms of the compressive yield pressure (or compaction pressure), pc (also
assumed compressive-positive) hardening can be defined by

pc(α) ≡ (1 + β) a(α) − pt. (10.9)

Under this assumption, the evolution of the volumetric plastic strain will change the size
of the modified Cam-Clay yield surface while maintaining its shape. Hardening in this case is
characterised by a change in compressive yield pressure, having the intersection of the yield
surface with the p-axis at p = pt (the tensile yield pressure) fixed.

†Consistently with the continuum mechanics sign convention adopted throughout this book, compressive
volumetric strains and hydrostatic pressures have a negative sign here. It should be noted that the opposite sign
convention is commonly adopted in soil mechanics texts, where compressive volumetric strains and hydrostatic
pressures are assumed positive.

‡In a more general setting, other yield surface parameters such as M or β could also be functions of hardening
variables.
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Remark 10.1 (Hardening behaviour). The hardening function a(α) (or pc(α)) is usually
expected to be monotonically increasing in its argument, that is, a increases with increasing
plastic compression. In this case, following the comments on the volumetric plastic strain
rate made immediately after expression (10.5), hardening (expansion of the elastic domain)
occurs only in the subcritical region, i.e. under hydrostatic pressures p < pt − a. For pressures
p > pt − a (supercritical states) plastic flow will cause softening (contraction of the elastic
domain) and at p = pt − a (the critical state) the model behaves as perfectly plastic (fixed
yield surface).

10.1.2. COMPUTATIONAL IMPLEMENTATION

Here we shall adopt a linear elasticity law to model the reversible behaviour of the modified
Cam-Clay model. We remark, however, that it is sometimes convenient to adopt nonlinear
elasticity laws with models of this type. The implementation of Cam-Clay-type models with
nonlinear elastic laws is described, for instance, by Simo and Meschke (1993) and Owen
et al. (1998).

The return-mapping algorithm

The elastic trial state computation follows the usual format:

strial = 2G εe trial
d ; ptrial = K εe trial

v . (10.10)

The return-mapping algorithm is derived as follows. Firstly, by observing the devia-
toric/volumetric split (10.4) of the plastic flow and the elastic relations, the following stress
update equations consistent with the implicit discretisation of the plastic flow rule are
obtained: 


sn+1 = strial − 2G∆γ

3
M2

sn+1;

pn+1 = ptrial − K∆γ
2
b2

[pn+1 − pt + a(αn+1)],

(10.11)

where the updated hardening variable is given by the equation

α n+1 = α n − ∆γ
2
b2

[pn+1 − pt + a(αn+1)]. (10.12)

In addition, the discrete consistency equation here reads

Φn+1 =
1
b2

[pn+1 − pt + a(αn+1)]2 +
(qn+1

M

)2
− [a(αn+1)]2 = 0, (10.13)

where qn+1 is the von Mises effective stress associated with sn+1.
Particularisation of the general return-mapping equations (7.25) (page 196) for the present

model results in the system of equations comprising (10.11)–(10.13), having αn+1, pn+1, the
linearly independent components of sn+1 and the incremental plastic multiplier, ∆γ, as the
unknowns.
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Reduced equation system

In order to obtain an equivalent reduced system of equations for the return mapping, we start
by noting that (10.11)1 implies that for a given strial the updated stress deviator, sn+1, is a
function of ∆γ only; that is, after a simple rearrangement in (10.11)1 we obtain

sn+1 = s(∆γ) ≡ M2

M2 + 6G ∆γ
strial, (10.14)

and, similarly, for qn+1,

qn+1 = q(∆γ) ≡ M2

M2 + 6G ∆γ
qtrial. (10.15)

In addition, by combining (10.11)2 and (10.12) we can write

pn+1 = p(αn+1) ≡ ptrial + K (αn+1 − αn). (10.16)

Finally, the substitution of (10.15) and (10.16) in (10.12) and (10.13) leads to the following
reduced system of two scalar equations with unknowns ∆γ and αn+1:


R1

R2


≡




1
b2

[p(α) − pt + a(α)]2 +
[
q(∆γ)

M

]2
− [a(α)]2

α − α n + ∆γ
2
b2

[p(α) − pt + a(α)]


=




0

0


 , (10.17)

where the subscript n + 1 of αn+1 has been omitted for notational convenience. Once the
solution to the above return-mapping equations is obtained, the stress-updating procedure is
completed with the computation of sn+1 by means of (10.14), followed by the calculation of
the updated stress tensor through the standard relation

σn+1 = sn+1 + pn+1 I. (10.18)

It is worth commenting here that system (10.17) could in principle be further reduced to
a single scalar equation having αn+1 as the only unknown by trivially solving the second
equation of (10.17) for ∆γ:

∆γ = ∆γ(αn+1) ≡
b2(αn − αn+1)

2[p(αn+1) − pt + a(αn+1)]
, (10.19)

and then replacing this result into the first equation. It should be noted, however, that the
above expression cannot be used in practice at p = pt − a.

Newton–Raphson solution

The solution of (10.17) can be undertaken as usual by the Newton–Raphson algorithm.
For completeness, an explicit expression for the linear system to be solved for the iterative
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corrections δ∆γ(k) and δα(k) at the typical kth Newton iteration is shown below:


−12 G

M2 + 6G∆γ

(
q

M

)2 2p̄

b2
(K + H) − 2aH

2p̄

b2
1 +

2∆γ

b2
(K + H)






δ∆γ(k)

δα(k)


=




R
(k−1)
1

R
(k−1)
2


 , (10.20)

where H is the hardening modulus (the slope of the hardening curve):

H = H(α) ≡ da

dα
, (10.21)

the scalar p̄ is defined as
p̄ = p̄(α) ≡ p(α) − pt + a(α), (10.22)

and all terms of the derivative matrix on the right-hand side are evaluated at (∆γ, α) =
(∆γ(k−1), α(k−1)n+1 ).

The elastoplastic consistent tangent

To derive the elastoplastic consistent tangent operator for the above implementation of
the modified Cam-Clay model, we resort to the general procedure of Section 7.4.4 (from
page 238), which was also applied in Section 7.4.5 (page 240) as an alternative to the
derivation of the elastoplastic consistent tangent for the implicit integration of the von Mises
model. Accordingly, we start by differentiating the full system of return-mapping equations
which, in the present case, comprises (10.11)–(10.13) together with the trivial update
formula (10.18). The differentiation, in which the elastic trial strain tensor is also treated
as a variable, yields the tangential relationship


[De]−1 + ∆γ ∂N/∂σ 0 N

∆γ ∂Nv/∂σ 1 +
2H∆γ

b2
Nv

N ∂Φ/∂α 0






dσn+1

dαn+1

d∆γ


=




dεe trial

0

0


 , (10.23)

where, following the deviatoric/volumetric split of (10.3), we write

∂N

∂σ
=

∂Nd
∂σ

+ I ⊗ ∂Nv
∂σ

(10.24)

with
∂Nd
∂σ

=
3

M2
Id;

∂Nv
∂σ

=
2

3b2
I. (10.25)

In addition, from (10.13) we obtain

∂Φ
∂α

=
2
b2

(p − pt + a)H − 2aH = (Nv − 2a)H. (10.26)

Here we should note that tangential relation (10.23) has a similar format to that of (7.141)
which was obtained for the implicit implementation of the isotropically hardening von Mises
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model. Accordingly, its inversion follows completely analogous steps to those leading
to (7.148) and yields the following formula for the elastoplastic consistent tangent operator:

Dep ≡ ∂σn+1

∂εe trial

= P − 1
Ñ : P : N + (Nv − 2a)NvH

(P : N ) ⊗ (P : Ñ ), (10.27)

where

P ≡
(

IS + ∆γ De :
∂N

∂σ

)−1
: De (10.28)

with flow vector derivative given by (10.24), and

Ñ ≡−∆γ(Nv − 2a)H
∂Nv
∂σ

+
(

1 +
2H∆γ

b2

)
N

=
−2∆γ(Nv − 2a)H

3b2
I +
(

1 +
2H∆γ

b2

)
N. (10.29)

Since in general Ñ 
= N, the elastoplastic tangent operator (10.27) is generally unsym-
metric. Its non-symmetry is a consequence of the non-associativity of the adopted hardening
law. The reader is referred to the discussion at the beginning of Section 7.4.6, from page 243.
Also note that in the absence of hardening, that is, if H = 0, Ñ coincides with N and
symmetry is recovered.

10.2. A capped Drucker–Prager model for geomaterials

The standard Drucker–Prager model has been described in detail in Chapter 6 and its
computational implementation has been addressed in Section 8.3 (from page 324). For that
model (as well as for the Mohr–Coulomb model), the application of an arbitrary compressive
hydrostatic pressure alone does not cause plastic flow. Plastic flow under compressive
hydrostatic pressure may only be triggered with the superposition of shearing stresses. For
many geomaterials, however, compressive plastic flow (compaction) under (possibly pure)
compressive hydrostatic stresses can be an important feature of the overall behaviour. In
circumstances where plastic compaction is relevant, the standard Drucker–Prager or Mohr–
Coulomb plasticity models are not able to capture the actual material behaviour.

The modified Cam-Clay model discussed in the previous section already incorporates
the possibility of plastic compaction. Another alternative for modelling such a phenomenon
consists in bounding the standard Drucker–Prager yield surface with a cap on the compressive
side of the hydrostatic axis. A particularly simple choice is the adoption of an elliptical
cap as the compressive bounding surface. The p–q plane representation of the yield surface
so obtained is illustrated in Figure 10.2. The equations of the resulting multisurface (two-
surface) model, followed by an outline of its numerical treatment, is presented below. The
implementation of a Cap-type model similar to that described here is presented by Simo
et al. (1988a).
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Figure 10.2. Capped Drucker–Prager model. Yield surface.

10.2.1. CAPPED DRUCKER–PRAGER MODEL

The yield functions of the model are

Φa(σ) ≡
√

J2(s(σ)) + η [p(σ) − pt];

Φb(σ, a) =
1
β2

[p(σ) − pt + a]2 +
[
q(σ)
M

]2
− a2,

(10.30)

where Φa is an equivalent representation of the Drucker–Prager yield function obtained from
its original expression (6.121) (page 167) by using the trivial relation

c =
η

ξ
pt, (10.31)

and Φb = 0 defines the elliptical cap – the modified Cam-Clay yield surface for subcritical
states discussed in the previous section of this chapter. In (10.30)1,

η =
√

2/3 M. (10.32)

For a fixed a, the set of plastically admissible stress states is defined by

A = {σ | Φa(σ) ≤ 0, Φb(σ, a) ≤ 0}. (10.33)

Plastic flow rule

On the cone, the standard generally non-associative Drucker–Prager flow rule is adopted.
On the smooth part of the cone, the plastic strain rate equation is given by (6.157)
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Figure 10.3. Capped Drucker–Prager model. Flow vectors.

(page 176), (6.158)1 and (6.166). At the cone apex, the flow vector has deviatoric and
volumetric components (6.160)1 and (6.166), respectively. On the cap, the (associative) flow
rule is that of the modified Cam-Clay model, given by (10.3) and (10.4).

Following the general representation of associative plastic flow rules for multisurface
plasticity models given by (6.73) (page 156), (6.77) and (6.78), the plastic strain rate at the
intersection between the Drucker–Prager cone and the elliptical cap reads

ε̇p = γ̇a N a + γ̇b N b, (10.34)

where N a and N b are, respectively, the non-associative Drucker–Prager flow vector at the
smooth portion of the cone and the associative modified Cam-Clay flow vector referred to
above. The flow vector N a has the standard form

N a =
1

2
√

J2(s)
s +

η̄

3
I. (10.35)

At the cap/cone intersection, where p = pt − a, the normal to the cap with general expres-
sion (10.4) is a deviatoric tensor:

N b = N b
d =

3
M2

s. (10.36)

A general p-q plane illustration of the plastic flow directions for the resulting model is given
in Figure 10.3.

Hardening

As for the previously discussed modified Cam-Clay model (refer to expressions (10.9)
and (10.8)) isotropic strain hardening is incorporated by letting the compaction pressure pc

(or, equivalently, the yield surface parameter a) be a function of the compressive-positive
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volumetric plastic strain, α, defined in (10.7). The Drucker–Prager cone remains fixed and is
independent of the hardening variable.

As pc increases (decreases), the cap moves in the compression (tensile) direction along the
hydrostatic line, expanding (shrinking) the elastic domain.

10.2.2. THE IMPLICIT INTEGRATION ALGORITHM

The integration algorithm for the present model is a combination of the elastic
predictor/return-mapping schemes derived in Sections 8.3.1 (from page 325) and 10.1.2 for
the Drucker–Prager and modified Cam-Clay models, respectively. The two-surface model
admits four possible return mappings:

1. return to the smooth portion of the Drucker–Prager cone;

2. return to the cone apex;

3. return to the elliptic cap;

4. return to the cone/cap intersection.

The return mappings to the smooth portion and apex of the Drucker–Prager cone are a
particular instance of the procedure described in Section 8.3 (from page 324), with the added
simplicity of perfect plasticity. In this case (refer to Remark 8.4, page 327), the return-
mapping equations can be solved in closed form. The return mapping to the cap surface,
in turn, is that of the modified Cam-Clay model discussed in Section 10.1.2.

The plastic corrector algorithm for the cone/cap intersection is a two-vector return
mapping where the incremental plastic strain is given by the discrete form of (10.34)–(10.36):

∆εp = ∆γa N a + ∆γb N b. (10.37)

Its volumetric component reads
εp
v = η̄ ∆γa. (10.38)

so that the update formula for the hardening internal variable at the cone/cap intersection is
given by

αn+1 = αn − η̄ ∆γa. (10.39)

The return-mapping equation for the cone/cap intersection is derived by introduc-
ing (10.37) into the general stress update formula

sn+1 = strialn+1 − 2G∆εp
d,

pn+1 = ptrialn+1 − K∆εp
v,

(10.40)

and then substituting the resulting expression, together with (10.39) into the cone/cap
intersection consistency equation

Φa
n+1 ≡

√
J2(sn+1) + η[pn+1 − pt] = 0

Φb
n+1 ≡

1
β2

[pn+1 − pt + a(αn+1)]2 +
[
q(sn+1)

M

]2
− [a(αn+1)]2 = 0.

(10.41)

The derivation of the final equations for the unknown multipliers ∆γa and ∆γb is straight-
forward and will be left as an exercise for the interested reader.
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Figure 10.4. Capped Drucker–Prager model. Algorithm for selection of the correct return-mapping
procedure.

Selection of the appropriate return mapping

As discussed in detail in Chapter 8, when dealing with multivector implementations of
multisurface plasticity models, an appropriate algorithm has to be devised to select, for
a given elastic trial state, the return mapping that fully satisfies plastic consistency. The
selection algorithm in the present case is an extension of that of the conventional Drucker–
Prager model represented in the flowchart of Figure 8.15 (page 330). Its validity can also
be established on the basis of geometrical arguments. This will be left as an exercise for
the reader. The summary of a possible selection algorithm is shown in the flowchart of
Figure 10.4.

10.2.3. THE ELASTOPLASTIC CONSISTENT TANGENT OPERATOR

The elastoplastic consistent tangent will be dependent on the particular return mapping
considered, as four distinct return procedures are possible for the present model. The situation
here is an extension of that studied in Chapter 8 for the standard Drucker–Prager model. The
basic rule for selection of the elastoplastic tangent to be used is the same: the tangent operator
must be consistent with the last return-mapping procedure used in the material point (Gauss
point of the finite element mesh) considered; that is, if the return to the main Drucker–Prager
cone was used in the last stress update for that point, then the current elastoplastic tangent
will be consistent with the Drucker–Prager cone return. If the cone–cap intersection was
the last return mapping used, then the current tangent will be consistent with the cone–cap
intersection return, and so on.
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The tangent operator consistent with the Drucker–Prager cone and cone apex return
algorithms are those derived in Section 8.3.4 (from page 337) which, for the present model,
must be particularised for the perfectly plastic case. Note that, in this case, at the cone apex,
we have

Dep = 0. (10.42)

For the cap return, the tangent operator is that of (10.27) with b = β in (10.29). The derivation
of an explicit form for the tangent for the cone/cap intersection return follows an analogous
procedure to those of the two-vector return mappings discussed in Chapter 8 and will be left
as an exercise for the reader.

10.3. Anisotropic plasticity: the Hill, Hoffman and Barlat–Lian models

The elastoplasticity theories discussed so far in this book have been limited by the assumption
of elastoplastic isotropy; that is, elastic properties (Young’s modulus and Poisson’s ratio) as
well as plastic properties such as yield stress and hardening behaviour have been assumed
independent of material orientation. However, in many circumstances of practical interest,
material behaviour is truly anisotropic with substantial discrepancy among phenomenological
properties observed in different material directions.

An important instance of anisotropic behaviour arises in polycrystalline metals. Such met-
als are aggregates of single crystals whose individual plastic behaviour is highly anisotropic
(physical aspects and the numerical treatment of single crystal plasticity are addressed in
Chapter 16). Polycrystalline aggregates with sufficiently random crystal orientation distri-
bution present an effectively isotropic macroscopic behaviour and can be modelled by con-
ventional isotropic plasticity theories. However, when such materials undergo manufacturing
processes characterised by extreme straining along preferential directions (rolling is a typical
example), the development of texturing (reorientation of crystals according to the direction
of straining) results in a final crystallographic arrangement whose macroscopic behaviour
is clearly anisotropic. This property is known as strain-induced plastic anisotropy and is
often present in formed metal components. Another class of materials whose anisotropy can
be of particular relevance are composites in general. Many such materials (fibre-reinforced
polymers are typical examples) are designed so as to produce optimal strength/performance
along predefined directions.

In such cases, the isotropy assumption may lead to a poor representation of the actual
behaviour and the formulation and use of appropriate anisotropic plasticity models becomes
crucial to ensure reasonable accuracy in finite element predictions. In this section, we address
the modelling and computational implementation of anisotropic phenomenological plasticity
models. Attention is focused on the orthotropic models proposed by Hill (1948, 1950),
Hoffman (1967) and Barlat and Lian (1989).

10.3.1. THE HILL ORTHOTROPIC MODEL

The Hill criterion has been introduced as an orthotropic extension of the standard von Mises
criterion in order to model the anisotropy often found in formed steel. With σij denoting the
stress tensor components on an orthonormal basis {e1, e2, e3} whose vectors coincide with
the principal axes of plastic orthotropy, the yield function associated with the Hill criterion
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can be cast in the following form:

Φ(σ, σ̄) = F1 (σ11 − σ22)2 + F2 (σ22 − σ33)2 + F3 (σ33 − σ11)2

+ F4 σ212 + F5 σ223 + F6 σ213 − σ̄2, (10.43)

where σ̄ is the relative yield stress (a non-dimensional scalar) which defines the size (state
of hardening) of the yield surface in the six-dimensional space of stress components. The
constants F1, F2 and F3 are defined as

F1 =
1
2

(
1

(σ011)2
+

1
(σ022)2

− 1
(σ033)2

)
;

F2 =
1
2

( −1
(σ011)2

+
1

(σ022)2
+

1
(σ033)2

)
;

F3 =
1
2

(
1

(σ011)2
− 1

(σ022)2
+

1
(σ033)2

)
,

(10.44)

where σ011, σ022 and σ033 are, respectively, the (generally distinct) uniaxial yield stresses in the
directions of e1, e2 and e3 when σ̄ = 1 (here assumed to be the initial state of the material).
The constants F4, F5 and F6 are defined as

F4 =
1

(σ012)2
; F5 =

1
(σ023)2

; F6 =
1

(σ013)2
, (10.45)

where σ0ij are the three (generally distinct) initial (when σ̄ = 1) yield stresses in pure shear
along the corresponding planes orthogonal to the principal directions of orthotropy. For a
generic state of hardening (i.e. not necessarily unity σ̄), the yield stress under a stress state
with a single non-zero stress component σij is

σy
ij = σ̄ σ0ij . (10.46)

Indeed, note that under such a stress state it follows from (10.43) that

Φ(σ, σ̄) = 0 ⇐⇒ σij = σ̄ σ0ij . (10.47)

Pressure insensitivity

One important feature of the Hill criterion is the fact that, as for the von Mises and Tresca
criteria, it is pressure insensitive. This allows us to express its yield function in terms of the
components of the stress deviator, s, only. By recalling the trivial identities

σii − σjj = sii − sjj , (10.48)

with no summation on repeated indices, and

σij = sij , for i 
= j, (10.49)

the Hill yield function can be equivalently written as

Φ(σ, σ̄) = F1 (s11 − s22)2 + F2 (s22 − s33)2 + F3 (s11 − s33)2

+ F4 s212 + F5 s223 + F6 s213 − σ̄2. (10.50)
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Von Mises criterion as a particular case

Another important feature of the Hill criterion is that it recovers the standard von Mises
criterion if

σ011 = σ022 = σ033 =
√

3 σ012 =
√

3 σ023 =
√

3 σ013. (10.51)

To see this, we assume that the above relation holds and set σ011 = σy and σ̄ = 1 in (10.50).
After a straightforward algebraic manipulation, where we make use of the trivial relation

s11 + s22 + s33 = 0, (10.52)

we obtain

Φ(σ, σ̄) =
3

2σ2y
[s211 + s222 + s233 + 2(s212 + s223 + s213)] − 1

=
3
σ2y

J2(s) − 1. (10.53)

The corresponding yield surface is that of the von Mises model with uniaxial yield stress σy:√
3 J2(s) = σy. (10.54)

Geometric representation

Unlike isotropic models, whose yield functions can always be expressed in terms of principal
stresses and the corresponding yield surfaces can be visualised in the three-dimensional
principal stress space, yield surfaces for anisotropic models cannot be easily represented
graphically. Anisotropic yield surfaces are truly six-dimensional hypersurfaces in the space
of stress components. Nevertheless, visualisation of projections of such hypersurfaces on
two- or three-dimensional subsets of the six-dimensional stress space is possible and can
provide a very good insight into the properties of the anisotropic model. Two- and three-
dimensional projections are obtained by fixing, respectively, four and three stress components
and then plotting the corresponding yield locus on the subset of the two or three free stress
components. In general, the two- or three-dimensional yield locus will change if the fixed
stress components are changed. Thus, an appropriate visual study of anisotropic yield criteria
requires plotting such projections with different combinations of fixed stress values.

In order to give the reader some visual insight into properties of the Hill criterion, we will
plot here the corresponding yield surfaces under states of plane stress. Before proceeding
to the graphical representation, it is worth remarking that at any given state of shear stress
(defined by the components σ12, σ23 and σ13 relative to the axes of material orthotropy), the
yield surface defined by the Hill criterion (with material constants within the ‘usable’ range
of the Hill model) in the three-dimensional σ11-σ22-σ33 space is a (generally elliptic) cylinder
whose axis is the hydrostatic line (σ11 = σ22 = σ33). The size of the cylinder cross-section
(and its intersection with the plane stress space) depends upon the state of shear stress. For
plane stress states (on plane {e1, e2}), the Hill yield surface is defined by

(F1 + F3) σ211 + (F1 + F2) σ222 − 2F1 σ11σ22 + F4 σ212 − σ̄2 = 0. (10.55)
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In order to study the effect of the material constants (the yield stresses) on the yield surface,
we conveniently assume the following relations:

σ022 = a22 σ011; σ033 = a33 σ011;

σ012 =
a12√

3
σ011; σ023 =

a23√
3

σ011; σ013 =
a13√

3
σ011,

(10.56)

where aij are parameters defining all initial yield stresses of the model as a function of σ011.
Note that the von Mises surface, with uniaxial yield stress σ011 is recovered if we set

a22 = a33 = a12 = a23 = a13 = 1. (10.57)

Firstly, let us focus on the effect of the variation of direct yield stresses on the Hill yield
surface. This effect is illustrated in Figures 10.5 and 10.6. In Figure 10.5, the Hill yield
surface on the σ11-σ22 space is plotted for different values of direct yield stress σ022 (i.e.
different values of a22), assuming no shear stresses and

a33 = 1. (10.58)

In this case (absence of shear stresses), the parameters a12, a23 and a13 have no effect on
the Hill yield function. For a22 > 0.5, the Hill surface is an ellipse intersecting the horizontal
axis at ±1 and the vertical axis at ±a22. The surface with a22 = 1 corresponds to that of the
von Mises model. If a22 increases (see surface plotted for a22 = 1.5), the von Mises ellipse is
stretched in the σ22 direction. If a22 decreases (refer to the surface with a22 = 0.7), the ellipse
is compressed in the vertical direction but substantially stretched along its longer radius. In
the limit, when a22 = 0.5 (one direct yield stress is half of the other two), the original ellipse
degenerates into two parallel straight lines (two hyperplanes in the six-dimensional stress
space). For a22 < 0.5 (see surface with a22 = 0.3), the yield locus produced by Hill’s function
is a set of two hyperbolic (non-convex) surfaces in stress space. Clearly, in such cases, the
elastic domain becomes unbounded in some directions and does not correspond to physical
behaviour. Thus, the Hill criterion is to be used only within certain limits of yield strength
variation among the orthotropy directions. At this point, it is important to emphasise that
the Hill criterion was originally proposed to model anisotropy of formed steel components.
For such materials, the maximum variation of yield strength between the different orthotropy
directions is typically less than about 5 to 10%. Under such conditions, the Hill criterion can
provide reasonable approximations to the actual yield surfaces. In the next representation of
the Hill surface shown in Figure 10.6, we illustrate the effect of the variation of the direct yield
stress σ033 (variation of a33) in the absence of shear stresses and with σ022 = σ011 (a22 = 1).
For a33 > 0.5, the Hill surface is always an ellipse intersecting the horizontal and vertical axis
at ±1. As σ033 increases (see surface with a33 = 1.5), the ellipse stretches in the biaxial state
direction. When σ033 decreases (see surfaces with a33 = 0.7 and 0.6) the ellipse is compressed
in the biaxial state direction and stretched in a pure shear (σ11 = −σ22) direction. When
a33 = 0.5 (one direct yield stress is half of the other two), the ellipse degenerates into two
straight lines and becomes a hyperbola for a33 < 0.5. Finally, in Figure 10.7 we illustrate the
effect of shear stresses on the Hill yield surface. Essentially, any increase in shear stress will
shrink the yield surface isotropically (this effect is also present in the von Mises criterion and
can only be seen if, as opposed to the usual representation in principal stress space, the surface
is represented in the space of direct stresses along fixed axes). Obviously, if σ12 = σ̄σ012 (the
shear stress has reached its yield limit) the σ11-σ22 space surface degenerates to a point
at (0, 0).
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Figure 10.5. The Hill orthotropic criterion. Effect of variation of direct yield stress σ0
22 on the yield

surface. Surface plot for various values of a22 with no shear stresses and a33 = 1 (σ0
33 = σ0

11).

1-1

-1

1
a 33 =1.0

a 33 =1.5

a 33 =0.7

a 33 = 0.5

a 33 = 0.4

a 33 =0.6

σ11

σ22

/σ11
y

/σ11
y

Figure 10.6. The Hill orthotropic criterion. Effect of variation of direct yield stress σ0
33 (the transversal

yield stress) on the yield surface. Surface plot for various values of a33 with no shear stresses and
a22 = 1 (σ0

22 = σ0
11).



ADVANCED PLASTICITY MODELS 419

-1

1

σ11

σ12 =0

-1 1-0.5 0.5

1.5

0.5

-0.5

-1.5

σ22

σ12 =0.5

σ12 =0.8 σ12
y

/σ11
y

/σ11
y

σ12
y

Figure 10.7. The Hill orthotropic criterion. Effect of shear stress on the yield surface. Surface plot for
various values of σ12 with σ23 = σ13 = 0, a22 = 1.5 and a12 = a33 = 1.

Hardening law

Analogously to the standard strain-hardening von Mises model thoroughly discussed in
Chapters 6, 7 and 9, isotropic strain hardening can be easily incorporated into the Hill model
by assuming the relative yield stress σ̄ in (10.43) to be a given function of the von Mises
accumulated plastic strain, ε̄p; that is, we postulate

σ̄ = σ̄(ε̄p). (10.59)

The material in this case is assumed to remain orthotropic with constant axes of orthotropy.
In addition, in view of (10.46), all six yield stresses of the Hill criterion will change in strict
proportion (isotropically) as the accumulated plastic strain increases.

Remark 10.2. Since general straining of an initially orthotropic material is usually expected
to change the yield stresses in different directions by different amounts, or even lead to loss
of orthotropy, the model resulting from the above assumptions provides only a first approx-
imation to the phenomenon of hardening. We remark, however, that the phenomenological
modelling of hardening in plastically anisotropic materials is a complex issue which remains
open at present. The approximation provided by simple laws of the above type can be very
useful in the finite element analysis of plastically orthotropic materials and, undoubtedly,
represents a substantial gain in predictive capability (as compared to the use of isotropic
plasticity models) in situations where plastic anisotropy is an important feature of the material
behaviour.
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Hill’s associative flow rule

The flow rule adopted by Hill (1950) in conjunction with the above orthotropic criterion is
associative; that is, the plastic flow is given by the standard equation

ε̇p = γ̇
∂Φ
∂σ

. (10.60)

Here, compact tensorial representation is not particularly convenient and the plastic flow rule
is best presented in its equivalent component-wise format

ε̇p
ij = γ̇

∂Φ
∂σij

. (10.61)

Before presenting the final expressions, it is important to note that the shear stress contribu-
tions to (10.43) take into account the trivial identity

σij = σji, i 
= j. (10.62)

The actual contributions to Φ from the independent shear components, σij (i 
= j), of the
stress tensor read

1
2 [F4(σ

2
12 + σ221) + F5(σ223 + σ232) + F6(σ213 + σ231)]. (10.63)

With the above considerations, Hill’s associative flow rule is found to be given by

ε̇p
11 = γ̇ 2[F1(σ11 − σ22) + F3(σ11 − σ33)],

ε̇p
22 = γ̇ 2[F1(σ22 − σ11) + F2(σ22 − σ33)],

ε̇p
33 = γ̇ 2[F2(σ33 − σ22) + F3(σ33 − σ11)],

ε̇p
12 = γ̇ F4 σ12, ε̇p

23 = γ̇ F5 σ23, ε̇p
13 = γ̇ F6 σ13.

(10.64)

As expected, owing to the pressure-insensitivity of the Hill criterion, the above associative
law is volume-preserving. Indeed, (10.64) implies

tr ε̇p ≡ ε̇p
11 + ε̇p

22 + ε̇p
33 = 0. (10.65)

10.3.2. TENSION–COMPRESSION DISTINCTION: THE HOFFMAN MODEL

For many materials, a marked difference is observed between yield stress levels in tension
and compression (the Bauschinger effect). This phenomenon is particularly noticeable in
some composite materials and is also commonly observed in worked metals. In order to
model such effects in orthotropic materials, Hoffman (1967) proposed an extension to the
Hill criterion described by the following yield function:§

Φ(σ, σ̄) = C1 (σ11 − σ22)2 + C2 (σ22 − σ33)2 + C3 (σ33 − σ11)2

+ C4 σ212 + C5 σ223 + C6 σ213 + C7 σ11 + C8 σ22 + C9 σ33 − σ̄2, (10.66)

§This function was in fact proposed by Hoffman (1967) originally to define a fracture criterion for brittle
materials, with no reference to plastic flow modelling. What we refer to as the Hoffman model here, is an extension
of the Hill elastoplastic model with yield criterion and plastic flow rule based on Hoffman’s function (10.66).
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where σ̄ is the non-dimensional relative yield stress (analogous to that of the Hill criterion)
and C1, C2, . . . , C9 are material constants defined as

C1 =
1
2

(
1

σt
11σ

c
11

+
1

σt
22σ

c
22

− 1
σt
33σ

c
33

)
;

C2 =
1
2

( −1
σt
11σ

c
11

+
1

σt
22σ

c
22

+
1

σt
33σ

c
33

)
;

C3 =
1
2

(
1

σt
11σ

c
11

− 1
σt
22σ

c
22

+
1

σt
33σ

c
33

)
,

(10.67)

with σt
ii and σc

ii (no summation on repeated indices) denoting the initial (i.e. when σ̄ = 1)
direct yield stresses along the orthotropy direction i, respectively in tension and compres-
sion, and

C4 =
1

(σ012)2
; C5 =

1
(σ023)2

; C6 =
1

(σ013)2
, (10.68)

and

C7 =
σc
11 − σt

11

σc
11σ

t
11

; C8 =
σc
22 − σt

22

σc
22σ

t
22

; C9 =
σc
33 − σt

33

σc
33σ

t
33

. (10.69)

The constants σ012, σ
0
23 and σ013 have the same meaning as in the Hill criterion, i.e. they denote

the initial yield stresses in states of pure shear on the planes of orthotropy.

Remark 10.3 (Hill criterion as a particular case). If for each principal direction of
orthotropy the direct yield stress in tension coincides with the direct yield stress in com-
pression, i.e. if we set

σc
11 = σt

11 = σ011; σc
22 = σt

22 = σ022; σc
33 = σt

33 = σ033, (10.70)

then C7 = C8 = C9 = 0 and the constants C1, . . . , C6 coincide with the constants
F1, . . . , F6 of (10.43). In this case, the Hill criterion is recovered. However, it should be
noted that, in general, the Hoffman criterion is (unlike the Hill criterion) pressure-sensitive.
Indeed, under a state of pure hydrostatic pressure (σ11 = σ22 = σ33 = p), the contribution of
the linear terms on the direct stresses to Φ in (10.66) will be

(C7 + C8 + C9)p. (10.71)

This contribution – a linear function of the hydrostatic pressure – is identical to that of the
Drucker–Prager criterion (refer to expression (6.121), page 167). The constraint

C7 + C8 + C9 = 0 (10.72)

is the necessary and sufficient condition for the Hoffman criterion to be pressure-insensitive.

In its general form (within the range of applicability of the criterion), the Hoffman yield
surface is an elliptic cone in the σ11-σ22-σ33 space. The cone intersects the σ11, σ22 and σ33
axes at the corresponding prescribed values of (tensile and compressive) direct yield stresses.
A graphical representation of the Hoffman criterion is shown in Figure 10.8. Again, only the
intersection of the yield surface with the σ11-σ22 plane, in the absence of shear stresses, is
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Figure 10.8. The Hoffman orthotropic criterion.

plotted. For illustration purposes only, the following relations have been chosen:

σc
11 = 1.2 σt

11; σc
22 = 0.9 σt

11; σt
22 = 0.8 σt

11;

σc
33 = σc

11; σt
33 = σt

11.
(10.73)

As for the Hill criterion (refer to Figure 10.7), the Hoffman surface shrinks isotropically with
an increase in shear stresses. The effect of (isotropic) hardening can also be incorporated into
the Hoffman criterion by assuming σ̄ to be a function of the accumulated plastic strain.

Again, it is important to observe that (as for the Hill criterion) the Hoffman model can only
be used within certain limits of yield strength variation among the directions of orthotropy.
Excessive variations of direct (tensile or compressive) yield stress can cause the originally
elliptic surface to degenerate into a hyperbola that does not model the actual behaviour of
solids.

Flow rule

Here, an associative flow rule is also postulated. Analogously to (10.64), the associative
component-wise plastic flow equations for the Hoffman model are given by

ε̇p
11 = γ̇ [C7 + 2C1(σ11 − σ22) + 2C3(σ11 − σ33)],

ε̇p
22 = γ̇ [C8 + 2C1(σ22 − σ11) + 2C2(σ22 − σ33)],

ε̇p
33 = γ̇ [C9 + 2C2(σ33 − σ22) + 2C3(σ33 − σ11)],

ε̇p
12 = γ̇ C4 σ12, ε̇p

23 = γ̇ C5 σ23, ε̇p
13 = γ̇ C6 σ13.

(10.74)

Remark 10.4 (Non-isochoric plastic flow). As a result of the pressure-sensitivity of the
Hoffman criterion, the above associative flow rule is not volume-preserving in general. The
volumetric plastic strain rate for the present model is

tr ε̇p ≡ ε̇p
11 + ε̇p

22 + ε̇p
33 = γ̇ (C7 + C8 + C9), (10.75)

and the plastic flow is isochoric if and only if constraint (10.72) holds.
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10.3.3. IMPLEMENTATION OF THE HOFFMAN MODEL

The computational implementation of the Hoffman model is described in what follows. For
simplicity, the discussion will be limited to the plane strain and axisymmetric cases. The
extension to the full three-dimensional situation is trivial. Early implementations of the Hill
and Hoffman anisotropic models are described, respectively, by de Borst and Feenstra (1990)
and Schellekens and de Borst (1990). A plane stress implementation of the Hoffman model
in the context of explicit dynamics finite element analysis is given by Koh et al. (1995).

The orthotropic elastic law

As plastically orthotropic composites usually also present a marked elastic orthotropy, we
shall assume here an orthotropic elasticity law. Clearly, in this case it makes sense to consider
an elastic law whose planes of symmetry coincide with the planes of symmetry of the
Hoffman criterion. Using the finite element array notation, the stress–elastic strain relation
then reads

σ = D εe, (10.76)

where
σe = [σ11 σ22 σ12 σ33]T ; εe = [εe

11 εe
22 2εe

12 εe
33]

T , (10.77)

and D denotes the orthotropic elasticity matrix given by

D =



D11 D12 0 D13

D12 D22 0 D23

0 0 D44 0

D13 D23 0 D33


, (10.78)

with

Dii =
Ei(1 − νjkνkj)

(1 − νkiνik)(1 − νjkνkj) − (νij + νikνkj)(νji + νjkνki)
(10.79)

for i = 1, 2, 3 (no summation on the repeated index) and (i, j, k) denoting cyclic permuta-
tions of (1, 2, 3),

Dij =
νji + νjkνki

1 − νjkνkj
Dii (10.80)

for i 
= j and, again, no summation on the repeated index, and

D44 = G12. (10.81)

The total number of independent elastic constants is nine (in the full three-dimensional
case). These are: the Young’s moduli, E1, E2 and E3, associated with directions 1, 2 and 3
of orthotropy respectively; the shear moduli, G12, G23 and G31 associated, respectively, with
planes 12, 23 and 31 and satisfying

Gij = Gji; (10.82)

and three Poisson’s ratios, ν12, ν23 and ν31, where νij is defined as the ratio between the
contraction in direction j and extension in direction i under a uniaxial stress state along i.
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The following relation applies:

νji = νij
Ej

Ei
. (10.83)

In the plane strain/axisymmetric case, with the elasticity operator represented in (10.78), the
transverse shear moduli G23 and G31 are not required.

Elastic trial state

The computation of the elastic trial state proceeds as usual. That is, we compute

σtrial = D εe trial, (10.84)

where, clearly, the D matrix here is the orthotropic operator (10.78). The trial accumulated
plastic strain (isotropic hardening state variable) is

ε̄p trial = ε̄p
n. (10.85)

If the trial state is outside the elastic domain defined by the yield function (10.66), the return
mapping described below is applied.

Return-mapping algorithm

For computer implementation purposes, it is convenient to write the Hoffman yield func-
tion (10.66) in the following equivalent form in terms of the array of stress components:

Φ(σ, σ̄) = 1
2 σT Pσ + qT σ − σ̄2, (10.86)

where

P = 2



C1 + C3 −C1 0 −C3

−C1 C2 + C1 0 −C2

0 0 C4 0

−C3 −C2 0 C3 + C2


 (10.87)

and
q = [ C7 C8 0 C9 ]T . (10.88)

With the above notation, the flow rule (10.74) can be equivalently expressed in terms of the
engineering plastic strain rate array as

ε̇
p = γ̇ (Pσ + q). (10.89)

The rate of accumulated plastic strain, in turn, can be represented as

˙̄εp ≡
√
2
3 ε̇p : ε̇p = γ̇

√
2
3 (ε̇p)T Z ε̇

p

= γ̇
√
2
3 (Pσ + q)T Z (Pσ + q), (10.90)
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where we have used the definition

Z =



1 0 0 0
0 1 0 0
0 0 1

2 0
0 0 0 1


. (10.91)

With the above relations at hand, a direct particularisation of the general return-mapping
equations (7.25) (page 196) is obtained as


εe

n+1 − εe trial + ∆γ (Pσn+1 + q)

ε̄p
n+1 − ε̄p

n − ∆γ[ 23 (Pσn+1 + q)T Z (Pσn+1 + q)]
1
2

1
2 σT

n+1Pσn+1 + qT σn+1 − [σ̄(ε̄p
n+1)]

2


=




0

0

0


 . (10.92)

Single-equation return mapping

Analogously to the implementation of the von Mises model, the return mapping here can also
be reduced to the solution of a single equation for the plastic multiplier, ∆γ. To obtain the
reduced equation, we start by noting that, by using the linear elastic law, the first equation of
system (10.92) can be expressed, after a straightforward manipulation, as

σn+1 = σ(∆γ) ≡ (I + ∆γ DP)−1(σtrial − ∆γ Dq); (10.93)

that is, the updated stress, σn+1 is a function of ∆γ, exclusively. Further, introduction of the
above function in the second equation of (10.92) gives

ε̄p
n+1 = ε̄p(∆γ) ≡ ε̄p

n + ∆γ{ 23 [Pσ(∆γ) + q]T Z [Pσ(∆γ) + q]} 1
2 . (10.94)

Finally, with the substitution of the last two expressions in the third equation of (10.92) –
the discretised plastic consistency – the original return-mapping system is reduced to the
following nonlinear scalar equation for ∆γ:

Φ̃(∆γ) ≡ 1
2 [σ(∆γ)]T Pσ(∆γ) + qT σ(∆γ) − [σ̄(ε̄p(∆γ))]2 = 0. (10.95)

In summary, the stress-updating procedure for the Hoffman model comprises the solution
of (10.95), followed by the update of stress and accumulated plastic strain according
to (10.93) and (10.94), respectively.

Newton–Raphson solution

In the Newton–Raphson iterative scheme to solve (10.95), the kth guess for the solution ∆γ
is obtained as

∆γ(k) = ∆γ(k−1) + δ∆γ(k), (10.96)

where

δ∆γ(k) = − Φ̃(∆γ)
dΦ̃/d∆γ

∣∣∣∣(k−1). (10.97)
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The derivative of Φ̃ is given by

dΦ̃
d∆γ

= [Pσ(∆γ) + q]T
dσ

d∆γ
− 2 σ̄(∆γ) H̄

dε̄p

d∆γ
, (10.98)

where H̄ ≡ dσ̄/dε̄p is the slope of the (non-dimensional) hardening curve. To obtain an
explicit expression for the derivative of function σ defined by (10.93), we need to use formula
(vii) of page 36. A straightforward manipulation then gives

dσ

d∆γ
= −(I + ∆γ DP)−1D [P σ(∆γ) + q]. (10.99)

With the above expressions at hand, the derivation of a complete explicit formula for the
derivative of Φ̃ is a rather simple exercise which we shall leave for the interested reader.

The elastoplastic consistent tangent

As in the modified Cam-Clay implementation presented earlier in this chapter (refer to the text
preceding equation (10.23), page 408), to derive the elastoplastic consistent tangent operator
for the above implementation of the Hoffman model, we shall follow the general procedure
of Section 7.4.4 (from page 238). Here, we start by differentiating the system (10.92), which
together with the elastic law, gives the following linearised system in finite element array
notation: 


D−1 + ∆γP 0 N

−2∆γ

3η
NTZP 1 −η

NT −2 σ̄H̄ 0






dσn+1

dε̄p
n+1

d∆γ


=




dεe trial

0

0


 , (10.100)

where σ̄ = σ̄(ε̄p
n+1) and H̄ is the non-dimensional hardening modulus

H̄ =
dσ̄

dε̄p
, (10.101)

also evaluated at ε̄p
n+1. The flow vector N is given by

N = Pσn+1 + q, (10.102)

and the scalar η is defined as

η =
√
2
3N

TZ N. (10.103)

Finally, with the inversion of (10.100) we obtain

Dep ≡ dσn+1

dεe trial
=
[
D−1 + ∆γ P +

1
2σ̄H̄η

NNT − 2∆γ

3η2
NTNZP

]−1
. (10.104)

The above operator is clearly unsymmetric. Its non-symmetry is a consequence of the fact
that the adopted hardening rule is non-associative (despite the associativity of the plastic
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flow rule). Refer to the comments made in Section 7.4.6, page 243. Note that the above
formula is analogous to that given by (7.149) for the von Mises isotropically hardening
model. Its use, in this format, is restricted strictly to hardening models (H̄ 
= 0) owing to
the presence of the hardening modulus in the denominator of the third summand of the
term within square brackets. For use under the assumption of perfect plasticity (H = 0),
an alternative representation can be obtained following completely analogous steps to those
leading to expression (7.148). This will be left as an exercise for the interested reader.

10.3.4. THE BARLAT–LIAN MODEL FOR SHEET METALS

The Barlat–Lian criterion (Barlat and Lian, 1989) has been proposed to model the behaviour
of orthotropic metallic sheets (typically rolled materials) under plane stress. Unlike the other
plasticity models discussed in this book, whose equations are firstly formulated in the six-
dimensional stress space and corresponding plane stress versions are subsequently addressed
within the framework of Chapter 9, the Barlat–Lian criterion was originally defined in plane
stress format. The corresponding yield function, written at the outset exclusively in terms of
in-plane components of the stress tensor, reads

Φ(σ, σy
11) = f(σ) − 2 (σy

11)
M , (10.105)

where
f(σ) ≡ a|K1 + K2|M + a|K1 − K2|M + (2 − a)|2 K2|M , (10.106)

with

K1 =
σ11 + h σ22

2
; K2 =

√(
σ11 − h σ22

2

)2
+ b2 σ212, (10.107)

where M , a, b and h are material constants and σy
11 is the uniaxial yield stress in the principal

orthotropy direction 1. The yield function (10.105) is convex (Barlat and Lian, 1989) if

M > 1, a, b, h > 0, a < 2. (10.108)

To give the reader an idea of realistic values for these constants, the following have been
determined by Lege et al. (1989) for an aluminium alloy:

M = 8, a = 1.24, b = 1.02, h = 1.15. (10.109)

The constant M defines the curvature of the yield surface. This can be seen in Figure 10.9
where the projection of the Barlat–Lian yield surface on the σ11-σ22 plane is shown (in the
absence of shear stresses) for different values of M and a = h = 1 (note that the value of b is
immaterial in the absence of shear). We remark that the criterion becomes isotropic when a =
b = h = 1. Under such a condition, the standard von Mises locus is recovered when M = 2
and the Tresca yield locus is recovered for M = 1 and M →∞. The parameter h relates the
uniaxial yield strength, σy

22, in the principal orthotropy direction 2 with that of direction 1;
that is,

σy
22 =

σy
11

h
. (10.110)

The effect of the choice of h on the Barlat–Lian yield surface is illustrated in Figure 10.10(a).
The effect of constant a is shown in Figure 10.10(b). Similarly to the previously discussed
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Figure 10.9. The Barlat–Lian criterion. Yield surfaces on σ11-σ22 plane (in the absence of shear stress)
for various values of M with a = h = 1.

Hill and Hoffman criteria, the presence of shear stresses will shrink the Barlat–Lian yield
surface. This effect is illustrated in Figure 10.11, where we plot yield surfaces obtained with
M = 8, a = b = 1 and h = 2/3 at different levels of shear stress. We remark that (not shown
in Figure 10.11) an increase (decrease) in constant b will increase (decrease) the rate at which
the surface shrinks with increasing shear stress.

For the purposes of computational implementation of the model, it turns out to be more
convenient to describe the yield criterion for the Barlat–Lian model equivalently in terms of
the following alternative definition of the yield function:

Φ(σ, σy
11) = g(σ) − σy

11, (10.111)

where
g(σ) ≡ [ 12f(σ)]1/M . (10.112)

Note that the yield function now has dimension of stress. In the original definition (10.105),
the yield function has dimension of stress to the power M , which may produce computation-
ally intractable numbers for large values of material constant M .

Hardening law

Analogously to the Hill and Hoffman criteria, isotropic hardening can be incorporated into
the present model by letting σy

11 be a prescribed function of a scalar strain-like hardening
internal variable, α:

σy
11 = σy

11(α). (10.113)

Here we take the yield function (10.111) as the plastic potential and assume the evolution of
the isotropic hardening variable to be governed by the standard relation

α̇ = −γ̇
∂Φ

∂σy
11

= γ̇. (10.114)
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Figure 10.10. The Barlat–Lian criterion. Yield surfaces in the absence of shear for M = 8: (a) effect of
parameter h with a = 1; (b) effect of parameter a with h = 2/3.
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Figure 10.11. The Barlat–Lian criterion. Effect of shear stress on the yield surface for M = 8, a = 1,
h = 2/3 and b = 1.
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Flow rule

The Barlat–Lian yield function (10.111) is represented analogously to the plane stress-
projected von Mises yield function given in (9.41)3, page 372. The in-plane associative plastic
strain rate is given simply by

ε̇p = γ̇ N, (10.115)

where

N ≡ ∂Φ
∂σ

=
∂g

∂σ
=

1
2M

(
f

2

)(1−M)/M
∂f

∂σ
. (10.116)

Equivalently, in component form, we have

ε̇p
αβ = γ̇

1
2M

(
f

2

)(1−M)/M
∂f

∂σαβ
, α, β = 1, 2. (10.117)

The corresponding explicit formulae for the derivatives of f are

∂f

∂σ11
=

M

2

{
a(K1 − K2) |K1 − K2|M−2

(
1 − σ11 − hσ22

2K2

)

+ a(K1 + K2) |K1 + K2|M−2
(

1 − σ11 − hσ22
2K2

)

+ 2M (2 − a)KM−1
2

σ11 − hσ22
2K2

}
, (10.118)

∂f

∂σ22
=

Mh

2

{
a(K1 − K2) |K1 + K2|M−2

(
1 − σ11 − hσ22

2K2

)

+ a(K1 + K2) |K1 − K2|M−2
(

1 − σ11 − hσ22
2K2

)

− 2M (2 − a)KM−1
2

σ11 − hσ22
2K2

}
, (10.119)

∂f

∂σ12
=

Mb2σ12
2K2

{a(K1 + K2) |K1 + K2|M−2

− a(K1 − K2) |K1 − K2|M−2 + 2(2 − a)(2K2)M−1}. (10.120)

Note that, in deriving (10.120), we have taken into account the tensorial nature of the
shear stress contribution in (10.105) (refer to the comments surrounding expression (10.63)).
The thickness plastic strain rate is obtained by imposing plastic incompressibility and the
transversal plastic shear strain rates are assumed to vanish. Thus, the complete set of plastic
flow equations comprises (10.117)–(10.120) together with the out-of plane rates

ε̇p
33 = −ε̇p

11 − ε̇p
22, ε̇p

13 = ε̇p
23 = 0. (10.121)

Finally, to complete the definition of the model, we assume the material to be elastically
isotropic. Then, following the procedure applied to the plane stress-projected von Mises
model, all out-of-plane strain components can be recovered a posteriori as functions of the
in-plane elastic and plastic strains according to relations (9.37)–(9.40) (refer to page 371).
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10.3.5. IMPLEMENTATION OF THE BARLAT–LIAN MODEL

The implicit elastic predictor/plastic corrector computational implementation of the (isotrop-
ically strain hardening) Barlat–Lian model, including the corresponding consistent tangent
operator, was originally proposed by Dutko et al. (1993). The implementation is a particular
case of the general methodology adopted throughout this book but, as we shall see, requires
the inclusion of an extra procedure – a line-search algorithm – to expand the radius of
convergence of the Newton–Raphson scheme used to solve the return mapping equations
(refer to Remark 7.3, page 199, for a discussion on the possible need for strategies of
this nature). The corresponding algorithm and associated consistent tangent operator are
described in the following.

The return-mapping equations

The elastic predictor stage of the algorithm in the present case is clearly identical to that of
the plane stress-projected von Mises model as described in Subsection 9.4.2 (refer to Box 9.4,
page 377) and, therefore, requires no further consideration.

The return mapping is a specialisation of (7.25) (page 196), requiring the solution of the
algebraic system of equations


εe

n+1 − εe trial + ∆γ Nn+1

αn+1 − αn − ∆γ

Φ(σ(εe
n+1), κ(αn+1))


=




0

0

0


 (10.122)

for the unknowns εe
n+1, αn+1 and ∆γ, where Nn+1 is the flow vector (10.116) evaluated at

the updated state. We remark that only the in-plane components of the elastic strain take part
in the above equation. For convenience in the description of the return-mapping algorithm we
have adopted, here and in what follows, the notation

κ ≡ σy
11. (10.123)

In the derivation of the return mapping presented below, we shall assume linear harden-
ing, i.e.

κ = κ0 + H α, (10.124)

where H is the hardening modulus. Then, in the discrete setting, the evolution of κ reads

κn+1 = κn + H ∆γ. (10.125)

With this relation and taking into account the linear elasticity law, the return-mapping
equation set can be written as

R̄ ≡




[De]−1 : (σn+1 − σtrial) + ∆γ Nn+1

H−1 (κn+1 − κn) − ∆γ

Φ(σn+1, κn+1)


=




0

0

0


 , (10.126)

where De here denotes the isotropic (plane stress) elasticity operator and the unknowns are
σn+1, κn+1 and ∆γ.

Note that, unlike previously described implementations such as those of the von Mises and
even the orthotropic Hoffman model, the return-mapping equation system in the present case
cannot be reduced to a single scalar equation.
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Newton–Raphson iteration

As usual, the solution of equation (10.126) is undertaken by the Newton–Raphson iterative
scheme. To do this, it is convenient to split the residual vector R̄ as

R̄ =

{
R

Φ

}
; R ≡

{
[De]−1 : (σn+1 − σtrial) + ∆γ Nn+1

H−1 (κn+1 − κn) − ∆γ

}
. (10.127)

Accordingly, the typical kth Newton iteration comprises the solution of the linear system



[De]−1 + ∆γ ∂N/∂σ 0 N

0 1/H −1

N −1 0



(k−1) 


δσ(k)

δκ(k)

δ∆γ(k)


= −




R(k−1)

Φ(k−1)


 (10.128)

for the iterative increments of σn+1, κn+1 and ∆γ. Following (10.116), the flow vector
derivative can be expressed as

∂N

∂σ
=

∂2Φ
∂σ

=
1

2M

(
f

2

)1−M
M ∂2f

∂σ2
+

1 − M

4M2

(
f

2

)1−2M
M ∂f

∂σ
⊗ ∂f

∂σ
. (10.129)

Straightforward manipulation of system (10.128) gives the following solution (iterative
increments) in symbolic form:

δ∆γ(k) =
Φ(k−1) − [N(k−1) − 1 ] A(k−1) R(k−1)

[N(k−1) − 1 ] A(k−1)
{

N(k−1)

−1

} (10.130)

and {
δσ(k)

δκ(k)

}
= −A(k−1)

[
R(k−1) + δ∆γ(k)

{
N(k−1)

−1

}]
, (10.131)

where we have defined

A≡
[{

[De]−1 + ∆γ ∂N/∂σ
}−1 0

0 H

]
. (10.132)

With the above solution at hand, we update the Newton guess for the unknowns according to

Σ
(k)
n+1 = Σ

(k−1)
n+1 + δΣ(k), (10.133)

where we have used the notation

Σ
(k)
n+1 ≡




σ
(k)
n+1

κ
(k)
n+1

∆γ(k)


 ; δΣ(k) ≡




δσ(k)

δκ(k)

δ∆γ(k)


 . (10.134)
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Line-search procedure

Dutko et al. (1993) observed that the convergence bowl of the above Newton–Raphson
scheme can be dramatically reduced for larger values of material constant M . Such an ill-
conditioned behaviour stems from the high curvature present in the Barlat–Lian model for
large M in the neighbourhood of points in stress space corresponding to the corners of the
Tresca yield surface. Under such conditions, small changes in stress on the yield surface result
in large changes in flow vector direction, characterising a set of stiff evolution equations. To
tackle the problem, Dutko et al. (1993) adopted a line-search procedure which has effectively
stabilised the Newton–Raphson scheme for the range of strain increments expected to be
present in practical finite element computations with values of constant M as high as 40.
Line-search procedures are discussed in detail by Fletcher (1980) (see also Matthies and
Strang 1979, and Crisfield 1991).

The line-search in the present case is activated whenever the rate of convergence of
the Newton–Raphson iterations falls below a prescribed minimum; that is, if for a Newton
iteration k ≥ 2 and a prescribed tolerance ε, the relation

|δΣ(k) · R̄(k)| ≥ ε |δΣ(k) · R̄(k−1)| (10.135)

is satisfied, then the line-search algorithm is carried out. The interested reader is referred to
Dutko et al. (1993) for a complete description of the algorithm.

Consistent tangent operator

Again, an expression for the elastoplastic consistent tangent can be easily obtained by means
of a specialisation of the general procedure of Section 7.4.4. Then, by differentiating the
return-mapping system (10.126) with respect to its unknowns σn+1, κn+1 and ∆γ as well as
to its input, εe trial = [De]−1 : σtrialn+1, we obtain


[De]−1 + ∆γ ∂N/∂σ 0 N

0 1/H −1

N −1 0






dσn+1

dκn+1

d∆γ


=




dεe trial

0

0


 . (10.136)

Note that this differential relation has the same symbolic format as expression (7.141),
obtained for the von Mises isotropically hardening model. Accordingly, the elastoplastic
tangent for the Barlat–Lian model with implicit return mapping is a complete analogy
to (7.148) and can be expressed as

Dep ≡ ∂σn+1

∂εe trial
= P − 1

N : P : N + H
(P : N ) ⊗ (P : N ), (10.137)

where

P ≡
(

IS + ∆γ De :
∂N

∂σ

)−1
: De. (10.138)

As a result of the associative nature of the plastic flow rule and hardening law (refer to
Section 7.4.6, page 243), the above operator is symmetric.





11 VISCOPLASTICITY

THE elastoplastic constitutive theories presented so far in Part Two of this book are
classed as rate independent or time independent; that is, the material response is

regarded as independent of the rate of application of loads and/or the timescale of the
problems considered. Time (or, more precisely, pseudo-time) is used merely to describe the
sequence of events that defines the history of the loading process. For such theories, identical
solutions are produced when a given load (or sequence of loads) is applied at different rates.

However, the observed behaviour of real materials is generally time dependent; that is,
the stress response always depends on the rate of loading and/or the timescale considered.
The extent of such dependence may or may not be significant according to the physical
conditions of the problem. In situations where the rates of loading and/or the timescale of the
analysis remain within a range where the time-dependent phenomena can be neglected, rate-
independent elastoplasticity models can provide good descriptions of the material behaviour
(Lemaitre and Chaboche, 1990; Lubliner, 1990; Skrzypek, 1993). If such conditions are
not met, then accurate predictions can only be obtained if rate dependence is adequately
accounted for by the constitutive model. Rate-dependence effects are described by means of
so-called viscoplasticity (or rate-dependent plasticity) models, to which the present chapter
is devoted.

This chapter is organised as follows. Section 11.1 presents a brief introduction to phe-
nomenological aspects of viscoplasticity. It motivates the establishment of a one-dimensional
mathematical model of viscoplasticity in Section 11.2. Here, some simple analytical solutions
are presented to demonstrate the ability of the one-dimensional model in capturing the
fundamental phenomenological features of viscoplastic behaviour. In Section 11.3 the one-
dimensional viscoplastic theory is generalised to the multidimensional case within the context
of von Mises plasticity. A more general multidimensional model is presented in Section 11.4.
The general model can be rigorously described within the constitutive framework of internal
variable theories initially referred to in Chapter 3 (Section 3.5.2, from page 71). Rate-
independent plasticity is shown to be, under some circumstances, a limit case of the general
viscoplasticity model. This establishes a formal link between rate-independent plasticity
and the general constitutive framework of Chapter 3. Section 11.5 proceeds to introduce
a numerical framework to treat the general viscoplasticity model within the finite element
environment of Chapter 4. This includes the numerical integration algorithm for the general
viscoplastic constitutive equations as well as a symbolic form of the associated consistent
tangent modulus. Then, in Section 11.6, the general numerical framework is specialised
to a von Mises-based model presented in Section 11.3. The integration algorithm and
the associated consistent tangent operator are derived step by step. In addition, an error
assessment of the numerical integration procedure is presented by means of iso-error maps.

Computational Methods for Plasticity: Theory and Applications EA de Souza Neto, D Perić and DRJ Owen
c© 2008 John Wiley & Sons, Ltd
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We remark that Section 11.6 is essential for the reader interested in the computational
implementation of viscoplasticity. The chapter ends with finite element examples being
shown in Section 11.7. In the reported examples, the procedures of Section 11.6 are used.

11.1. Viscoplasticity: phenomenological aspects

Many of the microscopic phenomena underlying the inelastic deformation of solids depend
on time. Materials such as metals, rubbers, geomaterials in general, concrete and composites
may all present substantially time-dependent mechanical behaviour under many practical
circumstances. In metals, for instance, the phenomenological effects of time-dependent
mechanisms become apparent typically at absolute temperatures higher than around one third
of the melting point and can be clearly identified by a number of experimental procedures. To
illustrate this fact, typical results of simple uniaxial tension tests with metallic bars at higher
temperatures are schematically represented in Figure 11.1. Figure 11.1(a) shows stress–strain
curves obtained in uniaxial tensile tests carried out under different prescribed strain rates. In
general, the elasticity modulus is largely independent of the rate of loading but, clearly, the
initial yield limit as well as the hardening curve depend strongly on the rate of straining. This
rate-dependence is also observed at low temperatures, but usually becomes significant only
at higher temperatures. Strain-rate dependence may be of crucial importance, for instance, in
metal-forming operations such as hot forging and may have to be taken into consideration
in the design of the process. It is also important to emphasise that, although not shown in
Figure 11.1(a), the rupture limit, that is, the strain at which the specimen breaks, can also be
strongly dependent on the rate of straining.

Another aspect of time dependence is the phenomenon of creep. This is illustrated in
Figure 11.1(b). The curves of Figure 11.1(b) show the evolution of plastic strains over time
in experiments where tensile specimens have been loaded to different stress levels and left at
constant stress during long periods of time. The material experiences a continuous plastic flow
that is accelerated for higher stress levels. The high strain rates shown towards the end of the
schematic curves for high and moderate stresses is the phenomenon known as tertiary creep.
Tertiary creep leads to the final rupture of the material and is associated with the evolution
of internal damage. Internal damage will be discussed in Chapter 12. Prediction of creep
behaviour is important, for instance, in situations where load-carrying metallic components
are subjected to long duration loads at high temperatures. The need for consideration of creep
response arises typically in the design and analysis of nuclear reactor and jet turbine engine
components.

The third aspect of rate dependence, illustrated in Figure 11.1, is the phenomenon of stress
relaxation. The graph of Figure 11.1(c) shows the typical evolution of stress in a relaxation
test. The relaxation test consists of stretching the specimen (virtually instantaneously) to a
prescribed axial strain and maintaining it strained (at constant strain) over a long period of
time. The time-dependent response in this case is characterised by the continuous decay of
stress in time. The prediction of stress relaxation can be vital, for instance, in the design
of pre-stressed load-carrying components. We remark that the strain rate dependence of the
stress response as well as the phenomena of creep and stress relaxation illustrated above for
metals can also be observed for other materials by means of appropriate experiments.
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Figure 11.1. Viscoplasticity. Phenomenological aspects: uniaxial tensile tests at high temperature.
(a) Strain rate dependence. Uniaxial tests at different strain rates. (b) Creep. Plastic flow at constant
stress. (c) Relaxation. Stress decay at constant strain.

11.2. One-dimensional viscoplasticity model

Similarly to what has been done in Chapter 6 for rate-independent plasticity (refer to
Section 6.2, from page 141), we find it convenient to introduce viscoplasticity by focusing
first on a simple one-dimensional theory. Thus, we devote this section to the description of a
simple uniaxial viscoplastic constitutive model. As we shall see, in spite of its simplicity, the
uniaxial model possesses all the basic ingredients of the multidimensional models discussed
in the remainder of this chapter. In particular, the model is able to capture many of the main
features of the viscoplastic behaviour depicted in Figure 11.1.

11.2.1. ELASTOPLASTIC DECOMPOSITION OF THE AXIAL STRAIN

As for the rate-independent case, the decomposition of the total axial strain into a sum of an
elastic (recoverable) and a plastic (permanent) component is introduced,

ε = εe + εp. (11.1)
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11.2.2. THE ELASTIC LAW

The axial stress is again assumed to be related to the elastic component of the axial strain by
means of the standard linear elastic constitutive relation

σ = E εe. (11.2)

11.2.3. THE YIELD FUNCTION AND THE ELASTIC DOMAIN

Here, the existence of an elastic domain for the stress within which the material behaviour is
purely elastic is also experimentally observed in many cases.† Thus, analogously to the rate-
independent model of Section 6.2, the elastic domain can be conveniently defined by means
of a yield function

Φ(σ, σy) = |σ| − σy, (11.3)

where σy is the yield stress. The elastic domain is defined as the set

E = {σ | Φ(σ, σy) < 0}, (11.4)

so that the behaviour is purely elastic whenever |σ| < σy .

11.2.4. VISCOPLASTIC FLOW RULE

The crucial difference between the uniaxial elastoplastic model of Section 6.2 and the
viscoplasticity model introduced here lies in the definition of the flow rule, which describes
the evolution of εp. The viscoplastic flow rule can be postulated with a format similar to that
of the rate-independent case (see equation (6.10), page 144)

ε̇p = γ̇(σ, σy) sign(σ), (11.5)

where sign is the signum function defined by (6.11).
In spite of its similarity to the rate-independent flow rule, the above constitutive equation

for εp differs fundamentally from (6.10). Firstly, it needs to be emphasised that in the rate-
independent model the plastic strain rate is in fact a pseudo-time rate; that is, ε̇p in the rate-
independent theory is the derivative of the plastic strain in respect to a pseudo-time parameter
used solely to describe the sequence of events. In that case, the actual timescale is irrelevant.
In contrast, the plastic strain rate in (11.5) is the actual time derivative of εp. In addition to this
conceptual difference, γ̇ – named the plastic multiplier and determined by the procedure of
Section 6.2.7 (page 146) in the rate-independent theory – is here a given explicit function of σ
and σy . Essentially, the explicit function for γ̇ should model how the rate of plastic straining
varies with the level of stress. Many forms are possible for γ̇ and a discussion on this issue
will be left for Section 11.3. Here, we will define the one-dimensional viscoplasticity model
by adopting the following particular definition

γ̇(σ, σy) =




1
µ

[( |σ|
σy

)1/ε

− 1
]

if Φ(σ, σy) ≥ 0

0 if Φ(σ, σy) < 0,

(11.6)

†As we shall see later in this chapter, some models of viscoplasticity do not have an elastic domain. Such models
do not require the definition of a yield function.
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where the material constants are the viscosity-related parameter µ, whose dimension is time,
and the non-dimensional rate-sensitivity parameter, ε. Both parameters are strictly positive.
This particular form has been introduced by Perić (1993) similarly to the power law form of
the viscoplastic potential proposed by Perzyna (1963). It is important to emphasise that the
material parameters µ and ε are temperature dependent. As a general rule, as temperature
increases (decreases) µ and ε increase (decrease). For many metals, µ, ε → 0 for sufficiently
low temperatures, when the material behaviour may be assumed rate-independent.

11.2.5. HARDENING LAW

In the rate-independent case, the phenomenon of hardening describes the changes in yield
stress that result from plastic straining. In the viscoplastic model, hardening can be incorpo-
rated in the same manner as in the elastoplastic case by letting the yield stress, σy , be a given
(experimentally determined) function

σy = σy(ε̄p) (11.7)

of the accumulated plastic strain

ε̄p =
∫ t

0

|ε̇p| dt. (11.8)

Note that (11.6) implies that at a given constant applied stress σ, an increase (decrease) in σy

will produce a decrease (increase) in the plastic strain rate ε̇p. As in the elastoplastic case,
an increase of σy will be referred to as hardening whereas its reduction will be described as
softening. If σy is a constant, the model is referred to as perfectly viscoplastic.

11.2.6. SUMMARY OF THE MODEL

The overall one-dimensional viscoplasticity model is defined by the constinutive equa-
tions (11.1)–(11.8). For convenience we summarise the model in Box 11.1.

11.2.7. SOME SIMPLE ANALYTICAL SOLUTIONS

Section 11.1 discussed some of the phenomenological aspects of viscoplastic behaviour. One
important aspect to be emphasised here is that, in spite of its simplicity, the above-defined
one-dimensional model can capture the key phenomenological features of rate-dependent
plasticity shown in Figure 11.1. To illustrate this and give the reader a better insight into
the theory, we derive in this section analytical solutions for three simple problems where the
basic properties of creep at constant stress, strain rate dependence of the stress response and
stress relaxation under constant strain are reproduced by the one-dimensional model.

Creeping at constant stress

Let us consider the case of a bar subjected to an axial load that produces a uniform stress
σ > σy over its cross-section. The load is applied instantaneously and, after being applied,
remains constant in time.

With the instantaneous loading (at time t = 0), the bar will initially deform (also instan-
taneously) in a purely elastic manner. The fact that the model behaviour is elastic under
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Box 11.1. One-dimensional viscoplastic constitutive model.

1. Elastoplastic split of the axial strain

ε = εe + εp

2. Uniaxial elastic law
σ = E εe

3. Yield function
Φ(σ, σy) = |σ| − σy

4. Plastic flow rule

ε̇p = γ̇ sign(σ)

γ̇ =




1

µ

[( |σ|
σy

)1/ε

− 1

]
if Φ(σ, σy) ≥ 0

0 if Φ(σ, σy) < 0

5. Hardening law
σy = σy(ε̄p)

˙̄εp = γ̇

instantaneous loading is formally demonstrated in the next example when the strain rate
dependence of the stress response is discussed. However, even without a formal proof, it
makes sense to accept that, as there is no time for plastic strains to develop over an (idealised)
instantaneous loading event, the behaviour must be purely elastic under such a condition.
Assuming zero initial plastic strain, it follows from the elastoplastic split of the total strain
together with the elastic law that the total strain in the bar at t = 0, immediately after the
instantaneous application of load, will be

ε0 = εe
0 =

σ

E
, (11.9)

where the zero subscript denotes quantities at t = 0. From this moment on, the bar is
kept under a constant stress above the yield limit. Under constant stress, the elastic law
implies that the elastic strain will also remain constant. Thus, the straining of the bar after
the instantaneous loading will be due purely to viscoplastic flow and will be modelled by
constitutive equations (11.5), (11.6). Assuming that σ is positive (tensile), we then have

ε̇p =
1
µ

[(
σ

σy

)1/ε

− 1
]
. (11.10)

For a perfectly viscoplastic material (constant σy), the integration of the above equation,
in conjunction with the elastoplastic decomposition of the total strain and the initial condi-
tion (11.9), gives the following solution for the straining of the bar

ε(t) =
σ

E
+

1
µ

[(
σ

σy

)1/ε

− 1
]
t. (11.11)
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The creep rate in this case is constant and proportional to (σ/σy)1/ε − 1. The material
constants (µ and ε) could be calibrated, for instance, so as to capture the initial branches
of the creep curves of the material (refer to Figure 11.1(b)). The initial branches describe
the phenomenon of primary creep. A hardening law could be incorporated to include the
follow-up of the curves to their second straight branch that describes secondary creep.

Strain-rate dependence of the stress response

Here we analyse the monotonic stretching of an initially unstrained (and unstressed) bar at
constant strain rates. These are the conditions typically encountered in conventional tensile
tests. The objective here is to show that the one-dimensional model is capable of predicting
the strain-rate dependence of the stress response as generally illustrated in Figure 11.1(a).

Before stating the associated initial value problem, let us first recall that the material
response within the elastic domain (σ < σy) is purely elastic. Thus, at the initial stages of the
monotonic stretching process, the stress response does not depend on the rate of stretching.
The stress–strain response during this phase is expressed simply as

σ = E ε if σ < σy , (11.12)

or, equivalently,
σ = E ε if ε < ε∗, (11.13)

where ε∗ is the strain at which the yield stress is reached

ε∗ =
σy

E
. (11.14)

Viscoplastic flow (and rate-dependent behaviour) may only take place when σ ≥ σy or,
in terms of the applied strain, when ε ≥ ε∗. Then, as our purpose is to illustrate the rate
dependence predicted by the model, our initial value problem will be defined only over
the portion of the loading process where σ ≥ σy (or ε ≥ ε∗). To simplify the problem, we
will assume that the material is perfectly viscoplastic (constant σy) and, in addition, the rate
sensitivity parameter will be set to

ε = 1,

so that an analytical solution to the initial value problem can be easily found.

The initial value problem.

The evolution of the plastic strain for the present model is defined by equation (11.10). Under
the above assumptions, the associated initial value problem consists of finding a function
εp(t) such that

ε̇p(t) =
1
µ

[
σ(t)
σy

− 1
]

=
1
µ

{
E [ε(t) − εp(t)]

σy
− 1
}

=
1
µ

[
ε(t) − εp(t)

ε∗
− 1
]
, (11.15)

where the total strain is the prescribed function

ε(t) = α t + ε∗ = α t +
σy

E
, (11.16)
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corresponding to monotonic stretching with arbitrary (constant) strain rate α ≥ 0. Note that
t = 0 corresponds to the onset of viscoplastic flow (σ = σy ⇔ ε = ε∗). The initial condition
for εp (the plastic strain at the onset of viscoplastic flow) is obviously

εp(0) = 0. (11.17)

The analytical solution.

By substituting (11.16) into the differential equation (11.15), the initial value problem can be
written as

ε̇p(t) =
1

µ ε∗
[α t − εp(t)]; εp(0) = 0. (11.18)

The analytical solution can then be promptly obtained by standard methods for first-order
ordinary linear differential equations as

εp(t) = α
[
t − µ ε∗

(
1 − e

−t
µ ε∗
)]

. (11.19)

By placing the above solution together with (11.16) into the elastic law, σ = E(ε − εp), we
obtain, after a straightforward manipulation, the following solution for the stress as a function
of time

σ(t) = σy

[
1 + α µ

(
1 − e

−t
µ ε∗
)]

. (11.20)

The stress–strain response.

The strain rate dependence of the stress response can be more clearly illustrated by expressing
the stress as a function of strain for an arbitrary (but constant in time) strain rate, so that curves
such as those depicted in Figure 11.1(a) can be produced. In the present case, such a function
can be obtained by means of a simple variable transformation in (11.20). Indeed, note that by
inverting the function defined by (11.16), we have

t = t(ε) =
ε − ε∗

α
. (11.21)

With the introduction of this relation into (11.20), we obtain

σ̃(ε) = σ(t(ε)) = σy

{
1 + α µ

[
1 − e

1
µ α (1− ε

ε∗ )
]}

, (11.22)

which gives the stress–strain curve for an arbitrary strain rate α. Insight into the problem can
be gained by looking into the limit stress–strain curves, i.e. the curves obtained at infinitely
slow rates (α → 0) and infinitely fast processes (α →∞). In order to obtain the limit for
infinitely slow rates, we first observe that, in the present monotonic loading process, the term

1 − ε/ε∗

in (11.22) is always negative. In addition, µ and α are positive so that the last term on the
right-hand side of (11.22) is the exponential of a negative number. The limit is then easily
obtained as

lim
α→0

σ̃(ε) = σy; (11.23)
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Figure 11.2. One-dimensional viscoplasticity model. Analytical solution showing the dependence of
the stress response on the applied strain rate/viscosity parameter.

that is, at infinitely slow rates the perfectly viscoplastic model rigorously recovers the
behaviour of the rate-independent plasticity model with yield stress σy . The rate-independent
model was described in Section 6.2 (page 141). It is also very important to note that the same
limit is obtained for the vanishing viscosity parameter, i.e. when µ → 0. At infinitely fast
rates, the limit is derived by a standard limiting procedure which gives

lim
α→∞ σ̃(ε) = E ε, (11.24)

i.e. the process is purely elastic and the stress–strain curve after the yield limit is the
continuation (with the same slope, E) of the elastic curve. Also note that the identical limit
is found for µ →∞ (infinitely viscous material). For any other rate (or viscosity parameter),
the corresponding stress–strain curve will lie between these two limits with higher stress
obtained at higher strain rates (or higher viscosity). To illustrate better the behaviour of the
model under the present conditions, the analytical solution (11.22) is shown in the graph of
Figure 11.2, where the non-dimensional stress, σ/σy , is plotted against the relative strain,
ε/ε∗, for various normalised strain rates µα. The limits µα → 0 (infinitely slow rates or non-
viscous material) and µα →∞ (infinitely fast rates or infinitely viscous material) are also
included. Clearly, the model is able to capture the experimentally observed rate-dependence
phenomenon illustrated in Figure 11.1(a).

Remark 11.1. In fact, even though it is not formally shown here, the above limits remain
valid for any hardening curve and any rate sensitivity parameter ε; that is, at infinitely slow
strain rates, the model recovers the rate-independent behaviour of the plasticity model of
Section 6.2 (this limit is also obtained for µ → 0) and, at infinitely fast rates (or when µ →
∞), the model behaves in a purely elastic manner, regardless of the given hardening curve
and rate-sensitivity parameter. In addition (again not formally shown in this section), the
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rate-independent behaviour is also recovered with vanishing rate-sensitivity, i.e. when ε →
0. This last property will be demonstrated in Section 11.4.3 in the context of the general
multidimensional theory.

Stress relaxation at constant strain

In this final example, we consider the case of a bar which is instantaneously stretched
(stretched at an infinitely fast strain rate) to a total strain ε and then kept stretched indefinitely
at that constant strain. The instantaneous stretching to ε is assumed to produce a stress above
the yield limit of the material. Here the model should be able to capture the phenomenon of
stress relaxation alluded to in Figure 11.1(c).

Over the instantaneous stretching (at time t = 0), the bar will deform purely elastically
(refer to the limit expression (11.24) and the text surrounding it). Thus, assuming that the
plastic strain is zero at t = 0 (immediately after the instantaneous stretching), we have

εe
0 = ε, (11.25)

and, in view of the elastic law, the corresponding stress is given by

σ0 = E εe
0 = E ε. (11.26)

From this point on, the stress in the bar will be governed by the law

σ = E(ε − εp) = σ0 − E εp, (11.27)

where εp evolves in time according to the differential equation (11.10) which, in view of the
above expression can be equivalently written as

ε̇p =
1
µ

[(
σ0 − E εp

σy

)1/ε

− 1
]
. (11.28)

To simplify the problem, we will assume, as in the previous example, that the material is
perfectly viscoplastic (constant σy) and ε = 1. In this case, the initial value problem is to find
a function εp(t) such that

ε̇p(t) = c1 − c2 εp(t), (11.29)

with initial condition
εp(0) = 0, (11.30)

where the constants c1 and c2 are defined as

c1 =
1
µ

(
σ0
σy

− 1
)

, c2 =
E

µ σy
. (11.31)

The analytical solution to (11.29–11.30) can be trivially obtained as

εp(t) =
c1
c2

(1 − e−c2 t). (11.32)
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Figure 11.3. One-dimensional viscoplasticity model. Analytical solution to the stress relaxation
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Finally, by placing the above solution into (11.27), and taking into account the definition of
c1 and c2, we obtain the stress as a function of time

σ(t) = σ0 − (σ0 − σy)(1 − e−
E

µ σy
t). (11.33)

Clearly, the above function describes the stress relaxation process of the bar, with the stress
taking the value σ = σ0 > σy at t = 0 and subsequently relaxing asymptotically to σy as
t →∞. This is illustrated in Figure 11.3 where a graph of the analytical function σ(t) (with
σ0 = 2 σy) is plotted. The analytical solution with the present one-dimensional model clearly
captures the experimentally observed behaviour referred to in Figure 11.1(c).

11.3. A von Mises-based multidimensional model

This section introduces a multidimensional extension of the one-dimensional model dis-
cussed above (and summarised in Box 11.1). Rather than define a generic extension at the
outset (as in Section 6.3 (page 148) where a general multidimensional extension of the one-
dimensional rate-independent plasticity model of Section 6.2 (page 141) was presented),
we chose here to focus first on a von Mises-based generalisation of the uniaxial theory. A
discussion of a more generic model, including its potential structure and its relation to time-
independent plasticity as a limit case, will be left for Section 11.4.

11.3.1. A VON MISES-TYPE VISCOPLASTIC MODEL WITH ISOTROPIC STRAIN
HARDENING

The multidimensional generalisation of the uniaxial viscoplastic model follows the same
basic steps as the generalisation presented in Section 6.3 for the rate-independent theory;
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Box 11.2. A von Mises-type viscoplastic constitutive model.

1. Elastoplastic split of the strain tensor

ε = εe + εp

2. Linear elastic law
σ = De : εe

3. Yield function

Φ(σ, σy) = q(s(σ)) − σy; q =
√

3
2

s : s

and elastic domain
E = {σ | Φ(σ, σy) < 0}

4. Plastic flow rule

ε̇p = γ̇
∂Φ

∂σ
= γ̇

√
3

2

s
‖s‖

γ̇ =




1

µ

[(
q

σy

)1/ε

− 1

]
if Φ(σ, σy) ≥ 0

0 if Φ(σ, σy) < 0

5. Isotropic strain hardening law

σy = σy(ε̄p); ε̄p =

∫ t

0

‖ε̇p‖ dt

6. Evolution of accumulated plastic strain

˙̄εp = γ̇

that is, the elastoplastic split of the total strain, the linear elasticity law, the flow rule and
yield function are recast in terms of the corresponding tensor quantities (total, elastic and
plastic strain tensors, stress tensor and flow vector). The yield function is also redefined as a
function of variables of appropriate tensorial order. The usual concept of an elastic domain
bounded by a yield surface in the rate-independent theory will remain valid in the viscoplastic
case. Here, as our multidimensional extension is von Mises-based, the yield function and the
plastic flow rule (including the hardening internal variable) will have the same format as
that of the standard rate-independent von Mises model with (associative) Prandtl–Reuss flow
vector. The resulting model is a viscoplastic version of the rate-independent isotropically
hardening von Mises model summarised in Section 7.3.1 (from page 216). The constitutive
equations of the von Mises-based extension are listed in Box 11.2.

Remark 11.2. Analogously to its rate-independent counterpart, under uniaxial stress condi-
tions, the model of Box 11.2 reduces exactly to the one-dimensional theory of Box 11.1. It is
also important to emphasise that the basic properties of creep, stress relaxation and strain-rate
dependence of the stress response (including the behaviour at limits) as demonstrated for the
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uniaxial model in Section 11.2.7 are reproduced by the multidimensional theory under any
state of stress.

11.3.2. ALTERNATIVE PLASTIC STRAIN RATE DEFINITIONS

So far, the explicit function for γ̇ that takes part in the definition of the plastic flow equation
(see expression (11.6) and item 4 of Boxes 11.1 and 11.2) has been assumed to be of
the form proposed by Perić (1993). As mentioned in Section 11.2.4, many forms for γ̇
have been proposed and, in practice, a particular choice should be dictated by its ability
to model the dependence of the plastic strain rate on the state of stress for the material under
consideration. In this section, we list some of the most widely used forms. Clearly, each form
of γ̇ defines a different model of viscoplasticity. However, within the framework of von Mises
viscoplasticity, the format of the flow rule

ε̇p = γ̇ N, (11.34)

with associative flow vector N defined by

N =
∂Φ
∂σ

=

√
3
2

s

‖s‖ , (11.35)

and yield function
Φ(σ, σy) = q(s(σ)) − σy , (11.36)

will remain unchanged for any definition of γ̇.

Bingham model

The Bingham model is the simplest model of viscoplasticity. The multiplier γ̇ in this case is
defined as

γ̇(σ, σy) =




1
η

Φ(σ, σy) =
q(σ) − σy

η
if Φ(σ, σy) ≥ 0

0 if Φ(σ, σy) < 0.

(11.37)

The only material constant in this case is the (temperature-dependent) viscosity parameter η
and the strain rate is modelled as a linear function of the von Mises effective stress. Note
that this law is obtained from Perić’s model given in item 4 of Box 11.2 (and also from the
Perzyna model described below) by setting

ε = 1; µ =
η

σy
. (11.38)

In the uniaxial case, the plastic strain rate for the Bingham model is a linear function of the
axial stress:

ε̇p =
1
η

(|σ| − σy) sign(σ). (11.39)

This may severely limit the ability of the model to fit experimental data as, in many cases,
the observed strain rate may be a markedly nonlinear function of the stress. However, over
a relatively narrow range of stresses, the linear approximation may give good results. Other
models, with more material constants, have, in general, better flexibility to allow a wider
range of experimental data to be fitted.
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Perzyna model

This model was introduced by Perzyna (1966, 1971) and is widely used in computational
applications of viscoplasticity. It is defined by

γ̇(σ, σy) =




1
µ

[
q(σ)
σy

− 1
]1/ε

if Φ(σ, σy) ≥ 0

0 if Φ(σ, σy) < 0.

(11.40)

As in Perić’s model, the material constants are the viscosity-related parameter, µ, and the rate
sensitivity, ε. We remark here that, in spite of its similarity to Perić’s definition, as the rate-
independent limit is approached with vanishing rate-sensitivity ε → 0 (refer to Remark 11.1
on page 443), the Perzyna model does not reproduce the uniaxial stress–strain curve of the
corresponding rate-independent model with yield stress σy . As shown by Perić (1993), in
this limit, the Perzyna model produces a curve with σ = 2 σy instead. However, for vanishing
viscosity (µ → 0) or vanishing strain rates, the response of both Perzyna and Perić models
coincide with the standard rate-independent model with yield stress σy .

11.3.3. OTHER ISOTROPIC AND KINEMATIC HARDENING LAWS

In the viscoplasticity model of Box 11.2, only isotropic strain hardening has been taken into
account. Other hardening laws, such as isotropic work hardening (where the plastic work
is taken as the internal variable) as well as kinematic hardening and more general mixed
isotropic/kinematic hardening rules can be considered in a manner completely analogous to
that of the rate-independent theory as described in Section 6.6 (page 177); that is, isotropic
work hardening is obtained by having σy as a given function of the plastic work, wp, defined
by expression (6.177)

σy = σy(wp). (11.41)

Kinematic hardening is introduced by simply replacing the von Mises effective stress, q, with
the relative effective stress

q̄ =
√
3
2 η : η, (11.42)

where η is the relative stress
η = s − β, (11.43)

and β is the backstress tensor. Evolution laws for β, such as Prager’s rule and the Armstrong–
Frederick kinematic hardening law, can be defined as in Section 6.6.

11.3.4. VISCOPLASTIC MODELS WITHOUT A YIELD SURFACE

The assumption of the existence of an elastic domain bounded by a yield surface is essential in
the formulation of rate-independent plasticity models. For viscoplasticity models, however,
such an assumption is by no means required. In fact, particularly at higher temperatures,
many materials can be modelled as flowing whenever under stress; that is, the yield stress
is effectively zero. For example, many metals at high temperatures will flow at virtually
any stress state with a non-zero deviatoric component. In such cases, a yield surface and
a corresponding elastic domain do not need to be introduced in the formulation of the
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theory. Viscoplasticity models without a yield surface have been used widely, especially in
the analysis of creep and hot metal forming operations. Within the present framework, such
models can be defined simply by postulating the explicit function for γ̇ accordingly.

Norton’s creep law

The classical Norton creep law has been employed extensively in the analysis of creep of
metals. It is used mainly in the description of secondary creep. In its original (uniaxial)
version, the flow rule is given by

ε̇p =
( |σ|

λ

)N

sign(σ), (11.44)

where N and λ are temperature-dependentmaterial constants. Clearly, plastic flow is assumed
to occur whenever σ 
= 0. Its multidimensional generalisation, sometimes referred to as
Odqvist’s law, is obtained by simply replacing the definition of the function for γ̇ in item
4 of Box 11.2 with the following

γ̇(σ) =
[
q(σ)

λ

]N

. (11.45)

Here, plastic flow takes place for any stress with non-zero deviator. Note that, by setting
σy = 0 in (11.37) the Bingham model recovers the Norton law with N = 1 and λ = η.

Lemaitre–Chaboche law

A modification of Norton’s law in order to improve its ability to model secondary creep over a
wider range of stresses and strain rates is provided by the Lemaitre–Chaboche law (Lemaitre
and Chaboche, 1990). The function γ̇ in this case reads

γ̇(σ) =
[
q(σ)

λ

]N

exp[α q(σ)N+1]. (11.46)

In addition to the material parameters N and λ required by Norton’s law, the present model
has a third (also temperature-dependent) parameter α.

Other creep laws

A rather general class of viscoplastic laws can be obtained by assuming that γ̇ is a function
of the stress, time and temperature, with the following multiplicative format

γ̇ = γ̇(σ, t, T ) = fσ(σ) ft(t) fT (T ), (11.47)

where t and T denote, respectively, the time and absolute temperature and fσ , ft and fT are
experimentally defined functions. A comprehensive list of proposed empirical functions is
given by Skrzypek (1993), to which the interested reader is referred. For instance, fσ could
be Norton’s law or the Lemaitre–Chaboche relation above. The temperature function fT is
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normally defined by the Arrhenius law

fT (T ) = C exp

[−Q

R T

]
(11.48)

where C is a constant, Q is the activation energy usually independent of the temperature, R is
the gas constant 8.31 J mol−1 K−1. A typical example of an empirical relation of the above
format is given by the law (Boyle and Spence, 1983)

γ̇ = C exp

[−Q

R T

]
tM qN , (11.49)

with M and N being material parameters.
Another interesting viscoplastic model used primarily in the description of the behaviour

of metallic alloys at high temperatures is the Bodner–Partom model (Bodner and Partom,
1975). An implicit computational implementation of the Bodner–Partom model has been
recently described by Anderson (2003).

11.4. General viscoplastic constitutive model

Having described in the previous section some of the most commonly used viscoplasticity
models, we proceed here to formulate a more general constitutive theory of viscoplasticity.
The theory presented here is a viscoplastic version of the general rate-independent model
described in Section 6.3 (from page 148) and summarised in Box 6.2 (page 151). At this point,
note that we will use here the notation of Section 6.3. The reader who is not familiar with
that notation, or concepts used in that section, is advised to review them before proceeding
further. The formulation of the viscoplastic model is analogous to that of its rate-independent
counterpart. It follows the same considerations as Sections 6.3.1 to 6.3.4, except that the flow
rule and hardening law are defined as

ε̇p = G(σ, A)

α̇ = J(σ, A);
(11.50)

that is, the plastic strain rate and the evolution law for the set α of hardening internal variables
are defined by means of the explicit constitutive functions G and J of σ and the set A of
hardening thermodynamic forces. In addition, as we have seen above, an elastic domain may
not exist. Thus, a yield function is not necessarily present in the viscoplastic formulation. The
constitutive equations of the general viscoplasticity model are listed in Box 11.3.

Note that the von Mises-based model of Box 11.2 (which incorporates an elastic domain)
is trivially recovered by defining the functions G and J as well as the free-energy potential
ψ and the internal variable set α accordingly. The same applies to all other models (with or
without an elastic domain) described in Section 11.3.

11.4.1. RELATION TO THE GENERAL CONTINUUM CONSTITUTIVE THEORY

The above viscoplasticity model fits within the generic internal variable-based constitutive
framework discussed in Section 3.5.2 (from page 71). Indeed, it can be trivially established
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Box 11.3. A general viscoplastic constitutive model.

1. Additive decomposition of the strain tensor

ε = εe + εp

2. Free-energy function
ψ = ψ(εe, α)

where α is a set of hardening internal variables

3. Constitutive equation for σ and hardening thermodynamic forces A

σ = ρ̄
∂ψ

∂εe
A = ρ̄

∂ψ

∂α

4. Plastic flow rule and hardening law

ε̇p = G(σ, A)

α̇ = J(σ, A)

that the model of Box 11.3 is a particular case of the general purely mechanical infinitesimal
constitutive law defined by (3.165) on page 76. The general viscoplasticity model is obtained
by simply defining the set α of (3.165) as composed of the plastic strain tensor and the set of
hardening internal variables (as described in Section 6.3.2) and then introducing the explicit
constitutive functions for the rates of plastic strain and hardening variables listed in item 4 of
Box 11.3.

11.4.2. POTENTIAL STRUCTURE AND DISSIPATION INEQUALITY

A specialisation of the general theory of Box 11.3 can be obtained by endowing the model
with a potential structure (refer to the discussion surrounding expression (3.162) on page 74).
In this case, we define a dissipation potential

Ξ = Ξ(σ, A), (11.51)

from which, through the hypothesis of normal dissipativity, the evolution of the internal
variables of the problem are derived as

ε̇p =
∂Ξ
∂σ

α̇ = − ∂Ξ
∂A

.

(11.52)

At this point, it is important to recall that the plastic dissipation in the present case is given
by (again, refer to Section 6.3.2)

σ : ε̇p − A ∗ α̇,
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so that the dissipation inequality reads

Υp(σ, A; ε̇p, α̇) ≥ 0, (11.53)

where
Υp(σ, A; ε̇p, α̇) ≡ σ : ε̇p − A ∗ α̇ (11.54)

is the dissipation function.
By defining Ξ such that it is convex with respect to both variables, non-negative and zero-

valued at {σ, A} = {0, 0} it is ensured that the dissipation inequality is satisfied a priori by
the model.

11.4.3. RATE-INDEPENDENT PLASTICITY AS A LIMIT CASE

In this section we show that rate-independent plasticity can be recovered as a limit case of
the above general viscoplastic theory with a potential structure. As emphasised above, the
general viscoplastic model is a particular instance of the internal variable-based constitutive
framework of Section 3.5.2. Thus, the demonstration that follows here shows effectively
that, as anticipated in Section 6.3.7, the elastoplastic model of Box 6.3 (page 151) can be
rigorously described, under some circumstances, as a particular case of the general continuum
constitutive theory of Section 3.5.2.

The indicator function of a convex set

The demonstration presented here is based on arguments of convex analysis.‡ Crucial to the
proof to be shown is the concept of indicator function of a convex set. In this context, let us
consider the closure, A, of the elastic domain defined by means of a yield function Φ:

A = {(σ, A) | Φ(σ, A) ≤ 0}. (11.55)

In rate-independent plasticity, A is the set of all admissible states (σ, A) of stress and
hardening thermodynamical forces. The set A is convex, i.e. it defines a convex region in the
space of stresses and hardening forces. Following the above considerations, we now introduce
the indicator function, ΨA, of the convex set A as the scalar-valued function defined by

ΨA (σ, A) =




0 if (σ, A) ∈ A

∞ if (σ, A) /∈ A.

(11.56)

The indicator function is clearly non-differentiable.

The rate-independent limit

In what follows, we shall see that an associative rate-independent plasticity model is obtained
by adopting ΨA as the dissipation potential in the general viscoplastic theory; that is, we
choose

Ξ(σ, A) ≡ ΨA (σ, A). (11.57)

‡Readers not familiar with convex analysis are referred to Rockafellar (1970).
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At this point we need to make use of the concept of subdifferential.§ In view of the non-
differentiability of the indicator function, the constitutive equations (11.52), which follow
from normal dissipativity, are replaced with the subdifferential relations

ε̇p ∈ ∂σΨA

α̇ ∈ −∂AΨA,
(11.58)

where ∂σΨA and ∂AΨA are the subdifferentials of ΨA with respect to σ and A, respectively.
From the subdifferential definition (6.69) together with (11.56) it can easily be established
that (11.58) is equivalent to the inequality

ε̇p : (σ − σ∗) + α̇ ∗ (A − A∗) ≥ 0, ∀ (σ∗, A∗) ∈ ΨA, (11.59)

or, equivalently, in terms of the dissipation function (11.54)

Υp(σ, A; ε̇p, α̇) ≥ Υp(σ∗, A∗; ε̇p, α̇), ∀ (σ∗, A∗) ∈ A. (11.60)

This last inequality states that, among all states (σ∗, A∗) ∈ A, the actual stress and hardening
force (σ, A) maximise the dissipation function. This is known as the principle of maximum
plastic dissipation, discussed in Section 6.5.2 (page 170) to which the reader is referred for
details. The solution to the maximisation problem associated with the principle of maximum
plastic dissipation is the classical associative laws

ε̇p = γ̇
∂Φ
∂σ

α̇ = −γ̇
∂Φ
∂A

,

(11.61)

together with the loading/unloading conditions of rate-independent plasticity

Φ(σ, A) ≤ 0, γ̇ ≥ 0, Φ(σ, A)γ̇ = 0. (11.62)

In summary, it has been shown above that the classical rate-independent associative plasticity
equations are rigorously recovered from the general viscoplasticity model when the indicator
function of the set A is taken as the dissipation potential.

Example: von Mises-based model

Let us now consider the von Mises-based model of Box 11.2 and, for simplicity, assume
that the model is perfectly viscoplastic (constant σy). Our purpose here is to illustrate
the above ideas by demonstrating that the viscoplastic model can be defined in terms of
a dissipation potential whose limit when ε → 0 or µ → 0 is the indicator function of the
set of admissible stresses of the perfectly plastic von Mises model. Thus, in such limits,
the perfectly viscoplastic model rigorously recovers the classical perfectly elastoplastic
von Mises model.

§Refer to Section 6.3.9 (from page 153) for the definition of subdifferential.
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We start by defining the dissipation potential as

Ξ(σ) =




σy

µ

{
1

1 + ε
+

ε

1 + ε

[
q(σ)
σy

] 1+ε
ε

− q(σ)
σy

}
if q/σy ≥ 1

0 if q/σy < 1,

(11.63)

where σ is the only variable. With the above definition, the flow rule

ε̇p =
∂Ξ
∂σ

, (11.64)

is found through a straightforward differentiation to be that of item 4 of Box 11.2; that is, the
above potential indeed defines the von Mises-based viscoplasticity model of Box 11.2 when
hardening is not considered.

Finally, by simple inspection, we can easily see that, when ε → 0 or µ → 0, the limit of
the potential Ξ of (11.63) is the indicator function of the set of admissible stresses defined by
the von Mises yield function:

lim
ε→0

Ξ(σ) = lim
µ→0

Ξ(σ) = ΨA (σ), (11.65)

where
A = {σ | q(σ) − σy ≤ 0}. (11.66)

This completes the demonstration. The schematic illustration of Figure 11.4 shows the
potential Ξ for various choices of the rate-sensitivity parameter ε. Clearly, as ε → 0, Ξ tends
to the indicator function of A.

11.5. General numerical framework

This section describes the basic ingredients needed to incorporate the general viscoplasticity
model of Box 11.3 into the finite element framework of Chapter 4. The basic requirements
are:

(i) an algorithm for numerical integration of the viscoplastic constitutive equations, to be
used to update stresses and other state variables of the model;

(ii) the associated consistent tangent modulus, to be used in the assemblage of the finite
element stiffness matrix.

For further discussions and analysis of various aspects of the numerical treatment of vis-
coplasticity, we refer to Simo and Govindjee (1991), Perić (1993), Chaboche and Cailletaud
(1996), Simo and Hughes (1998), Simo (1998), Runesson and Mahler (1999), and Alfano
and Rosati (2001).

11.5.1. A GENERAL IMPLICIT INTEGRATION ALGORITHM

Before proceeding to the derivation of an integration algorithm for the general viscoplastic
model, it seems convenient, for the sake of clarity, to start by stating the underlying initial
value problem we wish to solve. The problem here is analogous to its rate-independent
counterpart, Problem 7.1, stated on page 193.
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Figure 11.4. Viscoplastic potential Ξ for various rate-sensitivity parameters ε.

Problem 11.1 (The viscoplastic constitutive initial value problem). Given the initial
values εe(t0) and α(t0) and given the history of the strain tensor, ε(t), t ∈ [t0, T ], find the
functions εe(t) and α(t), for the elastic strain tensor and hardening internal variable set that
satisfy the reduced general viscoplastic constitutive equations

ε̇e(t) = ε̇(t) − G(σ(t), A(t)), α̇(t) = J(σ(t), A(t)) (11.67)

for each instant t ∈ [t0, T ], with

σ(t) = ρ̄
∂ψ

∂εe

∣∣∣∣
t

, A(t) = ρ̄
∂ψ

∂α

∣∣∣∣
t

. (11.68)

As in the definition of the rate-independent problem, the reduced system (11.67) of
ordinary differential equations has been obtained by incorporating the viscoplastic flow
equation (11.50)1 into the elastoplastic split of the total strain rate so that the plastic strain
does not appear explicitly in the initial value problem. Clearly, once the history of elastic
strain is determined in the solution to the above problem, the history of the plastic strain is
promptly obtained as

εp(t) = ε(t) − εe(t). (11.69)

The fully implicit algorithm for the numerical solution of the above problem is derived
by simply applying a standard backward Euler time discretisation of the rate equations. The
resulting incremental problem is presented in Box 11.4, where a typical step over the time
interval [tn, tn+1] is considered. The time and strain increments are defined in the usual
way as

∆t = tn+1 − tn, ∆ε = εn+1 − εn. (11.70)
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Box 11.4. Fully implicit algorithm for numerical integration of general viscoplastic
constitutive equations.

Given the strain and time increment, ∆ε and ∆t, over [tn, tn+1] and the state variables at tn,
compute the updated state by solving the nonlinear system of equations


εe

n+1 − εe
n − ∆ε + ∆t G(σn+1, An+1)

αn+1 − αn − ∆t J(σn+1, An+1)


 =




0

0




for εe
n+1 and αn+1, with

σn+1 = ρ̄
∂ψ

∂εe

∣∣∣∣
n+1

, An+1 = ρ̄
∂ψ

∂α

∣∣∣∣
n+1

Models with a yield surface

Note that in the algorithm of Box 11.4 no assumption is made on the existence of an
elastic domain. The algorithm is valid for models with or without a yield surface. If a yield
surface is present, however, the specialisation of the algorithm of Box 11.4 takes a two-
stage format completely analogous to the elastic predictor/return-mapping procedure of the
rate-independent case. To see this, let us first consider that for a general model with a yield
surface, the constitutive functions G and J can be defined with the following form

G(σ, A) = γ̇(σ, A) N(σ, A)

J(σ, A) = γ̇(σ, A) H(σ, A),
(11.71)

where, following the terminology of the rate-independent theory, N is the flow vector and H
is the generalised hardening modulus. The scalar γ̇ is zero within the elastic domain or on the
yield surface and may only be non-zero outside the elastic domain. Clearly, evolution of εp

and α may only occur here at states with Φ(σ, A) > 0, i.e. states lying neither in the elastic
domain nor on the yield surface. Then, as in the rate-independent case, it makes sense to first
compute an elastic trial state by assuming that the material behaviour is purely elastic within
the interval [tn, tn+1]. If the trial state is within the elastic domain or on the yield surface,
then no viscoplastic flow takes place within the considered time step and the trial state is the
actual state at the end of the step. Otherwise, the evolution of εp and α is computed by means
of the standard backward Euler method. The resulting algorithm, which we shall refer to as
the elastic predictor/viscoplastic corrector or elastic predictor/viscoplastic return mapping
algorithm, is listed in Box 11.5.

Remark 11.3. The viscoplastic return mapping differs from its elastoplastic (rate-
independent) counterpart (refer to Box 7.1, page 199) in that, here, the updated stress state at
tn+1 generally lies on the outside of the yield surface, i.e.

Φ(σn+1, An+1) > 0.

This is in contrast with the rate-independent case in which the consistency equation, Φn+1 =
0, forces the updated state to be on the yield surface when there is plastic flow over
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Box 11.5. Fully implicit elastic predictor/viscoplastic return-mapping algorithm
for numerical integration of general viscoplastic constitutive equations with a yield
surface over a generic time interval [tn, tn+1] with ∆t = tn+1 − tn.

(i) Elastic predictor. Given ∆ε and the state variables at tn, evaluate the elastic trial state

εe trial
n+1 = εe

n + ∆ε

αtrial
n+1 = αn

σtrial
n+1 = ρ̄

∂ψ

∂εe

∣∣∣∣
trial

n+1

, Atrial
n+1 = ρ̄

∂ψ

∂α

∣∣∣∣
trial

n+1

(ii) Check for viscoplastic flow

IF Φ(σtrial
n+1, A

trial
n+1) ≤ 0

THEN set (·)n+1 = (·)trialn+1 and EXIT

(iii) Viscoplastic return mapping. Solve the system


εe
n+1 − εe trial

n+1 + ∆γ N(σn+1, An+1)

αn+1 − αtrial
n+1 − ∆γ H(σn+1, An+1)


 =




0

0




for εe
n+1, and αn+1 with

∆γ = ∆γ(σn+1, An+1) = ∆t γ̇(σn+1, An+1)

and

σn+1 = ρ̄
∂ψ

∂εe

∣∣∣∣
n+1

, An+1 = ρ̄
∂ψ

∂α

∣∣∣∣
n+1

(iv) EXIT

the considered interval. Nevertheless, the terminology viscoplastic return mapping remains
justifiable in the present case since, upon application of the procedure, the updated stress is
obtained by moving (or returning) the trial stress towards the yield surface.

11.5.2. ALTERNATIVE EULER-BASED ALGORITHMS

Similarly to the rate-independent case (refer to Section 7.2.7, page 201), different numerical
integration algorithms can be employed in the stress updating procedure. In what follows we
list the basic equations of the generalised trapezoidal and midpoint algorithms. For further
details on alternative integration algorithms we refer to Cormeau (1975), Zienkiewicz and
Cormeau (1974), Hughes and Taylor (1978), Marques and Owen (1983), Peirce et al. (1984)
and Kojić and Bathe (1987).



458 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APPLICATIONS

The generalised trapezoidal algorithm

Here, the backward Euler discrete equations of Box 11.4 are replaced with the following
system

εe
n+1 = εe

n + ∆ε − ∆t [(1 − θ) Gn + θ Gn+1]

αn+1 = αn + ∆t [(1 − θ) Jn + θ Jn+1],
(11.72)

where θ is a prescribed parameter
0 ≤ θ ≤ 1. (11.73)

For the choice θ = 1, the implicit algorithm of Box 11.4 is recovered and θ = 0 corresponds
to the explicit algorithm.

The generalised midpoint algorithm

For the generalised midpoint rule, the discrete system of equations reads

εe
n+1 = εe

n + ∆ε − ∆t Gn+θ

αn+1 = αn + ∆t Jn+θ,
(11.74)

where the prescribed parameter, θ, also lies within the interval [0, 1] and

Gn+θ = G((1 − θ)σn+1 + θ σn, (1 − θ)An + θ An+1)

Jn+θ = J((1 − θ)σn+1 + θ σn, (1 − θ)An + θ An+1).
(11.75)

Again, for θ = 1, the implicit algorithm of Box 11.4 is recovered and θ = 0 defines the explicit
algorithm.

11.5.3. GENERAL CONSISTENT TANGENT OPERATOR

To complete the requirements for the implementation of the model within an implicit finite
element environment, the tangent modulus consistent with the general algorithm is needed.
Let us then consider the algorithm of Box 11.4. Given all variables of the problem at tn and
a prescribed time increment ∆t, the task here is to find the exact tangent operator

D ≡ dσn+1

dεn+1
=

dσn+1

d∆ε
, (11.76)

consistent with the stress updating procedure defined by the backward Euler algorithm of
Box 11.4.

Analogously to the general procedure for the rate-independent case (refer to Section 7.4.4,
from page 238), we start by linearising the system of time-discrete equations of Box 11.4.
The linearised system reads


dεe + ∆t

∂G

∂σ
: dσ + ∆t

∂G

∂A
∗ dA

dα − ∆t
∂J

∂σ
∗ dσ − ∆t

∂J

∂A
∗ dA


=




d∆ε

0


 , (11.77)
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where the symbol * denotes the product of the appropriate type and the subscripts n + 1
have been omitted for notational convenience. With the introduction of the differential
relations (7.129) (page 239), the linearised system is equivalently written as




C + ∆t
∂G

∂σ
B + ∆t

∂G

∂A

A − ∆t
∂J

∂σ
J − ∆t

∂J

∂A






dσ

dA


=




d∆ε

0


 . (11.78)

By inverting the linearised system above, we finally obtain a tangent relation which can be
written symbolically as 


dσ

dA


=




D11 D12

D21 D22






d∆ε

0


, (11.79)

where Dij are tensors of appropriate order resulting from the inversion of (11.78). The
consistent tangent operator we are looking for is the fourth-order tensor

D ≡ dσn+1

d∆ε
= D11. (11.80)

Models with a yield surface

For models with a yield surface, the tangent modulus is elastic if the state is within the elastic
domain; that is, as in rate-independent plasticity, when Φ(σn+1, An+1) ≤ 0, we have

D = De = ρ̄
∂2ψ

∂εe2
. (11.81)

Under viscoplastic flow, i.e. when Φ(σn+1, An+1) > 0, the stress is the result from the
solution of the equation system of item (iii) of Box 11.5. In this case, the tangent operator is a
specialisation of the general tangent modulus (11.80) where the functions G and J taking part
in the symbolic matrix (11.78) are defined by (11.71). The derivatives of G then specialise as

∂G

∂σ
= γ̇

∂N

∂σ
+ N ⊗ ∂γ̇

∂σ

∂G

∂A
= γ̇

∂N

∂A
+ N ∗ ∂γ̇

∂A
.

(11.82)

Similarly, the derivatives of J specialise as

∂J

∂σ
= γ̇

∂H

∂σ
+ H ∗ ∂γ̇

∂σ

∂J

∂A
= γ̇

∂H

∂A
+ H ∗ ∂γ̇

∂A
.

(11.83)
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11.6. Application: computational implementation of a von Mises-based
model

To illustrate the application of the above numerical framework, this section describes in detail
the basic ingredients of the computational implementation of the von Mises-based model
with isotropic strain hardening given in Box 11.2. In addition to the detailed description of
the associated integration algorithm and consistent tangent operator, we present an accuracy
analysis of the algorithm based on iso-error maps. We remark that the procedures presented
here are not incorporated in the standard version of program HYPLAS that accompanies this
book.

11.6.1. INTEGRATION ALGORITHM

The integration algorithm described here is a specialisation of the generic algorithm described
in Section 11.5 to the model whose constitutive equations are summarised in Box 11.2. The
algorithm comprises the standard elastic predictor and the viscoplastic return mapping which,
for the present model, has the following format.

1. Elastic predictor. The material is assumed to behave purely elastically within the time
interval [tn, tn+1]. The elastic trial state is then computed as

εe trial = εe
n + ∆ε

εp trial = εp
n

ε̄p trial = ε̄p
n

σtrial = De : εe trial.

(11.84)

If Φ(σtrial, σy(ε̄p trial)) ≤ 0, then the process is indeed elastic within the interval and
the variables at tn+1 are assigned the values of the trial variables. Otherwise, we apply
the viscoplastic return-mapping algorithm described in the following.

2. Viscoplastic return mapping. At this stage, we solve the system of discretised equations
of item (iii) of Box 11.5 which, for the present model, by taking the linear elastic law
into consideration, are specialised as

σn+1 = σtrial − ∆γ De :
∂Φ
∂σ

∣∣∣∣
n+1

ε̄p
n+1 = ε̄p

n + ∆γ,

(11.85)

where the incremental multiplier, ∆γ, is given by

∆γ =
∆t

µ

[(
q(σn+1)
σy(ε̄p

n+1)

)1/ε

− 1
]
, (11.86)

with ∆t denoting the time increment within the considered interval. After solv-
ing (11.85), we can update

εp
n+1 = εp

n + ∆γ
∂Φ
∂σ

∣∣∣∣
n+1

, εe
n+1 = εe trial − ∆γ

∂Φ
∂σ

∣∣∣∣
n+1

. (11.87)
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Single-equation corrector

The viscoplastic corrector can be more efficiently implemented by reducing (11.85) to a sin-
gle scalar equation. The situation here is completely analogous to that of the implementation
of the elastoplastic (rate-independent) von Mises model described in Section 7.3.2 (page 217).
For convenience, the steps leading to the system reduction are repeated here. Firstly, we
observe that the plastic flow vector

∂Φ
∂σ

=

√
3
2

s

‖s‖ (11.88)

is deviatoric so that the hydrostatic stress is independent of the viscoplastic flow. The stress
update equation (11.85)1 can then be split as

sn+1 = strial − ∆γ 2G

√
3
2

sn+1

‖sn+1‖
pn+1 = ptrial.

(11.89)

Further, simple inspection of (11.89)1 shows that sn+1 is a scalar multiple of strial so that,
trivially, we have the identity

sn+1

‖sn+1‖
=

strial

‖strial‖ , (11.90)

which allows us to rewrite (11.89)1 as

sn+1 =
(

1 −
√

3
2

∆γ 2G

‖strial‖

)
strial =

(
1 − ∆γ 3G

qtrial

)
strial (11.91)

where qtrial is the elastic trial von Mises equivalent stress. Application of the definition of the
von Mises equivalent stress to the above equation gives the update formula

qn+1 = qtrial − 3G ∆γ. (11.92)

Finally, with the substitution of the above formula together with (11.85)2 into (11.86) we
obtain the following scalar algebraic equation for the multiplier ∆γ

∆γ − ∆t

µ

[(
qtrial − 3G ∆γ

σy(ε̄p
n + ∆γ)

)1/ε

− 1
]

= 0, (11.93)

or, equivalently, after a straightforward rearrangement,

(qtrial − 3G ∆γ)
(

∆t

µ ∆γ + ∆t

)ε

− σy(ε̄p
n + ∆γ) = 0. (11.94)

The single-equation viscoplastic corrector comprises the solution of (11.93) or (11.94) for the
unknown ∆γ followed by the straightforward update of σ, ε̄p, εp, εe according to the relevant
formulae. The solution of the equation for ∆γ is, as usual, undertaken by the Newton–
Raphson iterative scheme. The overall algorithm is summarised in Box 11.6 in pseudo-code
format.
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Box 11.6. Integration algorithm for von Mises-type viscoplastic model (over a
generic time interval [tn, tn+1] with ∆t = tn+1 − tn).

(i) Elastic predictor. Given ∆ε, and the state variables at tn, evaluate the elastic trial state

εe trial := εe
n + ∆ε

ε̄p trial
n+1 := ε̄p

n

ptrial
n+1 := K εe trial

v n+1; strial := 2G εe trial
d n+1

qtrial
n+1 :=

√
3
2
‖strial

n+1‖

(ii) Check for viscoplastic flow

IF qtrial
n+1 − σy(ε̄p trial

n+1 ) ≤ 0 (elastic step)

THEN set (·)n+1 := (·)trialn+1 and EXIT

(iii) Viscoplastic flow. Solve the return-mapping equation

R(∆γ) ≡ (qtrial
n+1 − 3G ∆γ)

(
∆t

µ ∆γ + ∆t

)ε

− σy(ε̄p
n + ∆γ) = 0

for ∆γ using the Newton–Raphson scheme. Then update

pn+1 := ptrial
n+1; sn+1 :=

(
1 − ∆γ 3G

qtrial
n+1

)
strial

n+1

σn+1 := sn+1 + pn+1 I

εe
n+1 :=

1

2G
sn+1 +

1

3
εe trial
v n+1 I

ε̄p
n+1 := ε̄p

n + ∆γ

(iv) EXIT

Remark 11.4 (Rate-independent limit). Note that, as expected, equation (11.94) rigorously
recovers its elastoplastic (rate-independent) counterpart (7.91) (refer to page 219) when µ →
0 (no viscosity), ε → 0 (no rate-sensitivity) or ∆t →∞ (infinitely slow straining). Clearly, in
such cases, the algorithm of Box 11.6 reproduces the rate-independent elastoplastic numerical
solution.

Remark 11.5 (Computational implementation aspects). In the computer implementation
of the model (as shown in Box 11.6), it is more convenient to solve (11.94) rather than (11.93)
in the viscoplastic corrector stage of the algorithm. The reason for this lies in the fact that, for
low rate-sensitivity, i.e. small values of ε, the Newton–Raphson scheme for solution of (11.93)
becomes unstable as its convergence bowl is sharply reduced with decreasing ε. The reduction
of the convergence bowl stems from the fact that large exponents 1/ε can easily produce
numbers which are computationally intractable. This fact has been recognised by Perić (1993)
in the context of a more general viscoplastic algorithm. In equation (11.94), on the other hand,
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the term to the power ε on the left-hand side can only assume values within the interval [0, 1]
and causes no numerical problems within practical ranges of material constants.

Remark 11.6 (Solution existence and uniqueness). Within a viscoplastic step, we have

qtrial > σy(ε̄p trial) = σy(ε̄p
n).

Let R(∆γ) be the function defined by the right-hand side of (11.94). The above inequality
clearly implies that R(0) > 0. In addition, taking into account the strict positiveness of the
hardening function σy , we can easily verify that R(qtrial/3G) < 0. The continuity of R then
implies that (11.94) has a root within the interval (0, qtrial/3G). Let us now consider the
derivative of R,

R′(∆γ) = −
(

3G + εµ
qtrial − 3G∆γ

µ ∆γ + ∆t

)(
∆t

µ ∆γ + ∆t

)ε

− H(ε̄p
n + ∆γ),

where H is the derivative of the isotropic hardening function σy . Upon simple inspection, we
can easily establish that the derivative R′ is strictly negative for ∆γ ∈ (0, qtrial/3G) if the
viscoplastic model is non-softening, i.e. if H is non-negative for any value of accumulated
plastic strain. The strict negativeness of R′ in conjunction with the existence of a root for R
established in the above implies that the root of R (the solution of the viscoplastic corrector
equation) within the interval (0, qtrial/3G) is unique for non-softening materials.

11.6.2. ISO-ERROR MAPS

To illustrate the accuracy of the above integration algorithm in practical situations, this
section presents some iso-error maps, produced with material constants covering a range
of high rate-sensitivity to rate-independence. The material is assumed perfectly viscoplastic
(no hardening). The maps have been generated in the standard fashion as described in
Section 7.2.10 (refer to Figure 7.7, page 215). Using the three-dimensional implementation
of the model, we start from a stress point at time tn, with σn lying on the yield surface, and
apply a sequence of strain increments (at constant strain rate within the interval [tn, tn+1]),
corresponding to linear combinations of trial stress increments in the direction normal and
tangential (directions of the unit tensors N and T of Figure 7.7, respectively) to the von Mises
circle in the deviatoric plane. Figures 11.5 and 11.6 show iso-error maps obtained at low and
high strain rates with the non-dimensional rate

µ ‖ε̇‖

set respectively to 1 and 1000. For each non-dimensional rate, three values of rate-sensitivity
parameter, ε, have been used: 100, 10−1 and 0. Recall that for ε = 0 the algorithm reproduces
the rate-independent solution. The resulting map in this case is obviously identical to the
rate-independent map of Figure 7.7(b) and is shown here only to emphasise the effect of
rate-dependence on the integration error. The main conclusion drawn from the iso-error
maps is that, in general, increasing (decreasing) rate-sensitivity and/or increasing (decreasing)
strain rates tend to produce decreasing (increasing) integration errors. The largest errors are
expected in the rate-independent limit.
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Figure 11.5. Iso-error maps with µ ‖ε̇‖ = 1; (a) ε = 100; (b) ε = 10−1; (c) ε = 0 (rate-independent).

11.6.3. CONSISTENT TANGENT OPERATOR

The consistent tangent operator here is a particular case of the general tangent operator
derived in Section 11.5.3. Clearly, when the stress state lies within the elastic domain and no
viscoplastic flow is possible, the tangent operator is the elastic tangent, De. Under viscoplastic
flow, the tangent operator which (as in the rate-independent case) will be denoted Dep, is
derived by consistently linearising the viscoplastic return-mapping algorithm referred to in
item (iii) of Box 11.6. Its closed-form expression can be obtained by following the same steps
of the derivation of the elastoplastic (rate-independent) tangent presented in Section 7.4.2
(from page 232). The incremental constitutive function for the stress tensor in the present
case has identical format to that of the rate-independent implementation given by (7.93)
– which reduces to (7.113) under plastic flow – but the incremental plastic multiplier ∆γ
here is the solution of viscoplastic return-mapping equation (11.94). Thus, to obtain the
viscoplastic consistent tangent, we simply replace the derivative of the incremental plastic
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Figure 11.6. Iso-error maps with µ ‖ε̇‖ = 103; (a) ε = 100; (b) ε = 10−1; (c) ε = 0 (rate-independent).

multiplier (7.118) with the expression

∂∆γ

∂εe trial
n+1

=
2G
√
3
2

3G +
(

∆t
µ∆γ+∆t

)−ε
H + εµ qn+1

µ∆γ+∆t

N̄ n+1, (11.95)

which is consistent with (11.94). Analogously to the elastoplastic case, this expression is
obtained by taking the differential of the viscoplastic corrector equation (11.94), having ∆γ

and qtrialn+1 as variables, and equating it to zero. With the above differential relation, the final
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elasto-viscoplastic consistent tangent operator is obtained in closed form as

Dep = 2G

(
1 − ∆γ 3G

qtrialn+1

)
Id

+ 6G2
[

∆γ

qtrialn+1

− 1

3G +
(

∆t
µ∆γ+∆t

)−ε
H + εµ qn+1

µ∆γ+∆t

]
N̄n+1 ⊗ N̄n+1 + K I ⊗ I.

(11.96)

Note that the tangent operator is symmetric.

Remark 11.7 (Rate-independent limit). By simple inspection we find that in the limits ε →
0 (vanishing rate-sensitivity parameter), µ → 0 (vanishing viscosity) or ∆t →∞ (infinitely
slow straining), expression (11.96) rigorously recovers the elastoplastic consistent tangent
operator of the isotropically hardening rate-independent von Mises model with implicit return
mapping given by expression (7.120).

11.6.4. PERZYNA-TYPE MODEL IMPLEMENTATION

The implementation of the von Mises-based model with Perzyna’s viscoplastic law (11.40)
follows exactly the same procedure as described in the above except that, consistently with
the backward Euler time discretization of (11.40), the return-mapping equation (11.94) (or
item (iii) of Box 11.6) is replaced with

qtrial − 3G ∆γ −
[
1 +
(

µ ∆γ

∆t

)ε]
σy(ε̄p

n + ∆γ) = 0. (11.97)

Here, we have assumed isotropic strain hardening. Note that, as µ →∞ (vanishing viscosity)
or ∆t →∞ (infinitely slow process) equation (11.97) reduces to that of the elastoplastic rate-
independent von Mises model with yield stress σy . For vanishing rate sensitivity parameter,
ε → 0, (11.97) reduces to a von Mises elastoplastic return-mapping equation with yield stress
2σy . This is, as one should expect, in agreement with the theoretical limits of the Perzyna
model discussed in the text immediately following equation (11.40).

Elasto-viscoplastic consistent tangent operator

The differential relation between the incremental plastic multiplier and εe trial
n+1 consistent with

the return-mapping equation (11.97) reads

∂∆γ

∂εe trial
n+1

=
2G
√
3
2

3G +
[
1 +
(

µ∆γ
∆t

)ε]
H + εµ

∆t

(
µ∆γ
∆t

)ε−1
σy

N̄n+1, (11.98)
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Figure 11.7. Double-notched specimen. Reaction–deflection diagrams: (a) ε = 100; (b) ε = 10−2.

where σy is evaluated at ε̄p
n+1 = ε̄p

n + ∆γ. This expression is the counterpart of (11.95)
for the present implementation of Perzyna’s viscoplasticity law. The corresponding elasto-
viscoplastic consistent tangent operator is obtained following the usual procedure as

Dep = 2G

(
1 − ∆γ 3G

qtrialn+1

)
Id

+ 6G2
[

∆γ

qtrialn+1

− 1

3G +
[
1 +
(

µ∆γ
∆t

)ε]
H + εµ

∆t

(
µ∆γ
∆t

)ε−1
σy

]
N̄n+1 ⊗ N̄n+1

+ K I ⊗ I. (11.99)

Its format is completely analogous to that of (11.96).

11.7. Examples

The finite element examples presented in this section illustrate applications of the compu-
tational treatment of viscoplasticity described above. The underlying viscoplastic material
model is the one shown in Box 11.2, which includes isotropic strain hardening.

11.7.1. DOUBLE-NOTCHED TENSILE SPECIMEN

The rate-independent version of this problem has been studied in Section 7.5.5 (from
page 255). The problem consists of the plane strain analysis of a deep double-notched tensile
specimen. The geometry of the specimen and the finite element mesh used are shown in
Figure 7.29 (page 256). Analogously to the prescription of edge displacement u (refer to
Figure 7.29), the simulation consists of stretching the specimen by prescribing a constant
(in time) vertical velocity v on the top nodes of the mesh. For convenience, we define the
normalised stretching rate

v∗ =
µ v

l/2
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Figure 11.8. Stretching of a perforated plate. Displacement-reaction diagrams. (a) ε = 100; (b) ε =

10−1; (c) ε = 10−2.
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and the simulation is carried out for three different values of v∗

v∗ = 10−4, 100, 104.

This choice covers very slow to very fast strain rates and is meant to demonstrate the
robustness of the integration algorithm over a wide range of strain rates. The following
material parameters are adopted

E = 206.9 GPa; ν = 0.29; σy = 0.45 GPa (constant).

The linearly hardening case listed in Figure 7.29 is not considered here. In order to show the
effect of the rate-sensitivity parameter on the behaviour of the model, two values of ε are
considered

ε = 100 and 10−2.

The results of the finite element simulations are presented in Figure 11.7 whose diagrams
show the evolution of the reaction forces on the constrained edge against the corresponding
edge deflection. As in the rate-independent case, the results are plotted in terms of the
normalised net stress and the normalised edge deflection defined in Section 7.5.5. The results
for ε = 100 and 10−2 are shown, respectively, in Figures 11.7(a) and (b). They illustrate the
expected higher reactions and limit loads for higher rates of stretching. For the lowest non-
dimensional rate of 10−4, the rate-independent solution is recovered for any rate-sensitivity
parameter. We remark that the rate-independent solution shown in the graphs for comparison
can be obtained with the present model/algorithm simply by setting ε = 0 or µ = 0.

11.7.2. PLANE STRESS: STRETCHING OF A PERFORATED PLATE

This section describes the viscoplastic version of the plane stress problem of Section 9.5.3
(from page 390). This example has been analysed by Perić (1993). Here, a plane stress
version of the numerical integration algorithm discussed in Section 11.6.1 is employed.
The plane stress implementation adopted follows the nested iteration approach described in
Section 9.2.2 (page 362) in the context of rate-independent plasticity. The problem consists
of the axial stretching at constant rate of a perforated rectangular plate whose geometry is
shown in Figure 9.7 (page 392). The mesh, boundary conditions and the material parameters
that are common to both plastic and viscoplastic models are also shown in Figure 9.7. Note
that linear strain hardening is assumed. The viscosity parameter adopted (required for the
viscoplastic model) is

µ = 500 s.

Similarly to the previous example, in order to illustrate the response predicted by the
viscoplastic model over a wide range of conditions, several simulations are carried out with
various stretching rates, with three values of rate sensitivity coefficients (ε = 1, 10−1, 10−2)
being considered. The results obtained in the simulations are shown in Figure 11.8 where
the reaction on the constrained edge of the plate is plotted against the prescribed edge
displacement for the various conditions considered. The stretching rate in the present case
is defined as

2v/l,
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where v is the stretching velocity imposed on the nodes of the upper edge. The three
graphs of Figure 11.8 show the effect of stretching rates on the response of the plate, with
higher reactions obtained at high rates and the rate-independent solution being approached
as the stretching rate vanishes. The effects of the rate sensitivity parameter are also clearly
illustrated. At higher (lower) values of ε, a greater (smaller) variation of reaction as a function
of the stretching rate is produced.



12 DAMAGE MECHANICS

INTERNAL damage can be defined as the presence and evolution of cracks and cavities
at the microscopic level which may, eventually, lead to failure – a complete loss of load-

carrying capability of the material. In many engineering applications, particularly those where
mechanical/structural components are subjected to severe service conditions, the useful life
of components is a crucial item of information which has to be carefully considered during
the design process. In such cases, the ability of the designer to predict mechanical failure
becomes an important factor. In some applications, such as in certain types of industrial
machinery, non-scheduled stops for maintenance owing to unpredicted failure may incur
serious economic consequences. In the design of manufacturing processes, such as metal-
forming operations, prediction of failure is also a crucial issue. In safety-critical applications,
frequently encountered in the aeronautical and nuclear industries, unpredicted failure may
have catastrophic effects with consequences far beyond purely economical issues.

Traditionally, the prediction of useful life/failure of materials is based on mostly empir-
ical experience accumulated over long periods of time. In some cases, failure prediction
is achieved by the systematic (and expensive) testing of real models under laboratory-
reproduced service conditions. However, with the growing knowledge of the mechanisms
of progressive internal damage that cause failure in a wide range of materials, it is becoming
possible to formulate continuum constitutive models capable of accounting for the evolution
of internal deterioration. This relatively new branch of continuum solid mechanics is known
as Continuum Damage Mechanics (CDM). This fact, allied to the fast development of
computational mechanics techniques, has made the use of computational tools to carry out
life/failure prediction a realistic alternative that can be successfully adopted in many design
and damage assessment situations.

The present chapter is devoted to computational continuum damage mechanics. Our inten-
tion here is to provide the reader with an introduction to this new and promising ramification
of computational solid mechanics that has been gaining widespread acceptance over the last
two decades. The material presented in this chapter is summarised as follows. After providing
a brief review of some basic mechanisms that characterise the presence and evolution of
damage in Section 12.1, we give in Section 12.2 a brief historical account of CDM together
with a discussion on the continuum modelling of damage phenomena. Sections 12.3, 12.4
and 12.5, describe, respectively, Lemaitre’s ductile damage model (Lemaitre, 1985b), a
simplified version of Lemaitre’s model where kinematic hardening is not considered and
Gurson’s void growth model (Gurson, 1977). In each of these sections, the computational
implementation of the corresponding constitutive models within an implicit finite element
environment is described in detail. Note that the simplified version of Lemaitre’s model
discussed in Section 12.4 is fully incorporated into program HYPLAS. Further issues, including
crack closure effects and damage anisotropy are addressed in Section 12.6.

Computational Methods for Plasticity: Theory and Applications EA de Souza Neto, D Perić and DRJ Owen
c© 2008 John Wiley & Sons, Ltd
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Figure 12.1. Ductile damage in metals. Schematic illustration.

12.1. Physical aspects of internal damage in solids

The characterisation of internal damage as well as the scale at which it occurs in common
engineering materials depend crucially upon the specific type of material considered. In
addition, for the same material, damage evolution may take place triggered by very different
physical mechanisms which depend fundamentally on the type, rate of loading, temperature
as well as environmental factors such as exposure to corrosive substances or radiation.
Therefore, rather than the material alone, the material-process-environment triad must be
considered in the study of internal damage. To illustrate the diversity of phenomena that may
be involved in the process of internal degradation of solids, some basic physical mechanisms
underlying damage evolution in metals and rubbery polymers are outlined below.

12.1.1. METALS

In metals, the primary mechanisms that characterise the phenomenon of mechanical degra-
dation may be divided into two distinct classes: brittle and ductile damage. Brittle damaging
occurs mainly in the form of cleavage of crystallographic planes in the presence of negligible
inelastic deformations. This behaviour is observed for many polycrystalline metals, usually at
low temperatures. At high temperatures, brittle damage can also be observed associated with
creep processes. In this case, the decohesion of interatomic bonds is concentrated at grain
boundaries. At low stresses they are accompanied by relatively small strains. Ductile damage,
on the other hand, is normally associated with the presence of large plastic deformations in
the neighbourhood of crystalline defects. The decohesion of interatomic bonds is initiated at
the boundary interface of inclusions, precipitates and particles of alloy elements leading to the
formation of microscopic cracks and cavities. Further evolution of local plastic deformation
may cause the cavities to coalesce, resulting in final rupture. This mechanism is schematically
illustrated in Figure 12.1. For most metallic materials, the damage behaviour is a combination
of brittle and ductile response and the contribution of each mode is, to a significant extent,
dependent on the temperature, loading rate, etc.

Another important mode of material deterioration in metals is fatigue damage. It is
normally observed in mechanical components subjected to a large number of load and/or
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Figure 12.2. Damage in filled rubbery polymers. Schematic representation.

temperature cycles. Although fatigue damage occurs at overall stress levels below the
macroscopic plastic yield limit, the nucleation of microcracks is attributed to the accumu-
lation of dislocations observed in connection with cyclic plastic deformation due to stress
concentration near microscopic defects. A large number of complex interactive physical
mechanisms take place from the nucleation of cracks to the complete failure of the material,
and the understanding of fatigue degradation processes in metals remains a challenging issue
in the field of materials science. Some of the most important mechanisms of material damage
are described by Engel and Klingele (1981).

12.1.2. RUBBERY POLYMERS

Rubbery polymers are widely employed in engineering applications. Essentially, these
materials are made of long cross-linked molecular chains which differ radically from the
structure of crystalline metals (refer to Arridge (1985), for further details). Although rubbery
polymers exhibit a behaviour which, under a variety of circumstances, may be regarded as
purely elastic, damaging does take place due to straining and/or thermal activation. The
internal degradation in this case is mainly characterised by the rupture of molecular bonds
concentrated in regions containing impurities and defects. In general, the damage response of
such materials is predominantly brittle (in the sense that permanent deformations are small).

Filled rubbers are particularly susceptible to internal damaging. Those materials are
obtained by addition of a filler in order to enhance the strength properties of the original
rubber. In this case, even at very small overall straining, damage can occur in the form
of progressive breakage of shorter polymer chains attached between filler particles. This
phenomenon, as described by Bueche (1960), is schematically illustrated in Figure 12.2.

12.2. Continuum damage mechanics

Since the pioneering work by Kachanov (1958), a considerable body of the literature on
applied mechanics has been devoted to the formulation of constitutive models to describe
internal degradation of solids within the framework of continuum mechanics. After over
two decades of uninterrupted development, significant progress has been achieved and such
theories have merged into what is currently known as Continuum Damage Mechanics (Kra-
jčinović, 1996; Lemaitre and Chaboche, 1990). The concepts underlying the development of
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CDM models along with a brief historical review of this new branch of continuum mechanics
are presented below.

In the previous section, some basic microscopic mechanisms associated with internal
damage evolution in solids have been reviewed. It is clear that the underlying phenomena
which characterise damage are essentially different from those characterising deformation.
While damage manifests itself in the form of the irreversible rupture of atomic bonds, defor-
mation can be associated with reversible variations of interatomic spacing (in purely elastic
processes) and movement and accumulation of dislocations (in permanent deformations of
metals). Therefore, it should be expected that in order to describe the internal degradation of
solids within the framework of the continuum mechanics theory, new variables intrinsically
connected with the internal damage process will have to be introduced in addition to the
standard variables (such as the strain tensor, plastic strain, etc.) employed in the description
of deformation. In this context, we shall refer to Continuum Damage Mechanics Model as any
continuum constitutive model which features special internal variables representing, directly
or indirectly, the density and/or distribution of the microscopic defects that characterise
damage.

12.2.1. ORIGINAL DEVELOPMENT: CREEP-DAMAGE

The first continuum damage mechanics model was proposed by Kachanov (1958). Without a
clear physical meaning for damage, Kachanov introduced a scalar internal variable to model
the creep failure of metals under uniaxial loads. A physical significance for the damage
variable was given later by Rabotnov (1963) who proposed the reduction of the cross-
sectional area due to microcracking as a suitable measure of the state of internal damage.
In this context, denoting respectively by A and A0 the effective load bearing areas of the
virgin and damaged materials, the damage variable D was introduced as

D =
A − A0

A
, (12.1)

with D = 0 corresponding to the virgin material and D = 1 representing a total loss of load-
bearing capacity.† In order to describe the strain rate increase which characterises tertiary
creep, Kachanov replaced the observed uniaxial stress σ with the effective stress

σeff =
σ

1 − D
(12.2)

in the standard Norton’s Law for creep. In this case, the uniaxial constitutive equation (11.44)
(page 449) for the plastic strain rate is replaced with

ε̇p =
( |σ|

λ (1 − D)

)N

sign(σ), (12.3)

so that the phenomenon of damaging (increase in D) may produce the marked acceleration of
the plastic strain rate observed during tertiary creep (refer to Figure 11.1(b) and the discussion
in Section 11.1).

†Kachanov in fact used the material continuity or integrity, ω = 1 − D, as the variable associated with the
internal deterioration process.
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Since Kachanov–Rabotnov’s original developments, it did not take long before the concept
of internal damage variable was generalised to three-dimensional situations by a number
of authors. Leckie and Hayhurst (1974) exploited the idea of the effective load-bearing
area reduction as a scalar measure of material deterioration to define a model for creep-
rupture under multiaxial stresses. The theories derived later by Chaboche (1978, 1981,
1984) and Murakami and Ohno (1981) deserve special mention. Chaboche proposed a
phenomenological theory for creep-damage based on rigorous thermodynamic foundations,
in which, as a consequence of the hypothesis of strain equivalence, the damage variable
appears as a fourth-order non-symmetric tensor in the most general anisotropic case. In the
theory derived by Murakami and Ohno, the anisotropic damage variable is represented by a
second-rank symmetric tensor. In this case, the definition of the damage variable follows from
the extension of the effective stress concept to three dimensions by means of the hypothesis of
the existence of a mechanically equivalent fictitious undamaged configuration. Murakami’s
fictitious undamaged configuration concept was later extended to describe general anisotropic
states of internal damage in solids with particular reference to the analysis of elastic-brittle
materials (Murakami, 1988). Still within the context of creep-rupture, Saanouni et al. (1989)
used a non-local formulation to predict the nucleation and growth of cracks.

12.2.2. OTHER THEORIES

Despite its origin in the description of creep rupture, Continuum Damage Mechanics has
been shown to provide an effective tool to describe the phenomenon of internal degradation
in other areas of solid mechanics.

Within the theory of elastoplasticity, Gurson (1977) proposed a model for ductile damage
where the (scalar) damage variable is obtained from the consideration of microscopic
spherical voids embedded in an elastoplastic matrix. Gurson’s void growth theory has been
shown to be particularly suitable for the representation of the behaviour of porous metals.
A scalar damage variable was also considered by Lemaitre (1983) in the definition of a
purely phenomenological model for ductile isotropic damage in metals. By appealing to the
hypothesis of strain equivalence, which states that ‘the deformation behaviour of the damaged
material is represented by the constitutive laws of the virgin material with the true stress
replaced by the effective stress’, this author postulates the following elastic constitutive law
for a damaged material:

σeff = E0 ε, (12.4)

or, equivalently,
σ = E ε, (12.5)

where E0 and
E = (1 − D)E0 (12.6)

are the Young’s moduli of the virgin (undamaged) and damaged materials, respectively. As
a consequence, the standard definition of damage in terms of reduction of the (neither well-
defined nor easily measurable) load-carrying area is replaced in Lemaitre’s model by the
reduction of the Young’s modulus in the ideally isotropic case. The damage variable (12.1) is
then redefined as

D =
E − E0

E
. (12.7)
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This theory was further elaborated on by Lemaitre (1985a,b) and ageing effects were later
incorporated by Marquis and Lemaitre (1988). More recently, the original isotropic model
has been extended by Lemaitre et al. (2000) to account for the anisotropy of damage as
well as for partial closure of microcracks under compressive stresses. The damage variable
in this case is a second-order tensor whose evolution is linked to the principal directions of
the plastic strain rate. Based on the concept of energy equivalence (as opposed to Lemaitre’s
strain equivalence) another model for elastoplastic damage worth mentioning was proposed
by Cordebois and Sidoroff (1982). The damage variable in this case takes the form of a
second-order tensor under general anisotropy. Also within the theory of elastoplasticity, Simo
and Ju (1987) proposed a framework for the development of (generally anisotropic) strain-
and stress-based damage models. In this case, Lemaitre’s hypothesis of strain equivalence and
its dual hypothesis of stress equivalence are used, respectively, in the formulation of models in
stress and strain spaces. Application of the proposed framework was made in the description
of brittle damage in concrete. The more recent developments by Armero and Oller (2000)
are also worth mentioning. These authors propose a framework whereby the strain tensor is
decomposed additively into elastic, plastic and damage parts. Damage component of ε in this
case is then split as a sum of individual contributions from various damage mechanisms.

A somewhat different approach was followed by Krajčinović and Fonseka (1981) (see also
Fonseka and Krajčinović 1981), in the derivation of a continuum damage theory for brittle
materials. Assuming that damage in this case is characterised mainly by planar penny-shaped
microcracks, a vectorial variable was proposed as the local measure of internal deterioration.
Later, in (Krajčinović, 1983), the model was endowed with a thermodynamical structure
and extended to account for ductile damage. Further developments were introduced by
Krajčinović (1985) with the distinction between active and passive systems of microcracks.
Other vectorial models are described by Kachanov (1977) and Mitchell (1990).

Continuum damage mechanics has also been applied to the description of fatigue pro-
cesses. Janson (1978) developed a continuum theory to model fatigue crack propagation
which showed good agreement with simple uniaxial experiments. A general formulation
incorporating low and high-cycle fatigue as well as creep-fatigue interaction at arbitrary
stress states has been presented by Lemaitre (1987). Further discussion on these models is
provided by Chaboche (1988) and Lemaitre and Chaboche (1990). In order to model the
effects of fatigue, the evolution law for the damage variable is usually formulated in terms of
a differential equation which relates damage growth with the mean stress, maximum stress
and number of cycles.

12.2.3. REMARKS ON THE NATURE OF THE DAMAGE VARIABLE

As pointed out in Section 3.5.3 (page 74), the appropriate definition of internal variables
associated with a specific phenomenon is one of the most important factors determining the
success or failure of the continuum model intended for its description.

Due to the diversity of forms in which internal damage manifests itself at the microscopic
level, the definition of adequate damage variables is certainly not an easy task. During the
development of CDM, briefly reviewed above, variables of different mathematical nature
(scalars, vectors, tensors) possessing different physical meaning (reduction of load bearing
area, loss of stiffness, distribution of voids) have been employed in the description of damage
under various circumstances.
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Physical significance

With regard to the physical significance of damage variables, it is convenient to separate the
CDM theories into two main categories: micromechanical and phenomenological models.

In micromechanical models, the damage internal variable must represent some average
of the microscopic defects that characterise the state of internal deterioration. Despite the
physical appeal of internal variables such as the reduction of load-bearing area, as suggested
by Rabotnov (1963), or distribution of microcracks, as adopted by Krajčinović (1983, 1985)
in his vectorial model, the enormous amount of bookkeeping required in conjunction with the
serious difficulties involved in the experimental identification of damaged states and evolution
laws preclude most micromechanical theories from practical applications at present. This is
especially true if the final objective is the analysis of large-scale problems for engineering
design purposes.

Phenomenological damage variables, on the other hand, can be defined on the basis of
the influence that internal degradation exerts on the macroscopic properties of the material.
In particular, properties such as the elastic moduli (Cordebois and Sidoroff, 1979; Horii and
Nemat-Nasser, 1983), yield stress, density and electric resistance can be strongly affected by
the presence of damage in the form of microscopic cavities. Needless to say, the measurement
of such quantities is, in general, far easier than the determination of the geometry or
distribution of micro-defects. Based on such concepts, the class of models presented by
Lemaitre and Chaboche (1990) rely mostly on the use of the degradation of the elastic moduli
as the macroscopic measure of damage. In its simplest form, i.e. under ideally isotropic
conditions, the damage variable is the scalar defined by expression (12.7). Under anisotropy,
the damage variable is a second-order tensor (Lemaitre et al., 2000). A similar definition
for the isotropic damage variable is employed by Cordebois and Sidoroff (1982). A model
relying on the volume changes due to void growth as a measure of internal degradation is
described by Gelin and Mrichcha (1992).

Current methods of experimental identification of damage, comprising direct as well
as indirect techniques, are described in detail by Lemaitre and Dufailly (1987). Such
techniques range from the direct observation of microscopic pictures to the measurement
of the degradation of the elastic moduli by means of ultrasonic emissions and micro-hardness
tests. The potential as well as the limitations of both micromechanical and phenomenological
approaches to damage mechanics are discussed by Basista et al. (1992). In the present state of
development of CDM it has been verified that, in general, the loss of microscopic information
resulting from a phenomenological approach is compensated for by the gain in analytical,
experimental and computational tractability of the model.

Mathematical representation

In view of the many possibilities regarding the choice of the damage internal variable,
Leckie and Onat (1981) showed that the distribution of voids on the grain boundaries can
be mathematically represented by a sequence of even rank irreducible tensors. Although this
result was obtained in the context of creep-damage theories, Onat (1986) showed that the
same phenomenological representation for the damage variable applies to general micro-
cracked continua, regardless of the underlying deformation processes.

The conclusions drawn by Onat were based on the use of averaging techniques to
transform the distribution of micro-defects into a mathematically well-defined continuum
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measure of damage. In spite of the micromechanical nature of Onat’s argument, it is desirable
that, in purely phenomenological theories, such restriction on the mathematical representation
of the internal variables related to damage be satisfied also. This is obviously an expression of
the requirement, stated in Section 3.5.3, that ‘good’ phenomenological internal variables be
somehow connected to the underlying physical mechanisms they are intended to represent.

12.3. Lemaitre’s elastoplastic damage theory

The constitutive equations for elastoplasticity coupled with damage described in this section
have been proposed by Lemaitre (1985a,b). Based on the concept of effective stress and the
hypothesis of strain equivalence, Lemaitre’s model includes evolution of internal damage
as well as nonlinear isotropic and kinematic hardening in the description of the behaviour
of ductile metals. The description of Lemaitre’s model together with the main components
necessary for its computational implementation – the integration algorithm and associated
tangent operators – are presented in the following.

12.3.1. THE MODEL

State variables

The starting point of the theory is the assumption that the free energy is a function of the set
{εe, R, X, D} of state variables, i.e.

ψ = ψ(εe, R, X, D), (12.8)

where εe is the elastic strain tensor and R and D are the scalar internal variables associated,
respectively, with isotropic hardening and isotropic damage. The second-order tensor X is
the internal variable related to kinematic hardening.

Thermodynamical aspects of isotropic and kinematic hardening and the physical meaning
of the related internal variables have been discussed in Sections 6.6.2 and 6.6.4, respectively.
The continuum damage variable D, as discussed in Section 12.2, can be interpreted as an
indirect measure of density of microvoids and microcracks (Leckie and Onat, 1981). In the
present theory, such microscopic defects are assumed isotropically distributed and, as we shall
see below, will be phenomenologically reflected in the degradation of the elastic modulus. A
critical value Dc, for the damage variable, is an experimentally determined parameter that
defines the initiation of a macrocrack (Lemaitre and Chaboche, 1990).

Under the hypothesis of decoupling between elasticity–damage and plastic hardening, the
specific free energy is assumed to be given by the sum

ψ = ψed(εe, D) + ψp(R, X), (12.9)

where ψed and ψp are, respectively, the elastic-damage and plastic contribution to the free
energy.

The elastic-damage potential: elasticity–damage coupling

In the present theory the following form is postulated for the elastic-damage potential:

ρ̄ ψed(εe, D) = 1
2 εe : (1 − D)De : εe, (12.10)
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where De is the standard isotropic elasticity tensor. For this particular potential, the elasticity
law is given by

σ = ρ̄
∂ψ

∂εe
= (1 − D)De : εe. (12.11)

Equivalently, the above damaged elastic law can be written as

σeff = De : εe, (12.12)

where σeff is the effective stress tensor that generalises the uniaxial effective stress of (12.2):

σeff ≡
1

1 − D
σ. (12.13)

The thermodynamical force conjugate to the damage internal variable is given by

Y ≡ ρ̄
∂ψ

∂D
= − 12 εe : De : εe, (12.14)

or, using the inverse of the elastic stress/strain law,

Y =
−1

2(1 − D)2
σ : [De]−1 : σ

=
−1

2E(1 − D)2
[(1 + ν) σ : σ − ν (tr σ)2]

=
−q2

2E(1 − D)2

[
2
3
(1 + ν) + 3(1 − 2ν)

(
p

q

)2]

=
−q2

6G (1 − D)2
− p2

2K (1 − D)2
, (12.15)

where E and ν are, respectively, the Young’s modulus and Poisson ratio associated with G
and K . In the above, p is the hydrostatic stress and q is the von Mises effective stress.
Commonly known as the damage energy release rate, −Y corresponds to the variation of
internal energy density due to damage growth at constant stress. It is the continuum damage
analogue of the J-integral used in fracture mechanics (Rice, 1968). The product −Y Ḋ
represents the power dissipated by the process of internal deterioration (mainly as decohesion
of interatomic bonds).

Remark 12.1. Stress–strain rule (12.11) has an important experimental consequence. With
the elasticity–damage coupling introduced via the hypothesis of strain equivalence (stated in
Section 12.2.2), the effective elastic modulus of the material, which can be measured from
experiments, is given by

Deff = (1 − D)De, (12.16)

where the damage variable assumes values within the interval [0, 1]. In the absence of damage
(D = 0), the effective modulus equals the modulus De of the virgin material. For a completely
damaged state (D = 1), Deff = 0, corresponding to a total loss of stiffness and load bearing
capacity of the material. The identification of a generic damaged state, with D ∈ [0, 1], is
then restricted to the measurement of the degradation of the current effective elastic modulus
with respect to the virgin state (D = 0) as described by Lemaitre (1985a) and Lemaitre and
Chaboche (1990).
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Isotropic and kinematic hardening forces

The plastic contribution ψp(R, X) to the free energy is chosen as a sum of an isotropic and
a kinematic hardening-related term:‡

ρ̄ ψp(R, X) = ρ̄ ψI(R) +
a

2
X : X, (12.17)

where a is a material constant and the isotropic hardening contribution, ψI(R), is an arbitrary
function of the single argument R. The thermodynamical force associated with isotropic
hardening is, then, defined as

κ ≡ ρ̄
∂ψp(R, X)

∂R
= ρ̄

∂ψI(R)
∂R

= κ(R). (12.18)

From (12.17), it follows that the thermodynamic force associated with kinematic hardening
– the back-stress tensor, β – is given by

β ≡ ρ̄
∂ψ

∂X
= a X. (12.19)

The yield function

For the yield function Φ the following von Mises-type form is adopted:

Φ(σ, κ, β, D) =

√
3 J2(s − β)
1 − D

− σy0 − κ, (12.20)

where the material parameter σy0 is the uniaxial yield stress of the virgin material.

The flow potential: internal variables evolution

The flow potential is assumed to be given by

Ψ = Φ +
b

2a
β : β +

r

(1 − D)(s + 1)

(−Y

r

)s+1

, (12.21)

where a, b, r and s are material constants. The damage evolution constants r and s can be
identified by integrating the damage evolution law for particular cases of (constant) stress
triaxiality rate as described in Section 7.4 of Lemaitre and Chaboche (1990). The constants
a and b, associated with the resulting Armstrong–Frederick kinematic hardening law (refer
to the text surrounding expression (6.223), page 188, for further details) and can be obtained
from cyclic loading experiments (Lemaitre and Chaboche, 1990). The convexity of the flow
potential Ψ with respect to the thermodynamical forces for positive constants a, b, r and s
ensures that the dissipation inequality is satisfied a priori by the present constitutive model.
The constitutive equations of Lemaitre’s ductile damage model are conveniently grouped in
Box 12.1.

‡Refer to Subsections 6.6.3 and 6.6.4, from pages 182 and 185, for the definitions of individual contributions
associated, respectively, with isotropic and kinematic hardening.
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Box 12.1. Lemaitre’s ductile damage model.

(i) Elastoplastic split of the strain tensor

ε = εe + εp

(ii) Coupled elastic-damage law

σ = (1 − D)De : εe

(iii) Yield function

Φ =

√
3 J2(s − β)

1 − D
− σy

where σy = σy(R)

(iv) Plastic flow and evolution equations for R, β and D

ε̇p = γ̇ N

Ṙ = γ̇

β̇ = γ̇ (a N − b β)

Ḋ = γ̇
1

1 − D

(−Y

r

)s

with Y given by (12.15) and the flow vector

N ≡
√

3

2

s − β
(1 − D)‖s − β‖

(v) Loading/unloading criterion

Φ ≤ 0, γ̇ ≥ 0, Φ γ̇ = 0

Damage threshold

At low values of accumulated plastic strain, ε̄p, elastic modulus degradation can be hardly
detected in experiments. Thus, we can assume that damage growth starts only at a critical
value, denoted ε̄p

D. This critical value will be called the damage threshold and can be included
in the model by redefining the damage evolution law of item (iv) of Box 12.1 as

Ḋ = γ̇
Ĥ(ε̄p − ε̄p

D)
1 − D

(−Y

r

)s

, (12.22)

where Ĥ here denotes the Heaviside step function defined by (7.94) on page 221.
If such a threshold is adopted, then the evolution law for ε̄p has to be defined for the model

to be complete. From its definition (we recall expression (6.168)) we have

˙̄εp =
√
2
3 ‖ε̇

p‖. (12.23)
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Box 12.2. Integration algorithm for Lemaitre’s ductile damage model.

(i) Elastic predictor

• Given the elastic trial strain, εe trial
n+1 := εn + ∆ε, evaluate the

elastic trial stress
σ trial

n+1 := (1 − Dn)De : εe trial
n+1

• Check plastic consistency

IF Φtrial :=
[3 J2(strial

n+1−βn)]1/2

1−Dn
− κ(Rn) − σy0 ≤ 0 THEN

Set (·)n+1 := (·)trialn+1 and RETURN

ELSE go to (ii)

(ii) Return mapping (solve the system for σn+1, βn+1, Dn+1 and ∆γ)




[3 J2(sn+1 − βn+1)]
1/2

1 − Dn+1
− κ(Rn + ∆γ) − σy0

σn+1 − (1 − Dn+1) De : (εe trial
n+1 − ∆γ Nn+1)

βn+1 − βn − ∆γ (a Nn+1 − b βn+1)

Dn+1 − Dn − 1

1 − Dn+1

(−Yn+1

r

)s

∆γ




=




0

0

0

0




where Nn+1 = 3
2

sn+1−βn+1

(1−Dn+1)
√

3 J2(sn+1−βn+1)

(iii) Update R and εe

Rn+1 := Rn + ∆γ , εe
n+1 := εe trial

n+1 − ∆γ Nn+1

(iv) EXIT

By taking the plastic flow rule for the present model into consideration, the above equation
results in the following evolution law for the accumulated plastic strain:

˙̄εp =
γ̇

1 − D
. (12.24)

12.3.2. INTEGRATION ALGORITHM

The implicit elastic predictor/return-mapping scheme for integration of Lemaitre’s coupled
elastoplastic damage equations is just another particularisation of the general algorithm
discussed in Chapter 7. Its pseudo-code is listed in Box 12.2. This particular algorithm was
originally proposed by Benallal et al. (1988) and later adopted in the finite strain context by
the authors (de Souza Neto and Perić, 1996; de Souza Neto et al., 1993, 1994a, 1998).
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Figure 12.3. Iso-error maps for Lemaitre’s damage model in plane stress. Departure points.

Including the damage threshold

Note that the damage threshold discussed above is not included in the numerical scheme
shown in Box 12.2. Its inclusion, however, is trivial. The corresponding algorithm will be as
follows. Two situations are possible:

1. If ε̄p
n < ε̄p

D, perform the calculations initially without damage evolution; that is, set the
trial updated damage

Dn+1 := Dn = 0,

and solve the equation system of item (ii) of Box 12.2 with the damage equation
(the last equation of the system) ‘switched off’. Then compute the trial updated
accumulated plastic strain

ε̄p
n+1 := ε̄p

n + ∆γ.

Now check the validity of the trial updated values:

(a) If ε̄p
n+1 < ε̄p

D, the trial values are accepted as the updated values.

(b) Otherwise, solve the return-mapping equations as in Box 12.2.

2. If ε̄p
n ≥ ε̄p

D, then the calculations follow the procedure of Box 12.2.

Finite step accuracy: iso-error maps

A study of the finite step accuracy properties of the integration algorithm of Box 12.2 has
been carried out by the authors (de Souza Neto et al., 1994a) for a plane stress-projected
implementation of Lemaitre’s model. The main conclusion is that the accuracy of the
algorithm deteriorates as damage increases. To illustrate this fact, we show here the error
maps obtained at different stages of damage evolution for two departure points on the plane
stress von Mises surface: biaxial and uniaxial stress states (Figure 12.3). The error maps are
plotted in Figure 12.4.
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Figure 12.4. Lemaitre’s model in plane stress. Iso-error maps at D = 0 and D = 43.3%. (a) Biaxial
state – point A; (b) Uniaxial state – point B. Contour intervals = 4%.

Stabilisation of the local Newton–Raphson scheme

Unfortunately, the accuracy of the algorithm is not the only property that deteriorates with
damage evolution. The convergence of the Newton–Raphson scheme used to solve the return-
mapping system of nonlinear equations (item (ii) of Box 12.2) is also affected. This issue was
briefly addressed in Remark 7.3 (page 199). As damage grows, the bowl of convergence of
the local Newton algorithm shrinks and an appropriate initial guess needs to be supplied to
ensure convergence. At highly damaged states the choice of initial guess becomes crucial.
Within the finite element context, failure of the return mapping to converge for a single
Gauss point requires that the global incrementation procedure be restarted from the beginning
of the current increment with a reduced load step. This may incur a dramatic increase in
computational costs, especially for large problems. To overcome this problem, the following
strategy was found by the authors to provide an effective solution to the problem in the present
case.

• Firstly, the Newton–Raphson scheme is applied taking σn, βn, Dn and ∆γ = 0 as
initial guesses for the system variables.

• If convergence is not achieved, the Newton–Raphson scheme is restarted. The initial
guess now is σproj, βn, Dn and ∆γ = 0. The projected stress, σproj, is obtained by
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solving, for ∆γ, the scalar equation

Φ(dev[σproj], Rn, βn, Dn) = 0,

with

dev[σproj] =
dev[σtrialn+1 − βn]

1 +
√
3
2 ∆γ

+ βn,

and corresponds to the return of σtrialn+1 to the frozen yield surface of time tn as if the
material were perfectly plastic with no damage or hardening evolution.

This procedure stabilises the local Newton–Raphson scheme and assures convergence at any
stage of damage evolution for relatively large increments of elastic trial stress.

12.3.3. THE TANGENT OPERATORS

If the outcome {σn+1, Rn+1, βn+1, Dn+1} of the integration algorithm of Box 12.2
lies inside the elastic domain (Φn+1 < 0) then the corresponding algorithmic constitutive
functional for stress,

σ̄ (Rn, βn, Dn, εe trial
n+1 ), (12.25)

is the (damaged) elastic law. The consistent tangent operator is simply given by

D = (1 − Dn+1)De. (12.26)

The above tangent also applies when the current state is on the yield surface and elastic
unloading is assumed to occur. Under plastic straining, σn+1 is delivered as the solution
of the nonlinear system of the plastic corrector stage (item (ii)). In this case, the nonlinear
system is differentiated leading to the linear form


A1,σ A1,D A1,∆γ A1,β

A2,σ A2,D A2,∆γ A2,β

A3,σ A3,D A3,∆γ A3,β

A4,σ A4,D A4,∆γ 0







dσn+1

dDn+1

d∆γ

dβn+1


=




0

(1 − Dn+1)De : dεe trial
n+1

0

0


 (12.27)

where the coefficients A1,σ, A1,D, . . . , are the partial derivatives of the left-hand sides
of item (ii) with respect to the system variables computed at the converged solution of
the nonlinear system of equations of the plastic corrector procedure. Note that the same
coefficients matrix is computed for each trial solution obtained during the Newton–Raphson
iterations of the plastic corrector stage. Inversion of (12.27) gives the tangent relations
between the system variables (σn+1, Dn+1, ∆γ and βn+1) and εe trial

n+1


dσn+1

dDn+1

d∆γ

dβn+1


=




C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44







0

(1 − Dn+1)De : dεe trial
n+1

0

0


 . (12.28)
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In particular, for the elastoplastic consistent tangent operator, we have

D ≡ dσn+1

dεe trial
n+1

= (1 − Dn+1) C12 : De. (12.29)

A closed formula for the small-strain consistent tangent operator, which does not require
inversion of the linear system, was derived by Doghri (1995) for a variant of the present
version of Lemaitre’s ductile damage model.

Remark 12.2. The above tangent operator D is generally unsymmetric.

12.4. A simplified version of Lemaitre’s model

By removing kinematic hardening from Lemaitre’s original ductile damage theory, we obtain
a simplified version of the model whose numerical implementation assumes a remarkably
simple form. The use of such a simplified theory can be justified whenever the effects of
kinematic hardening are not relevant, i.e. in any process where reverse plastic loading does
not occur or has little influence on the overall evolution of damage and plastic flow.

In this section we describe the numerical implementation of the simplified Lemaitre
model. We note that the simplified model is fully incorporated into the finite element program
HYPLAS that accompanies this book. The FORTRAN subroutines of HYPLAS associated with
this model are: SUDAMA, CTDAMA, RDDAMA, SWDAMA and ORDAMA.

Let us start by stating the constitutive equations of the model in Box 12.3. The equations
are obtained from those of the original model (Box 12.1) by simply setting β = 0 and a =
b = 0.

12.4.1. THE SINGLE-EQUATION INTEGRATION ALGORITHM

One particularly remarkable aspect of the present model is that, as in the standard von Mises
theory, the return-mapping stage of the constitutive integration algorithm can be reduced to
the solution of a single nonlinear equation (see Section 7.3.2, from page 217). This results in
an extremely fast algorithm, in sharp contrast to the original model. Note that for the original
model (refer to Box 12.2) the independent variables of the return-mapping equations are the
stress and back-stress components, the damage internal variable and the plastic multiplier,
leading to a far more costly stress updating procedure. The integration algorithm for the
simplified damage model is derived in this section. Readers who wish to skip the details
of derivation are referred directly to Box 12.4 where the algorithm is listed in the standard
pseudo-code format. The procedure is coded in subroutine SUDAMA of program HYPLAS for
the plane strain and axisymmetric cases.

The elastic trial stage of the algorithm proceeds exactly in the same way as the one for the
original model. Here, we conveniently perform the deviatoric/hydrostatic split of the stress
tensor and evaluate

strialn+1 := (1 − Dn) 2G εe trial
d n+1

ptrialn+1 := (1 − Dn) K εe trial
v n+1.

(12.30)

The elastic trial value of the yield function in the present case is then evaluated as

Φtrial := q̃trialn+1 − σy(Rn), (12.31)
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Box 12.3. Simplified Lemaitre model (isotropic hardening only).

(i) Elastoplastic split of the strain tensor

ε = εe + εp

(ii) Coupled elastic-damage law

σ = (1 − D)D : εe

(iii) Yield function

Φ =

√
3 J2(s)

1 − D
− σy

(iv) Plastic flow and evolution equations for R and D

ε̇p = γ̇ N

Ṙ = γ̇

Ḋ = γ̇
1

1 − D

(−Y

r

)s

with Y given by (12.15) and flow vector

N ≡
√

3

2

s
(1 − D)‖s‖

(v) Loading/unloading criterion

Φ ≤ 0, γ̇ ≥ 0, Φ γ̇ = 0

where we have defined the effective elastic trial von Mises equivalent stress,

q̃trialn+1 ≡
qtrialn+1

1 − Dn
=

√
3J2(strialn+1)

1 − Dn
=
√
3
2

‖strialn+1‖
1 − Dn

. (12.32)

As usual, if Φtrial ≤ 0 the process is elastic within the step and the elastic trial state coincides
with the updated state at tn+1. Otherwise, we apply the single equation return-mapping
procedure derived in the following.

The single-equation return mapping

The implicit return-mapping equations for a generic plasticity model are given by (7.25),
page 196. In the present case, with the model defined in Box 12.3, the set of return-mapping
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equations assumes the particular form

εe
n+1 = εe trial

n+1 − ∆γ

√
3
2

sn+1

(1 − Dn+1)‖sn+1‖
Rn+1 = Rn + ∆γ

Dn+1 = Dn +
∆γ

1 − Dn+1

(−Yn+1

r

)s

qn+1

1 − Dn+1
− σy(Rn+1) = 0.

(12.33)

As we shall see, by performing relatively straightforward algebraic manipulations, the above
system can be reduced to a single nonlinear algebraic equation for the plastic multiplier ∆γ.

To start with, let us consider the deviatoric/volumetric split of (12.33)1. This gives

εe
d n+1 = εe trial

d n+1 − ∆γ

√
3
2

sn+1

(1 − Dn+1)‖sn+1‖

εe
v n+1 = εe trial

v n+1.

(12.34)

Expression (12.34)2, together with the elastic law, gives the following updating relation
for the hydrostatic pressure:

pn+1 = (1 − Dn+1) p̃n+1, (12.35)

where we have defined
p̃n+1 = K εe

v n+1 = K εe trial
v n+1. (12.36)

Let us now consider the stress deviator updating formula. With the introduction of the
elastic law into (12.34)1, it follows that

sn+1 = (1 − Dn+1) 2G εe
d n+1 = (1 − Dn+1) 2G εe trial

d n+1 − 2G ∆γ

√
3
2

sn+1

‖sn+1‖
and we obtain the update equation for the stress deviator:

sn+1 = (1 − Dn+1) s̃trialn+1 − 2G ∆γ

√
3
2

sn+1

‖sn+1‖
, (12.37)

where we have defined
s̃trialn+1 ≡ 2G εe trial

d n+1. (12.38)

From (12.37), it is clear that s̃trialn+1 is proportional to sn+1 so that we may equivalently write

sn+1 = (1 − Dn+1) s̃trialn+1 − 2G ∆γ

√
3
2

s̃trialn+1

‖s̃trialn+1‖
. (12.39)

After a straightforward manipulation, the above equation yields the following simpler update
formula for sn+1:

sn+1 =
(

1 − Dn+1 −
3G ∆γ

q̃trial

)
s̃trialn+1. (12.40)

From this last expression and the definition of the von Mises equivalent stress, we obtain

qn+1 = (1 − Dn+1)q̃trial − 3G ∆γ. (12.41)
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Two-equation system.

By introducing (12.41) and (12.33)2 into (12.33)4, we obtain the consistency equation

Φ̃(∆γ, Dn+1) ≡ q̃trial − 3G ∆γ

(1 − Dn+1)
− σy(Rn + ∆γ) = 0. (12.42)

With (12.41) and (12.35) introduced into the definition of the damage energy release
rate, (12.33)3 can be written as

Dn+1 − Dn − ∆γ

1 − Dn+1

(−Y (∆γ, Dn+1)
r

)s

= 0, (12.43)

where

−Y (∆γ, Dn+1) ≡
[(1 − Dn+1)q̃trial − 3G ∆γ]2

6G (1 − Dn+1)2
+

p̃2n+1
2K

. (12.44)

In summary, the return mapping has been reduced to the set of two scalar equations (12.42)
and (12.43). The unknowns of this system of equations are ∆γ and Dn+1. After solution,
with ∆γ and Dn+1 at hand, sn+1 and pn+1 are trivially updated respectively by (12.40)
and (12.35). This two-equation return mapping was proposed by Vaz Jr. (1998) in the context
of fracture prediction for metal-cutting applications. A similar two-equation algorithm was
proposed by Steinmann et al. (1994) for a variation of the simplified Lemaitre model, where
the damage energy release rate depends only on the deviatoric part of the strain energy
function. The work of Steinmann et al. (1994) was carried out within the framework of
multiplicative finite strain plasticity. Return-mapping convergence difficulties similar to those
discussed in Section 12.3.2 have been identified by these authors. To tackle the problem, they
introduced a line-search procedure within the Newton–Raphson scheme for solution of the
return-mapping equations.

One-equation return mapping.

Further reduction in the above system, leading to a computationally more efficient single-
equation return-mapping algorithm, is possible for the present model. The single-equation
algorithm is derived as follows. Firstly, for convenience, we define the material integrity as

ω ≡ 1 − D. (12.45)

With the above definition and (12.42) we may write

ωn+1 ≡ 1 − Dn+1 = w(∆γ) ≡ 3G ∆γ

q̃trial − σy(Rn + ∆γ)
. (12.46)

In addition, by combining (12.42) and (12.44), the (updated) damage energy release rate may
be expressed as a function of ∆γ only, i.e. we may redefine

−Y (∆γ) ≡ [σy(Rn + ∆γ)]2

6G
+

p̃2n+1
2K

. (12.47)
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Finally, by combining (12.46) and (12.47) with (12.43), our return-mapping procedure is
reduced to the solution of the following scalar equation for ∆γ:

F (∆γ) ≡ ω(∆γ) − ωn +
∆γ

ω(∆γ)

(−Y (∆γ)
r

)s

= 0. (12.48)

Once a solution ∆γ has been found, we update the hardening and damage variables, the
hydrostatic stress and the stress deviator using the relevant equations listed above. The
overall algorithm has been implemented in subroutine SUDAMA (State Update procedure for
the simplified Lemaitre DAMAge model) of program HYPLAS. The corresponding pseudo-
code is conveniently listed in Box 12.4. As for the other models discussed in this book, the
return-mapping equation is solved by the standard Newton–Raphson iterative scheme.

Remark 12.3. In the Newton–Raphson scheme for the iterative solution of the return
mapping equation (12.48) we adopt the following initial guess for ∆γ:

∆γ(0) =
[q̃trial − σy(Rn)] ωn

3G
, (12.49)

which corresponds to the perfectly plastic solution for the increment with frozen (damaged)
yield surface at tn. The above initial guess (used in subroutine SUDAMA) reduces the total
number of iterations required for convergence, as compared to the usual choice ∆γ(0) = 0.
The overall integration algorithm has been found to be extremely stable. No need for line-
searches appears necessary since convergence is attained for large strain increments even at
highly damaged states with D approaching unity.

Inclusion of the damage threshold

As for the original model, we have presented the numerical integration of the simplified
version without considering the damage threshold discussed on page 481. The incorporation
of the damage threshold here follows the same steps as in the original model (refer to
page 483). Here, when damage evolution is ‘switched off’ we replace the solution of (12.48)
with the solution of the standard return-mapping equation of the isotropically hardening
von Mises model; that is, we solve (12.46) for ∆γ with w(∆γ) ≡ 1. The incorporation of
the threshold is straightforward and will be left here as an exercise for the interested reader.
Note that within the structure of program HYPLAS, a new state variable, the accumulated
plastic strain, may be conveniently stored and updated accordingly. This will affect the
corresponding material-specific state update and switching routines. Also, a new material
constant, the damage threshold ε̄p

D is required and needs to be read in the appropriate
material-specific input data reading routine.

12.4.2. THE TANGENT OPERATOR

We now turn our attention to the tangent operators required for the complete finite element
implementation of the present damage model. Because the elastic law in the present case is
that of the original Lemaitre model, the corresponding (damaged) elastic operator is given
by (12.26) and requires no further consideration. The elastoplastic consistent operator is a
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Box 12.4. Fully implicit elastic predictor/return-mapping algorithm for the simpli-
fied version of Lemaitre’s damage model.

HYPLAS procedure: SUDAMA

(i) Elastic predictor. Given ∆ε and the state variables at tn, evaluate the elastic trial state

εe trial
n+1 := εe

n + ∆ε

Rtrial
n+1 := Rn

p̃n+1 := K εe trial
v n+1; s̃trial

n+1 := 2G εe trial
d n+1

q̃trial
n+1 :=

√
3
2
‖s̃trial

n+1‖/(1 − Dn)

(ii) Check plastic admissibility

IF q̃trial
n+1 − σy(Rtrial

n+1) ≤ 0

THEN set (·)n+1 := (·)trialn+1 and EXIT

(iii) Return mapping. Solve the equation

F (∆γ) ≡ ω(∆γ) − ωn +
∆γ

ω(∆γ)

(−Y (∆γ)

r

)s

= 0

for ∆γ using the Newton–Raphson method. Start iterations with the initial
guess (12.49). The functions ω(∆γ) and Y (∆γ) are defined, respectively, by (12.46)
and (12.47). Then update

Rn+1 := Rn + ∆γ

pn+1 := ω(∆γ) p̃n+1; qn+1 := ω(∆γ) σy(Rn+1)

sn+1 :=
qn+1

q̃trial
n+1

s̃trial
n+1; σn+1 := sn+1 + pn+1 I

εe
n+1 =

1

2G
sn+1 + 1

3
εe trial

v n+1 I

(iv) EXIT

particular case of the original one given by (12.29) and could be obtained by setting β = 0 and
a = b = 0 in the procedure described in Section 12.3.3. However, due to the relative simplicity
of the one-equation return mapping, it is possible to derive a closed-form expression for
the elastoplastic tangent in a straightforward manner. The evaluation of the elastoplastic
tangent by means of its closed form is far simpler (and computationally more efficient)
than its calculation as a particular case of the original model. The closed-form expression
is implemented in program HYPLAS (subroutine CTDAMA). Its derivation follows the standard
application of consistent linearisation concepts to the one-equation return-mapping scheme
of Box 12.4 and we shall leave it as an exercise for the interested reader. The final closed
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form expression is the following:

Dep = a Id + b s̄n+1 ⊗ s̄n+1

+ c s̄n+1 ⊗ I + d I ⊗ s̄n+1 + e I ⊗ I, (12.50)

where s̄n+1 is the normalised stress deviator,

s̄n+1 =
sn+1

‖sn+1‖
, (12.51)

and the scalars a, b, c, d and e are given by

a =
2G ωn+1 σy(Rn+1)

q̃trialn+1

b = 2G

(
a1 H ωn+1 + a4 σy(Rn+1) −

ωn+1 σy(Rn+1)
q̃trialn+1

)
c = K

√
2
3 [a2 H ωn+1 + a3 σy(Rn+1)]

d = 2G
√
3
2 p̃n+1 a4

e = K (ωn+1 + a3 p̃n+1).

(12.52)

In the above, H denotes the updated slope of the hardening curve at tn+1:

H =
dσy

dR

∣∣∣∣
Rn+1

, (12.53)

and a1, a2, a3 and a4 are defined as

a1 =
1
F ′

[
ωn+1

q̃trialn+1 − σy(Rn+1)
− 1

3G

(−Yn+1

r

)s]

a2 = −s p̃n+1[q̃trialn+1 − σy(Rn+1)]
3G r K F ′

(−Yn+1

r

)s−1

a3 = a2 ω′

a4 = a1 ω′ − ωn+1

q̃trialn+1 − σy(Rn+1)
.

(12.54)

The scalar F ′ is the derivative (at the solution ∆γ) of the return-mapping residual function
defined by (12.48)

F ′ = ω′ − H

3G

(−Yn+1

r

)s

+
s H σy(Rn+1)[q̃trialn+1 − σy(Rn+1)]

9G2r

(−Yn+1

r

)s−1
(12.55)

and ω′ denotes the derivative (also at the solution ∆γ) of the function defined by (12.46)

ω′ =
3G + ωn+1H

q̃trialn+1 − σy(Rn+1)
. (12.56)
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Figure 12.5. Cylindrical notched bar. Geometry, boundary conditions and finite element mesh.

Remark 12.4. In the first equilibrium iteration of any load increment, corresponding to ∆γ =
0 and q̃trial = σy , the above expression for Dep is used in subroutine CTDAMA by setting a
small perturbation

∆γ := 10−8.

Remark 12.5. It should also be noted that as c is generally different from d in (12.50), the
elastoplastic tangent operator for the simplified model is also unsymmetric.

12.4.3. EXAMPLE. FRACTURING OF A CYLINDRICAL NOTCHED SPECIMEN

In this example, Lemaitre’s coupled plasticity-damage model is used to simulate fracture
initiation in a cylindrical pre-notched bar subjected to monotonic axial stretching. As the
loading is monotonic, kinematic hardening is not considered and the above described
implementation of the simplified version of Lemaitre’s model with one-equation return
mapping is used in the present simulation. Similar analyses have been carried out by Benallal
et al. (1991) using a coupled viscoplasticity-damage model, by Cescotto and Zhu (1995)
with an elastoplastic damage model accounting for separate deviatoric and bulk damage,
together with the distinct effects of tensile and compressive hydrostatic pressures, and by
Vaz Jr. and Owen (2001). The geometry of the problem, boundary conditions and the finite
element mesh adopted are given in Figure 12.5. The mesh discretises one symmetric quarter
of the bar with appropriate symmetry boundary conditions imposed along the relevant edges.
The loading consists of a prescribed monotonically increasing vertical displacement (with
free horizontal displacement) of the nodes on the top edge of the mesh. A total number of
399 eight-noded axisymmetric quadrilaterals (with reduced 2 × 2 Gauss integration rule) was
used in the discretisation amounting to a total of 1276 nodes. A relatively fine discretisation
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Table 12.1. Cylindrical notched bar. Lemaitre’s model parameters.

E 210 GPa
ν 0.3
Hardening curve σy(R) = 620 + 3300[1− exp(−0.4 R)] (MPa)
S 1.0
r 3.5 MPa
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Figure 12.6. Cylindrical notched bar. Lemaitre’s model uniaxial behaviour with the present material
constants.

is used in the region surrounding the smallest cross-section. The material parameters adopted
in the analysis are listed in Table 12.1. These parameters have been calibrated by Benallal
et al. (1987) from uniaxial experiments with AISI 1010 low carbon steel in a rolled state.
The corresponding uniaxial stress–strain and damage–strain curves predicted by Lemaitre’s
model with the material constants of Table 12.1 are shown in Figure 12.6.

The analysis was carried out by applying the vertical displacement of the constrained edge
incrementally. The simulation was stopped when the first Gauss point in the structure reached
a damaged state with D > 0.999. This state was attained in 62 increments with a prescribed
edge displacement u = 0.576 mm. The evolution of the damage variable field obtained in
the finite element analysis is illustrated in the contour plots shown in Figure 12.7. It can be
seen that during the early stages of the loading process, maximum damage is detected near
the root of the notch. As the specimen is progressively stretched, the maximum damage area
moves gradually towards the centre of the specimen and localises there. At the final stage
with u = 0.576 mm, damage is highly localised around the centre. It indicates, therefore,
that fracture initiation should be expected in that area. This prediction is in agreement with
experimental observations by Hancock and Mackenzie (1976) and Cescotto and Zhu (1995)
which show that for certain notched specimen configurations, fracturing initiates at the centre
of the specimen and propagates radially towards the notch. The reason for faster damaging at
the centre lies in the fact that damage growth in ductile metals is strongly dependent on the
stress triaxiality ratio

p/q,
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Figure 12.7. Cylindrical notched bar. Damage contour plots.
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Figure 12.8. Cylindrical notched bar. Damage variable evolution at the centre of the specimen.

which is highest at the centre of the specimen. A marked decrease in ductility occurs as
the triaxiality ratio increases. This phenomenon is captured by Lemaitre’s ductile damage
model. The evolution of the damage variable at the centre of the specimen is depicted in
Figure 12.8 where the value of D computed at that point is plotted against the prescribed
edge deflection. The corresponding reaction forces on the constrained edge of the specimen
are shown in Figure 12.9. The diamond marks along the reaction–deflection curve correspond
to the converged equilibrium states obtained at the end of every other step.

It is important to emphasise here that if the purely elastoplastic von Mises model (without
damage) is used and a critical value of accumulated plastic strain is taken as the fracture
criterion, crack initiation will be predicted at the notch root. It is, therefore, crucial that a
damage model taking into consideration the effect of stress triaxiality be used in analyses of
this type.

12.5. Gurson’s void growth model

The constitutive model addressed in this section was proposed by Gurson (1977) to describe
the mechanism of internal damaging in the form of void growth in porous metals. The starting
point of Gurson’s theory is the microscopic idealisation of porous metals as aggregates
containing voids of simple geometric shapes embedded in a metallic matrix whose behaviour
is governed by a rigid-plastic von Mises constitutive law. Approximate functional forms for
the corresponding macroscopic yield functions are derived based on the analysis of single
void cells and use of the upper bound plasticity theorem. In contrast to Lemaitre’s damage
model, the evolution of the damage variable of Gurson’s model is not directly associated with
a dissipative mechanism. The damage variable D in this case is the void volume fraction,
i.e. the local fraction of volume occupied by voids and its evolution law follows as a direct
consequence of mass conservation.
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Figure 12.9. Cylindrical notched bar. Reaction–deflection diagram.

12.5.1. THE MODEL

The free energy potential

In the original version of Gurson’s ductile damage model (Gurson, 1977), the matrix material
was assumed to be incompressible rigid-perfectly plastic and the resulting macroscopic model
was compressible rigid-plastic with hardening and softening associated, respectively, with
healing and growth of voids. Here, elasticity as well as the possibility of additional isotropic
hardening/softening due to straining of the matrix material are introduced and the free energy
potential is assumed to be given by

ψ = ψ(εe, R) = ψe(εe) + ψp(R). (12.57)

The elastic contribution ψe is taken as the standard quadratic strain-energy function

ρ̄ ψe(εe) = 1
2 εe : De : εe, (12.58)

giving the standard linear elastic relation

σ = ρ̄
∂ψ

∂εe
= De : εe. (12.59)

As in Lemaitre’s model, the isotropic hardening contribution is left as an arbitrary function
of a single argument, so that the thermodynamic force κ associated with R is given by

κ = ρ̄
∂ψ

∂R
= ρ̄

∂ψp

∂R
= κ(R). (12.60)

Remark 12.6. Note that, in contrast to Lemaitre’s ductile damage model, the effect of
internal damage on the elastic behaviour of the material is ignored in the present model;
that is, the elasticity tensor is not a function of the damage variable.
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The yield function and the damage variable

The pressure-sensitive yield function derived by Gurson (1977) for a void-matrix aggregate
is expressed by

Φ(σ, κ, D) ≡ J2(s) − 1
3

{
1 + D2 − 2 D cosh

[
3 p

2 (κ + σy0)

]}
(κ + σy0)

2, (12.61)

where σy0 and κ + σy0 are, respectively, the initial and current uniaxial yield stress of the
matrix material, p is the hydrostatic pressure, and D is the damage variable. The damage
variable in Gurson’s theory is the void volume fraction, i.e. the void volume per unit aggregate
volume.

Remark 12.7. As for Lemaitre’s model, the damage variable in the present case ranges
between 0 and 1, with D = 0 corresponding to the virgin (undamaged) material and D = 1
to the fully damaged state with complete loss of load-carrying capacity. Note that damage
growth induces softening, i.e. shrinkage of the yield surface defined by

Φ = 0.

For D = 0 Gurson’s yield surface reduces to that of the (pressure-insensitive) von Mises
model. In the presence of damage, i.e. for D 
= 0, the yield surface becomes pressure sensitive
with its size reducing to zero for D = 1.

Plastic flow and hardening evolution

In the present theory, the yield function is taken as the flow potential, Ψ ≡ Φ. The resulting
plastic rule then reads

ε̇p = γ̇
∂Φ
∂σ

= γ̇

{
s +

1
3

D (κ + σy0) sinh

[
3 p

2 (κ + σy0)

]
I

}
. (12.62)

The evolution law for the hardening variable follows as

Ṙ = −γ̇
∂Φ
∂κ

= γ̇

2
3

{
1 + D2 − 2 D cosh

[
3 p

2 (κ+σy0)

]
(κ + σy0)

}
+ p D sinh

[
3 p

2 (κ+σy0)

]
1 − D

. (12.63)

Remark 12.8. Recall that the volumetric plastic strain rate is given by

ε̇p
v = tr ε̇p = ε̇p : I.

From the flow rule defined by (12.62) it follows that the volumetric plastic strain rate in
Gurson’s damage model is given by

ε̇p
v = γ̇ D (κ + σy0) sinh

[
3 p

2 (κ + σy0)

]
. (12.64)

This expression implies that Gurson’s model predicts plastic compressibility in the presence
of voids with dilatant (compressive) plastic flow under tensile (compressive) hydrostatic pres-
sures. This phenomenon cannot be captured by Lemaitre’s theory in which damage evolution
can cause softening but does not change the original (pressure insensitive) von Mises shape
of the yield surface.
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Conservation of mass. Damage evolution

As the present material is assumed to be an aggregate of voids embedded in a solid matrix,
its density can be expressed as

ρ = ρm vm, (12.65)

where ρm and vm are, respectively, the density of the matrix material and the volume of
matrix material per unit aggregate volume. With the variable D defined as the voids fraction,
i.e. the volume of voids per unit aggregate volume, we have the identity

D + vm = 1, (12.66)

so that the density of the aggregate can be written as

ρ = ρm (1 − D). (12.67)

Time differentiation of this formula gives

(1 − D) ρ̇m = ρ̇ + ρm Ḋ. (12.68)

The matrix material is assumed to be plastically incompressible (von Mises type). In addition,
it is assumed that elastic volumetric strains are negligible. Under such hypotheses, mass
conservation requires that

ρ̇m = 0. (12.69)

Note that in the original derivation of Gurson’s model, the matrix material is assumed to be
rigid-plastic and the above identity holds exactly. Substitution of this equation into (12.68)
gives

Ḋ = − ρ̇

ρm
= − ρ̇

ρ
(1 − D). (12.70)

Now let us recall that the axiom of mass conservation requires that

ε̇v = − ρ̇

ρ
. (12.71)

Again, by disregarding the elastic volumetric strains, we assume

ε̇v = ε̇p
v, (12.72)

and, by combining the last three equations, we obtain the following evolution law for D:

Ḋ = (1 − D) ε̇p
v. (12.73)

Finally, in view of the constitutive equation (12.64) for the volumetric plastic flow, the
evolution law for the damage variable is obtained as

Ḋ = γ̇ (D − D2) (κ + σy0) sinh

[
3 p

2 (κ + σy0)

]
. (12.74)

The overall model is summarised in Box 12.5.
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Box 12.5. Gurson’s void growth model.

(i) Elastoplastic split of the strain tensor

ε = εe + εp

(ii) Elastic law (uncoupled from damage)

σ = De : εe

(iii) Gurson’s yield function

Φ = J2(s) − 1

3

{
1 + D2 − 2 D cosh

[
3 p

2 σy

]}
σ2

y

where σy = σy(R)

(iv) Plastic flow and evolution equations for R and D

ε̇p = γ̇

{
s +

1

3
D σy sinh

[
3 p

2 σy

]
I

}

Ṙ = γ̇

2
3

{
1 + D2 − 2 D cosh

[
3 p
2 σy

]
σy

}
+ p D sinh

[
3 p
2 σy

]
1 − D

Ḋ = γ̇ (D − D2) σy sinh

[
3 p

2 σy

]

(v) Loading/unloading criterion

Φ ≤ 0, γ̇ ≥ 0, Φ γ̇ = 0

Remark 12.9. Note from (12.74) that if the initial voids ratio is zero (D = 0), no damage
evolution will be predicted by the standard Gurson model, whatever strain history the material
might be subjected to. A non-zero initial voids ratio is required to produce damage growth.
To improve the model, a mechanism of damage nucleation, whereby voids are nucleated
depending on the strain history, should be incorporated. In this context, some nucleation laws
have been proposed by Tvergaard (1982a) and Tvergaard and Needleman (1984) whereby
voids may nucleate in the absence of damage. Further acceleration in voids growth, intended
to produce a more realistic response, can be relatively easily incorporated by introducing
a modification into Gurson’s macroscopic yield criterion as suggested by Tvergaard (1981,
1982a,b).

Remark 12.10. Again from (12.74), it follows that the voids ratio growth rate is positive
(negative) under tensile (compressive) hydrostatic stress. Positive and negative voids ratio
growth rate correspond, respectively, to damaging and healing of the material. Under cyclic
loading (in the plastic range), Gurson’s model will not predict the experimentally observed
continuous increase in damage, as the increase in voids ratio predicted in the tensile part
of the cycle is reversed by the healing process predicted over the compressive part of the
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cycle (de Souza Neto et al., 1998). This feature precludes the use of Gurson’s model for
damage prediction in situations where cyclic loads are important. On the other hand, the
healing behaviour can be useful, for instance, in the prediction of voids distribution in powder
compaction processes (Gethin et al., 1998; Ransing et al., 1998). In this case, the initial voids
ratio is relatively high and is gradually reduced by application of hydrostatic pressure under
highly confining boundary conditions. This is in sharp contrast to Lemaitre’s model where
only damaging (no healing) can be predicted.

12.5.2. INTEGRATION ALGORITHM

With the particular definition (12.62) for the plastic flow rule, if plastic yielding occurs within
the time interval of interest, the general implicit elastoplastic integration algorithm discussed
in Chapter 7 leads to the following update formulae:

εe
dn+1 = εe trial

dn+1
− ∆γ sdn+1,

εe
vn+1 = εe trial

vn+1
− ∆γ

{
Dn+1 [σy(Rn+1)] sinh

[
3 pn+1

2 σy(Rn+1)

]}
,

(12.75)

where we have performed the deviatoric/volumetric decomposition of the elastic strain. Use
of the elastic law in the above expression gives

sn+1 =
2 G

1 + ∆γ 2 G
εe trial
dn+1

,

pn+1 = κ εe trial
vn+1

− ∆γ κ

{
Dn+1 σy(Rn+1) sinh

[
3 pn+1

2 σy(Rn+1)

]}
.

(12.76)

With introduction of the above update formula for the stress deviator into definition (12.61)
of Gurson’s model yield function, the following algorithmic counterpart of Φ is obtained:

Φ̃(pn+1, Rn+1, Dn+1, ∆γ) =
(

2 G

1 + 2 G ∆γ

)2
J2(εe trial

dn+1
) − 1

3 a [σy(Rn+1)]2, (12.77)

with a defined as

a ≡ 1 + D2n+1 − 2 Dn+1 cosh
[

3 pn+1

2 σy(Rn+1)

]
.

Thus, for the present material model, the plastic corrector stage comprises the requirement
of plastic consistency by means of the algorithmic yield function above, the pressure
update (12.76)2 and the backward Euler discrete counterparts of the evolution equa-
tions (12.63) and (12.74). The resulting implicit elastic predictor/return-mapping algorithm is
listed in Box 12.6. Note that, here, a set of four coupled nonlinear equations has to be solved
in the plastic corrector phase for any stress state.

Remark 12.11. As in Lemaitre’s model, convergence difficulties have been detected in the
Newton–Raphson scheme adopted to solve the equations of the plastic corrector phase of
Box 12.6. To expand the convergence bowl of the Newton algorithm, the authors have tested
a line-search procedure (as suggested by Steinmann et al. 1994 for a variant of the present
model in the finite strain context). Some improvement was observed. Nevertheless, in some
circumstances, convergence can only be attained for relatively small strain increments.
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Box 12.6. State-update procedure for Gurson’s void growth model.

(i) Elastic predictor

– Evaluate trial elastic stress

σtrial
n+1 := De : εe trial

n+1

– Check plastic consistency

Φtrial := J2(s
trial
n+1) − 1

3

{
1 + D2

n − 2Dn cosh

[
3 ptrial

n+1

2 σy(Rn)

]}
[σy(Rn)]2

IF Φtrial ≤ 0 THEN

Set (·)n+1 = (·)trialn+1 and EXIT

ELSE go to (ii)

(ii) Plastic corrector (solve the system for the unknowns pn+1, Rn+1,
Dn+1 and ∆γ)




(
2 G

1 + 2 G ∆γ

)2

J2(εe trial
dn+1

) − 1

3
a [σy(Rn+1)]

2

pn+1 − κ εe trial
vn+1 + ∆γ κ b σy(Rn+1)

Dn+1 − Dn − ∆γ b (Dn+1 − D2
n+1) σy(Rn+1)

Rn+1 − Rn − ∆γ

1 − Dn+1

[
2

3
a σy(Rn+1) + b pn+1 Dn+1

]




=




0

0

0

0




where

a = 1 + D2
n+1 − 2Dn+1 cosh

[
3 pn+1

2 σy(Rn+1)

]
, b = sinh

[
3 pn+1

2 σy(Rn+1)

]

(iii) Update εe and σ

εe
n+1 :=

1

1 + 2G ∆γ
εe trial

dn+1 +
pn+1

κ
I

σn+1 :=
2G

1 + 2G ∆γ
εe trial

dn+1 + pn+1 I

(iv) RETURN

12.5.3. THE TANGENT OPERATOR

The elastic tangent for the present model is simply the standard linear elasticity tensor. In this
case we have

D = De. (12.78)

Under plastic loading, the elastoplastic operator is obtained by the standard linearisation
procedure. The system of equations of the plastic corrector phase is differentiated at the
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converged state resulting in the identity



A1,∆γ A1,p A1,D A1,R

A2,∆γ A2,p A2,D A2,R

A3,∆γ A3,p A3,D A3,R

A4,∆γ A4,p A4,D A4,R







d∆γ

dpn+1

dDn+1

dRn+1


=



−A1,εe trial

dn+1
: dεe trial

dn+1

−A2,εe trial
vn+1

dεe trial
vn+1

0

0


 , (12.79)

where A1,∆γ , A1,p, . . . denote the derivatives of the plastic corrector system components.
Inversion of the above expression then leads to




d∆γ

dpn+1

dDn+1

dRn+1


=



C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44






−A1,εe trial

dn+1
: dεe trial

dn+1

−A2,εe trial
vn+1

dεe trial
vn+1

0

0


 , (12.80)

which provides the tangent relations between the system variables (∆γ, p, D and R) and the
system input εe trial

n+1 . Note that, as the stress tensor is one of the system variables in Lemaitre’s
original model, the tangent operator Dep in that case is obtained directly from the inversion of
the system derivative. Here, the consistent tangent operator can be obtained by differentiating
the stress update formula of item (iii) of Box 12.6 which gives

dσn+1 =
2 G

1 + 2G ∆γ
dεe trial

dn+1
−
(

2 G

1 + 2G ∆γ

)2
d∆γ εe trial

dn+1
+ dpn+1 I. (12.81)

Then, substitution of d∆γ and dpn+1 by the relations given in (12.80) and use of the identities

A1,εe trial
dn+1

=
(

2 G

1 + 2 G ∆γ

)2
εe trial
dn+1

; A2,εe trial
vn+1

= −κ,

result, after some straightforward manipulations, in the following expression for the elasto-
plastic consistent tangent operator:

Dep =
dσn+1

dεe trial
n+1

= g Id + g2 εe trial
dn+1

⊗ [C11 g2 εe trial
dn+1

− C12 κ I ]

− I ⊗ [C21 g2 εe trial
dn+1

− C22 κ I ], (12.82)

where

g ≡ 2 G

1 + 2G ∆γ
.

Remark 12.12. It is important to note that, as in Lemaitre’s model, the resulting elastoplastic
tangent operator Dep is generally unsymmetric.
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12.6. Further issues in damage modelling

In spite of the progress achieved over the last two decades in modelling material damage,
further refinements are undoubtedly required to produce models with greater predictive
capability. Such a requirement becomes particularly apparent in situations involving complex
strain paths. Even though many models – such as the ones presented in the preceding sections
of this chapter – are able to predict damage growth with reasonable accuracy over simple
strain paths, increasing deviations from experimental observations should be expected as
strain paths become more complex. In fact, this is true not only for damage models but
for inelastic models of continua in general and, at present, it can be said that constitutive
refinement in inelasticity remains largely an open issue. To give the reader an idea of possible
improvements to the damage theories described in the above, we include in this section two
topics that have been receiving attention recently. Namely, we address briefly the issues of
crack closure effects and anisotropic damage.

12.6.1. CRACK CLOSURE EFFECTS IN DAMAGED ELASTIC MATERIALS

In the models discussed in Sections 12.3 and 12.4 the damage internal variable, D, was
defined as the degradation of the elastic modulus as a result of evolution of voids and
micro-cracks (refer to Remark 12.1, from page 479). For those models, the elastic law was
assumed to remain linear in the presence of damage with equal response in tension and
compression. However, it is frequently observed in simple uniaxial tests that the elasticity
modulus degradation due to the presence of voids and micro-cracks is much more noticeable
in tension than in compression. This is due to the fact that cracks that open in tension resulting
in loss of load-carrying area and stiffness may partially close and increase the load-bearing
area and stiffness under compression. A possible alternative to account for the effects of
partial crack closure in isotropically damaged elastic materials is the model described by
Ladèveze (1983), Ladevèze and Lemaitre (1984) and Lemaitre (1996) (anisotropic extensions
of this model are discussed by Desmorat 2000, and Lemaitre et al. 2000). The model,
described in the following, is incorporated into program HYPLAS.

Uniaxial crack closure model

Let us start by considering the uniaxial stress state case. For the standard Lemaitre model
discussed in previous sections, a material with damage state D, has an effective Young’s
modulus

E = (1 − D) E0, (12.83)

where E0 is the Young’s modulus of the virgin (undamaged) material. The uniaxial stress–
strain constitutive equation for the damaged material is given by

σ = (1 − D) E0 ε or ε =
σ

(1 − D) E0
. (12.84)

The crucial point in the definition of the crack closure model is the assumption that the
above relationship is valid only under tensile stresses (σ ≥ 0). Under compressive stresses
(σ < 0), the uniaxial stress–strain relation is assumed to take the form

σ = (1 − h D) E0 ε or ε =
σ

(1 − h D) E0
, (12.85)
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Figure 12.10. Uniaxial elastic model with damage and partial crack closure effect.

where h is an experimentally determined constant which satisfies

0 ≤ h ≤ 1. (12.86)

This constant describes the effect of partial microcrack/void closure. A value h ≈ 0.2 is
typically observed in many experiments (Lemaitre, 1996). Note that for h = 1, the behaviour
of the original damage model, without crack closure effects, is recovered, whereas the other
extreme value, h = 0, represents full crack closure with E = E0 under compression. Any
other value of h describes a partial crack closure effect. The uniaxial stress–strain diagram of
Figure 12.10 illustrates the behaviour of the model.

Tensile/compressive split of the uniaxial stress

The constitutive equation of the above uniaxial model can be more elegantly expressed by
introducing the following tensile/compressive split of the uniaxial stress:

σ = σ+ + σ−, (12.87)

where

σ+ = 〈σ〉 and σ− = −〈−σ〉, (12.88)

are, respectively, the tensile and compressive components of σ and 〈 〉 is the Macauley bracket,
that is, for any scalar, a,

〈a〉 =




a if a ≥ 0

0 if a < 0.
(12.89)
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With the above notation, the uniaxial stress–strain relation for the damaged elastic material
crack closure effect can be written simply as

ε =
1

E0

(
σ+

1 − D
+

σ−
1 − h D

)
. (12.90)

Tensile/compressive split of the stress tensor

As we have seen in the above, it is relatively easy to establish a piecewise linear damaged
elastic model capable of accounting for crack closure effects in the uniaxial case. The
extension of such a simple model to the general three-dimensional situation, however, is not
trivial. The main problem here is how to distinguish between tensile and compressive stresses
in a multiaxially stressed state. In the present model, such a distinction is made on the basis
of a tensile/compressive split of the stress tensor. To introduce this concept, let us first recall
(refer to Section 3.3.3, from page 62) that any stress tensor may be represented as a diagonal
matrix with the diagonal terms – the principal stresses – representing normal stresses along
three mutually perpendicular directions – the principal directions; that is, any stress tensor σ
can be written as

σ =
3∑

i=1

σi ei ⊗ ei, (12.91)

where σi are the principal stresses and {e1, e2, e3} is an orthonormal basis of vectors along
the principal directions. The matrix representation of σ in this basis, reads

[σ] =



σ1 0 0

0 σ2 0

0 0 σ3


 . (12.92)

The tensile/compressive split.

The tensile/compressive split of the stress tensor consists in splitting σ additively as

σ = σ+ + σ−, (12.93)

where σ+ and σ− are, respectively, the tensile and compressive components of σ defined as

σ+ =
3∑

i=1

〈σi〉 ei ⊗ ei (12.94)

and

σ− = −
3∑

i=1

〈−σi〉 ei ⊗ ei. (12.95)

The matrix representation of σ+ and σ− in principal stress basis reads

[σ+] ≡



〈σ1〉 0 0

0 〈σ2〉 0

0 0 〈σ3〉


 (12.96)
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and

[σ−] ≡−



〈−σ1〉 0 0

0 〈−σ2〉 0

0 0 〈−σ3〉


 . (12.97)

Note that, under uniaxial stresses, i.e. when only one of the principal stresses is non-zero, the
above tensile/compressive split reduces to that of expression (12.87).

The three-dimensional damaged elasticity law

The last step to complete the definition of the multidimensional damaged elastic model
with crack closure effect is to generalise the uniaxial stress–strain law (12.90) to three
dimensions. To do this, let us first recall the standard three-dimensional linear elastic stress–
strain law (12.11) (page 479) of Lemaitre’s damage model. Its inverse relation reads

ε =
1

1 − D
D−1 : σ

=
1

1 − D

[
1 + ν

2E0
σ − ν

2E0
(tr σ) I

]
. (12.98)

The three-dimensional generalisation of (12.90) is obtained by modifying the above rule with
the inclusion of the tensile/compressive split of the stress tensor as follows

ε =
1 + ν

2E0

(
σ+

1 − D
+

σ−
1 − hD

)
− ν

2E0

( 〈tr σ〉
1 − D

− 〈−tr σ〉
1 − hD

)
I. (12.99)

Under uniaxial stress, the above damaged elasticity law with crack closure effect reduces to
that of (12.90). It is important to note that the stress–strain relation (12.99) remains isotropic
(ε and σ share the same principal directions) but, differently from (12.98), is no longer linear.
More precisely, the stress–strain relation is piecewise linear with derivative discontinuities
occurring when any of the principal stresses and/or the hydrostatic pressure vanishes.

Computational implementation

Now, we turn our attention to the computational implementation of the above model within
an implicit finite element environment. As usual, the basic ingredients of the computer
implementation are: (a) the stress updating procedure which, given a strain tensor, should
compute the stress tensor that satisfies the constitutive law (12.99); and (b) the computation
of the tangent operator associated with (12.99). These will be described in the following.

At the outset, it should be noted that the stress tensor in (12.99) cannot be written explicitly
as a function of the strain tensor. Thus, given ε, the corresponding stress tensor will be
obtained as the solution of the following nonlinear tensorial equation for σ:

R(σ) ≡ ε − 1 + ν

2E0

(
σ+

1 − D
+

σ−
1 − hD

)
− ν

2E0

( 〈tr σ〉
1 − D

− 〈−tr σ〉
1 − hD

)
= 0. (12.100)

This solution can be obtained by means of the Newton–Raphson algorithm as described in
what follows. Before proceeding, however, we note that as σ+ and σ− are defined on the
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basis of principal stresses, it is convenient to rewrite (12.100) in terms of principal stresses
and strains. The approach here is analogous to that adopted in the numerical treatment of
the Tresca and Mohr–Coulomb elastoplastic models discussed in Chapter 8 and, due to the
isotropy of the stress–strain relation, incurs no loss of generality.

Array/matrix definitions

For convenience, we define the following arrays of principal stresses and strains

σ∗ ≡ [ σ1 σ2 σ3 ]T , ε∗ ≡ [ ε1 ε2 ε3 ]T , (12.101)

and the tensile/compressive split of the principal stresses

σ∗
+ ≡



〈σ1〉

〈σ2〉

〈σ3〉


 , σ∗

− ≡−



〈−σ1〉

〈−σ2〉

〈−σ3〉


. (12.102)

Further, we define the operators

PD
+ ≡ 1

1 − D



Ĥ(σ1) 0 0

0 Ĥ(σ2) 0

0 0 Ĥ(σ3)


, (12.103)

and

PD
− ≡ 1

1 − hD




H̄(σ1) 0 0

0 H̄(σ2) 0

0 0 H̄(σ3)


 (12.104)

where Ĥ is the Heaviside step function given in (7.94), page 221, and H̄ is defined such that,
for any scalar a,

H̄(a) ≡
{

0 if a > 0

1 if a ≤ 0.
(12.105)

We also define the following:

ID
+ ≡




1
1 − D

I if tr σ > 0

0 if tr σ ≤ 0
(12.106)

and

ID
− ≡




0 if tr σ > 0

1
1 − hD

I if tr σ ≤ 0,
(12.107)
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where we have used the definitions

I≡ [ 1 1 1 ]T 0≡ [ 0 0 0 ]T . (12.108)

Note that
tr σ = IT σ∗. (12.109)

The principal stress/strain-based constitutive equation

With the above notation, the three-dimensional damaged elasticity law (12.99) can be
reformulated in terms of principal stresses and strains as

ε∗ = [D∗]−1 σ∗, (12.110)

or, equivalently,
σ∗ = D∗ ε∗, (12.111)

where D∗ – a function of the principal stresses – is defined as

D∗ ≡
{

1 + ν

2E0
[ PD
+ + PD

− ] − ν

E
[(ID
+ + ID

−) IT ]
}−1

. (12.112)

At points where the stress–strain relation is differentiable, D∗ is the matrix of principal stress
derivatives

D∗ =
dσ∗

dε∗ , (12.113)

with elements

D∗
ij =

dσi

dεj
. (12.114)

The loci of the principal stress space where the tangent principal stress–principal strain
relation is discontinuous are

• the deviatoric plane, where σ1 + σ2 + σ3 = 0;

• the three planes defined respectively by σ1 = 0, σ2 = 0 and σ3 = 0.

Stress updating with the Newton–Raphson algorithm

The principal stress/strain-based analogy of nonlinear equation (12.100), which will be solved
for σ∗ in our stress-updating procedure, is given by

R(σ∗) ≡ ε∗ − [D∗(σ∗)]−1 σ∗ = 0. (12.115)

The Newton update formula for the typical iteration k, reads

σ∗
(k) := σ∗

(k−1) + D∗(σ∗
(k−1)) R(σ∗

(k−1)). (12.116)

The stress updating procedure is summarised below in Box 12.7 in pseudo-code format. The
scheme is coded in subroutine SUDMEL of program HYPLAS (not listed here) to which the
reader is referred for further details. At points where the derivative of the principal stress–
principal strain relation is discontinuous, the tangent on one side of the discontinuity is used
in the Newton–Raphson iteration (see definition of PD

+ , PD
− , ID

+ and ID
− ).
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Box 12.7. Stress-updating algorithm for damaged elastic material model with crack
closure effects.

HYPLAS procedure: SUDMEL

(i) Given ε, compute initial guess for stress, σ(0) (use damaged elastic constitutive
equation without crack closure effect)

σ(0) := (1 − D) D : ε

(ii) Spectral decomposition of ε (use routine SPDEC2) and σ(0).
Compute:

ε
∗, σ

∗
(0) and ei ⊗ ei (i = 1, 2, 3)

(iii) Solve the algebraic system

ε
∗ − [D(σ∗)]−1

σ
∗ = 0

for σ∗ = [σ1 σ2 σ3]
T using the Newton–Raphson algorithm. The Newton update

formula is given by (12.116)

(iv) Assemble updated stress tensor

σ :=

3∑
i=1

σi ei ⊗ ei

(vi) EXIT

The consistent tangent operator

The computation of the consistent tangent operator,

D ≡ dσ

dε
, (12.117)

is carried out in the present case in the same fashion as the elastoplastic tangent operator
for the Tresca and Mohr–Coulomb models thoroughly discussed in Chapter 8 (refer to
Sections 8.1.4 and 8.2.4). As for the present case, the stress-updating procedures for those
models is carried out in principal stress space. With the principal stress derivative (12.113) at
hand, the consistent tangent operator (12.117) can be computed as the derivative of a general
isotropic tensor-valued function of a single tensor as described in Sections A.3 and A.4 of
Appendix A. The tangent computation for the present model is performed in subroutine
CTDMEL of program HYPLAS (not listed here).

12.6.2. CRACK CLOSURE EFFECTS IN DAMAGE EVOLUTION

The above model describes the effect of crack closure in damaged elastic materials that
remain elastic, without evolution of damage. Crack closure effects can also have a strong
influence on damage evolution. It is a well-known fact that many materials have considerably
higher strength in compression than in tension. The consideration of such an effect may be
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crucial under complex loading conditions and is relevant to many practical applications. An
alternative to describe this phenomenon is provided by the damage evolution law proposed by
Ladevèze and Lemaitre (1984) (described by Lemaitre 1996 in more detail). Their approach
consists in modifying the damage energy release rate (12.15) of the original Lemaitre ductile
damage model by including the tensile/compressive split of the stress tensor. Thus, the
original expression (12.15) is replaced with

Y =
−1

2E(1 − D)2
[(1 + ν) σ+ : σ+ − ν 〈tr σ〉2]

− h

2E(1 − hD)2
[(1 + ν) σ− : σ− − ν 〈−tr σ〉2], (12.118)

and the elastoplastic damage evolution equation keeps the same format as in the original
model:

Ḋ = γ̇
1

1 − D

(−Y

r

)s

. (12.119)

The complete fully coupled elastoplastic model for ductile damage is obtained by considering
the above damage evolution equation together with the damaged isotropic elasticity law with
crack closure effects (discussed in the previous section) and the standard plasticity equations
of the original Lemaitre model.

Note on computer implementation

An extra degree of complexity will be introduced in the computer implementation if the fully
coupled model is adopted. A possible alternative to avoid such a complexity and have a fast
algorithm that estimates damage evolution with crack closure effects is to decouple the above
damage evolution equation from the plasticity equations. In this case, the decoupled state
update algorithm could follow the steps:

1. Given the incremental strain, ∆ε, compute the updated stress, σn+1, and the incre-
mental plastic multiplier, ∆γ, by using the conventional von Mises model (possibly
with kinematic hardening). The computer implementation of the von Mises model was
described in Chapter 7.

2. With the updated stress and incremental multiplier at hand, compute the new damage
state, Dn+1, ‘a posteriori’ by solving (for Dn+1) the backward Euler discrete version
of (12.119) which reads

Dn+1 = Dn +
∆γ

1 − Dn+1

(−Yn+1

r

)s

, (12.120)

where Yn+1 is computed according to definition (12.118) as a function of the unknown
updated damage variable, Dn+1, and the known updated stress tensor, σn+1. Clearly, the
damage variable does not affect the plasticity law in the above decoupled implementation.
Damage growth does not cause plastic softening. Thus, if the decoupled approach is adopted,
the hardening material parameters of the plasticity model have to be calibrated accordingly.
For further details on implementation refer to Pires et al. (2004).
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12.6.3. ANISOTROPIC DUCTILE DAMAGE

Another important issue in damage modelling is the anisotropy of micro-crack and void
distribution. This can be of particular importance, for instance, in situations where two
or more highly directional loads are applied sequentially. In such cases, each load will
cause micro-cracks to grow in one preferential direction, affecting the material response to
subsequent loads in different directions. Consideration of damage anisotropy can be relevant
under such conditions and, even though the usual isotropy hypothesis may offer a good first
approximation, it may lead to substantial errors in many practical applications.

Modelling anisotropic damage evolution is not an easy task. Even the experimental
characterisation of anisotropically damaged states – an essential requirement for the deter-
mination of damage evolution laws – is complex. To date, many continuum theories have
been proposed to describe anisotropic damage phenomena (Chaboche, 1984; Cordebois and
Sidoroff, 1982; Krajčinović and Fonseka, 1981; Lemaitre, 1996; Lemaitre and Chaboche,
1990; Lemaitre et al., 2000; Murakami and Ohno, 1981; Simo and Ju, 1987). Nevertheless, at
present, this issue remains largely open and at the leading edge of material modelling science.

To give the reader an idea of more advanced topics in damage mechanics, we find it
convenient to close this chapter with an outline of the anisotropic ductile damage elastoplastic
model proposed by Lemaitre and co-workers (2000). This theory is an extension of the
isotropic ductile damage model discussed in Sections 12.3 and 12.4.

The damage tensor

The scalar damage measure of the original isotropic model is replaced here with two measures
of damage:

1. a second-order symmetric tensor, D, which is associated with the variation of the
deviatoric elastic constitutive behaviour due to damage;

2. a scalar, dH , defined as
dH = η DH , (12.121)

where η is a material parameter associated with the variation of Poisson’s ratio due to
damage, and

DH ≡ 1
3 tr D. (12.122)

The second-order damage tensor, D, is the actual damage internal variable.

The orthotropic damaged elasticity law

Following the principle of strain equivalence, the damaged elasticity law for this model is
obtained by replacing the stress tensor with the effective stress in the standard linear elastic
law. The effective stress is here defined as

σeff = seff + peff I, (12.123)

where seff and peff are, respectively, the effective stress deviator and effective hydrostatic
pressure defined as

seff ≡ dev[H s H ], peff ≡
p

1 − dH
I. (12.124)
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In the above expression, H is the second-order tensor defined as

H ≡ (I − D)−
1
2 . (12.125)

The damaged elastic law is then given by

σeff = De : εe. (12.126)

In the present theory, an isotropically damaged state is characterised by

D = D I, (12.127)

and
η = 1, (12.128)

which imply
dH = D. (12.129)

Under such states, straightforward algebra shows that (12.126) reduces to the damaged elastic
law (12.11) of the original isotropic model. For a more general non-isotropic damage state D,
the linear elastic constitutive equation (12.126) is orthotropic. The directions of orthotropy
are the principal directions of the damage tensor. In an orthonormal basis aligned with its
principal directions the damage tensor is represented as

[D] =



D1 0 0

0 D2 0

0 0 D3


 . (12.130)

The eigenvalues values D1, D2 and D3 are associated to the degradation of the elasticity
modulus along the corresponding directions of orthotropy. Their experimental identification
is discussed by Lemaitre et al. (2000).

Damage evolution

To complete the definition of the model, an evolution law for the damage tensor is required.
In the present theory, the rate of damage tensor is assumed to follow the directions of plastic
straining. The evolution law for D is defined by

D =
(−Ỹ

r

)s

˙̃εp, (12.131)

where

Ỹ ≡ −q2eff
2E

[
2
3

(1 + ν) + 3(1 − 2ν)
(

peff
qeff

)2 ]
, (12.132)

with qeff defined as
qeff ≡

√
3 J2(seff). (12.133)
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The tensor ˙̃εp is the absolute plastic strain rate defined as

˙̃εp ≡
3∑

i=1

|ε̇p
i | e

p
i ⊗ ep

i , (12.134)

where ε̇p
i are the eigenvalues of the plastic strain rate tensor, ε̇p, and {ep

i } is an orthonormal
basis of eigenvectors of ε̇p. In the basis {ep

i }, the absolute plastic strain rate has the matrix
representation

[ ˙̃εp] =



|ε̇p
1| 0 0

0 |ε̇p
2| 0

0 0 |ε̇p
3|


 . (12.135)

The plastic flow equation

Analogously to the original Lemaitre ductile damage model, the present theory also accounts
for the softening effect of damage. Here, however, the corresponding yield function is a
generally anisotropic function of the stress tensor. In the present model, the von Mises-
type isotropically hardening yield function (iii) of Box 12.3 ( page 487) is replaced by the
following:

Φ = qeff − σy , (12.136)

where qeff is the generally anisotropic function of σ defined by (12.133) and, as usual,

σy = σy(R), (12.137)

where R is the strain-hardening variable. Clearly, with this yield function, the softening
experienced by the material as a result of damage is generally anisotropic. The yield
von Mises equivalent stress depends on the orientation of the applied stress with respect
to the principal directions of damage. For an isotropically damaged state, where D = DI,
the above yield function reduces to the isotropic function of Box 12.3.

The flow rule is defined by assuming associativity of the plastic flow. We then have the
equation

ε̇p = γ̇ N, (12.138)

where the associative flow vector,

N ≡ ∂Φ
∂σ

, (12.139)

is found, after some straightforward algebra, to be given by

N =

√
3
2

dev[HseffH ]
‖seff‖

. (12.140)

The evolution of the hardening variable has the usual format

Ṙ = γ̇. (12.141)
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Kinematic hardening

A kinematic hardening-type variable can also be introduced in the model. In this case, we
replace qeff with

q̄eff ≡
√

3 J2(seff − β) (12.142)

in (12.136) and redefine the flow vector as

N ≡
√

3
2

dev[H(seff − β)H ]
‖seff − β‖ , (12.143)

where β is the backstress tensor. The evolution of the backstress can be defined analogously
to the original Lemaitre model:

β̇ = γ̇ (a N − b β). (12.144)

Remarks on computer implementation

As for the elastoplasticity models discussed in the preceding chapters and in the previous
sections of this chapter, the derivation of an elastic predictor/plastic corrector algorithm in
the present case follows the general methodology described in Section 7.2.3 (from page 196).
However, for the present model, the computational implementation is far more complex than
that of the original Lemaitre model discussed in Section 12.3. Here, even in the absence of
kinematic hardening, the damage-induced anisotropy of elastic and plastic behaviours does
not allow the use of the simplifying relations that led to the reduction in the number of plastic
corrector equations in Section 12.4.





Part Three
Large strains





13 FINITE STRAIN
HYPERELASTICITY

PART III of this book is devoted to the formulation and numerical treatment of finite strain
solid mechanics problems. We begin by describing in this chapter some useful finite

hyperelasticity constitutive theories together with their implementation within the implicit
finite element environment of Chapter 4. Two of the models addressed here are implemented
in program HYPLAS: the Hencky (logarithmic strain-based) and the Ogden hyperelastic
models. Recall (refer to Chapter 4) that the most relevant components of the finite element
implementation of a material model in HYPLAS are:

1. the state-update procedure, where the stresses are computed for a given state of
deformation. The stresses computed by such a procedure are used to assemble the
element internal force vector;

2. the computation of the corresponding spatial tangent modulus, which is used in the
assembly of the element tangent stiffness matrix.

To provide the reader with a clear idea of the complete finite element implementation of
finite hyperelastic theories, the FORTRAN source code of these procedures is provided and
explained in detail for the particular case of the Ogden material model.

Hyperelastic constitutive models are suitable to describe the behaviour of a large number
of engineering materials. In the finite strain range, such theories are particularly appropriate
for the analysis of rubber-like solids and in many cases show excellent agreement with
experiments involving strains over 700% (Ogden, 1984).

This chapter is divided as follows: after reviewing some basic concepts of finite hypere-
lasticity in Section 13.1, some popular models are described in Section 13.2. The formulation
of plane stress theories is addressed in Section 13.3, with particular reference to the Ogden
and Hencky models. The explicit formulae for the associated tangent moduli are derived
in Section 13.4. Section 13.5 describes in detail the computational implementation of the
Ogden model, including the listing of the relevant FORTRAN source code. A comprehensive
set of benchmarking finite element examples of hyperelasticity applications is provided in
Section 13.6. Finally, Section 13.7 discusses a relatively new topic: the modelling of internal
damage coupled with hyperelasticity. Hyperelastic damage theories are useful in modelling
the so-called Mullins effect – the loss of stiffness frequently observed in filled polymers at
strain levels below the maximum previously attained strain.

We remark that much of the notation adopted in this chapter as well as throughout the
remainder of Part Three of this book has been set up in Chapter 3. Readers who are unfamiliar
with it are advised to review that chapter before proceeding further.

Computational Methods for Plasticity: Theory and Applications EA de Souza Neto, D Perić and DRJ Owen
c© 2008 John Wiley & Sons, Ltd
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13.1. Hyperelasticity: basic concepts

In contrast to the elastoplastic and viscoplastic theories described in Part Two of this book,
hyperelastic models are non-dissipative and, therefore, do not require the consideration of
internal variables. A generic finite hyperelasticity model is characterised by the existence of
a specific free-energy function of the form

ψ = ψ(F ). (13.1)

Functions of this form (without dependence on internal variables) are particular cases of the
general potential (3.150) (page 72) which include the description of dissipative materials
(with internal variables). In this case (refer to (3.155)), the first Piola–Kirchhoff stress tensor
is given by the constitutive relation

P = P (F ) = ρ̄
∂ψ(F )

∂F
, (13.2)

where ρ̄ is the reference density. The stress here depends solely on the current deformation
gradient and is not affected by the past deformation history.† The free-energy function, ψ,
completely defines a hyperelastic model.

Accordingly, the constitutive equation for the Kirchoff stress tensor,

τ ≡ P F T , (13.3)

for a hyperelastic material is given by

τ(F ) = ρ̄
∂ψ(F )
∂F

F T (13.4)

and the Cauchy stress tensor, σ = τ/J , has the following constitutive equation

σ(F ) =
ρ̄

J

∂ψ(F )
∂F

F T , (13.5)

where
J ≡ det F . (13.6)

In Sections 13.1.1 and 13.1.2 below, we consider some useful constraints imposed by the
general constitutive axioms of Section 3.5.1 (from page 69) upon the constitutive equations
for hyperelastic materials.

13.1.1. MATERIAL OBJECTIVITY: REDUCED FORM OF THE FREE-ENERGY
FUNCTION

Let us start by recalling the axiom of material objectivity. This axiom requires the free
energy (a scalar function) to be invariant under changes in the observer. This is represented
mathematically in the general case by equation (3.147)2 (page 71). The specialisation of this

†This assertion applies also to the so-called Cauchy elastic models (not discussed in this book) for which the
first Piola–Kirchhoff stress is a function of the deformation gradient only, but is not necessarily the derivative of a
free-energy function.
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equation to the present case, where the free energy depends exclusively on the current value
of F , requires that the function ψ satisfies

ψ(QF ) = ψ(F ) (13.7)

for any proper orthogonal (rotation) tensor Q. In particular, if we choose Q = RT where R
is the rotation obtained from the polar decomposition F = RU , we obtain the identity

ψ(F ) = ψ(U ). (13.8)

Thus, material objectivity implies that ψ depends on F solely through the right stretch
tensor, U .

Equivalently, the free energy may be expressed as a function of the right Cauchy–Green
strain tensor, C ≡ F T F = U 2; that is, the free energy may be expressed by a function ψ̃
defined as

ψ(F ) = ψ̃(C) ≡ ψ(
√

C ). (13.9)

In terms of the reduced form, ψ̃, the first Piola–Kirchhoff stress tensor given by (13.2) can be
equivalently expressed as

P = ρ̄
∂ψ̃

∂C
:
∂C

∂F
= 2ρ̄F

∂ψ̃

∂C
. (13.10)

In deriving the rightmost part of the above formula, use has been made of the component form
of the derivative ∂C/∂F , obtained by simply applying the product rule to Cij = FmiFmj ,
which gives

∂Cij

∂Fkl
= δilFkj + δjlFki. (13.11)

From (13.10) and (13.3), it then follows that the corresponding constitutive equation for the
Kirchhoff stress is

τ = 2ρ̄F
∂ψ̃

∂C
F T . (13.12)

Similarly, for the Cauchy stress, we have

σ =
2ρ̄

J
F

∂ψ̃

∂C
F T . (13.13)

13.1.2. ISOTROPIC HYPERELASTICITY

We now consider constraints posed by material symmetry on the constitutive equations for
hyperelastic materials. More specifically, we will focus on material isotropy – a symmetry
property that requires the general equations (3.148) (page 71) to hold for any rotation Q.
The specialisation of (3.148)2 to the present case implies that the free-energy function of an
isotropic hyperelastic material must satisfy

ψ(F Q) = ψ(F ), (13.14)

for all rotations Q. This equation introduces a further restriction on the possible representa-
tions for the free-energy function. Indeed, by choosing Q = RT again, we promptly establish
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that
ψ(F ) = ψ(V ); (13.15)

that is, the free energy of an isotropic hyperelastic material must depend on F only through
the left stretch tensor, V.

The free energy in this case may be equivalently expressed as a function of the left
Cauchy–Green strain tensor, B ≡ F F T = V 2, as follows:

ψ̃(B) = ψ(
√

B). (13.16)

Equation (13.16), together with (13.8), (13.9) and (13.15), imply that

ψ(F ) = ψ(U ) = ψ(V ) = ψ̃(C) = ψ̃(B) (13.17)

for an isotropic hyperelastic material.
Note that from the definition of the right and left stretch tensors, we have

U = RT VR, (13.18)

which, together with (13.17), yields

ψ(U ) = ψ(R URT ). (13.19)

As the above holds for any deformation (and, hence, any rotation R), it follows from
definition (A.2) (page 731) that ψ is an isotropic function of U (or V ). Following a
completely analogous argument in terms of the right and left Cauchy–Green tensors, we
establish that

ψ̃(C) = ψ̃(R BRT ), (13.20)

for any rotation R, and conclude that ψ̃ is an isotropic function of C (or B).

Isotropic stress constitutive equations

With a straightforward application of the chain rule, we find that the first Piola–Kirchhoff
stress constitutive equation (13.2) can be rewritten in terms of the function ψ̃ as

P = ρ̄
∂ψ̃

∂B
:
∂B

∂F
= 2ρ̄

∂ψ̃

∂B
F . (13.21)

Analogously to the derivation of (13.10), in obtaining the rightmost part of (13.21) we have
made use of the component form of ∂B/∂F , which can be derived by differentiating Bij =
FimFjm. The corresponding constitutive equation for the Kirchhoff stress is obtained by
combining (13.21) and (13.3) as

τ = τ̃(B) ≡ 2 ρ̄
∂ψ̃

∂B
B. (13.22)

Further, the isotropy of ψ̃ implies that B and ∂ψ̃/∂B share the same principal axes and,
thus, commute (refer to property (A.6), page 732). Hence, the Kirchhoff stress constitutive



FINITE STRAIN HYPERELASTICITY 523

equation can be equivalently expressed as

τ̃(B) ≡ 2 ρ̄ B
∂ψ̃

∂B
. (13.23)

Accordingly, for the Cauchy stress, we have

σ = σ̃(B) ≡ 2ρ̄

J

∂ψ̃

∂B
B =

2ρ̄

J
B

∂ψ̃

∂B
. (13.24)

The stress constitutive functions (13.22)–(13.24) are themselves isotropic functions of B
(see Section A.1.2); that is,

Qσ̃(B)QT = σ̃(QBQT ) Qτ̃(B)QT = τ̃(QBQT ) (13.25)

for all rotations Q.

Principal invariants representation

The isotropy of ψ̃ implies that (refer to the general representation formula (A.12), page 733)
the free energy can be equivalently expressed as a function of the principal invariants, I1(B),
I2(B) and I3(B), of the left Cauchy–Green strain tensor (see definition (2.72), page 27, of
the principal invariants of a tensor); that is, there exists a function ψ̄ such that

ψ̃(B) = ψ̄(I1(B), I2(B), I3(B)). (13.26)

As (13.22) defines the Kirchhoff stress (what follows is equally true for equation (13.24)
for the Cauchy stress) as an isotropic symmetric tensor-valued function of B – an invertible
symmetric tensor, then it follows from the general representation (A.14) (page 733) that the
stress response of an isotropic hyperelastic solid may be cast in the form

τ = J (β0 I + β1 B + β−1B−1), (13.27)

or, equivalently,

σ = β0 I + β1 B + β−1B−1, (13.28)

where the scalar coefficients βΓ = βΓ(I1, I2, I3), (Γ = 0, 1, −1), are the elastic response
functions which, in terms of the strain-energy function (13.26) are expressed as

β0 =
2√
I3

[
I2 ρ̄

∂ψ̄

∂I2
+ I3 ρ̄

∂ψ̄

∂I3

]

β1 =
2√
I3

ρ̄
∂ψ̄

∂I1

β−1 = −2
√

I3 ρ̄
∂ψ̄

∂I2
.

(13.29)
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Principal stretches representation

Other alternative representations of the free-energy function for isotropic hyperelastic
materials are possible and the particular choice is normally a matter of mathematical and
experimental convenience. A particularly appealing approach, which has gained popularity
over the last two decades, is the explicit representation of ψ in terms of the principal stretches,
λi. As ψ is an isotropic function of V (or U ), the general representation (A.4) implies that
there exists a function ψ̂ such that

ψ(V ) = ψ̂(λ1, λ2, λ3) (13.30)

with the symmetries

ψ̂(λ1, λ2, λ3) = ψ̂(λ2, λ1, λ3) = ψ̂(λ1, λ3, λ2). (13.31)

Likewise, with bi = λ2i denoting the principal values of B (or C), there exists a function ψ̌
such that

ψ̃(B ) = ψ̌(b1, b2, b3) = ψ̂(b
1
2
1 , b

1
2
2 , b

1
2
3 ). (13.32)

By combining (13.22), property (A.8), (13.32) and the fact that ∂τ/∂B and B have the
same principal axes, we find that the constitutive equation for the eigenvalues τi of the
Kirchhoff stresses tensor is given by

τi = 2ρ̄
∂ψ̌

∂bi
bi = ρ̄

∂ψ̂

∂λi
λi, (13.33)

with no summation on repeated indices. Accordingly, the constitutive function for the
Kirchhoff stress tensor in terms of principal stretches can be obtained via its spectral
representation

τ =
∑

i

ρ̄
∂ψ̂

∂λi
λi ei ⊗ ei, (13.34)

where {ei} is an orthonormal basis of eigenvectors of V (or B).

13.1.3. INCOMPRESSIBLE HYPERELASTICITY

For many rubbery materials, very little volumetric deformation is observed even at highly
strained states. For this reason, some hyperelastic models of rubber assume perfect incom-
pressibility. In such cases, the invariant I3 is constant, i.e.

I3 ≡ det B = 1,

and the dependence of the strain-energy function upon I3 is removed. We then have strain-
energy functions of the type

ψ = ψ̄(I1, I2). (13.35)

Under perfect incompressibility, the stress tensor is determined from the potential rela-
tion (13.5) or (13.4) up to an arbitrary hydrostatic stress; that is, only the stress deviator,

s ≡ dev[σ] ≡ σ − 1
3 (tr σ) I, (13.36)

is obtained from the hyperelastic constitutive law. In the solution of incompressible hyper-
elasticity boundary value problems, the hydrostatic pressure can only be determined from
equilibrium and the boundary conditions.
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13.1.4. COMPRESSIBLE REGULARISATION

The numerical treatment of perfect incompressibility is not trivial, except in the plane
stress case addressed in Section 13.3. In the context of finite element solutions, it requires
the use of mixed finite element techniques where the hydrostatic pressure (and not only
displacements as in virtual work-based finite elements) is one of the structural variables.
The problem, however, can be dealt with in the present context of virtual work-based
finite elements by introducing compressibility in originally incompressible models. This
compressible regularisation will be described in the next section for the Mooney–Rivlin/neo-
Hookean and the Ogden material models. In fact, we should also bear in mind that real
materials are never perfectly incompressible and also that the introduction of compressibility
allows the extension of the original theories to treat materials whose compressibility cannot
be disregarded.

13.2. Some particular models

Let us now review the basic expressions of some important hyperelastic theories applicable
to the modelling of the behaviour of many materials in situations of practical interest. Here,
we present only their free-energy functions and the resulting stress constitutive functions.

13.2.1. THE MOONEY–RIVLIN AND THE NEO-HOOKEAN MODELS

Two very important constitutive models of rubber-like materials are the Mooney–Rivlin and
the neo-Hookean models (Green and Zerna, 1954). Due to their mathematical simplicity,
as well as their predictive accuracy with a range of moderately large strains, these models
have been widely employed in the description of the behaviour of rubbery materials. In their
original versions, these models assume perfect incompressibility. The Mooney–Rivlin strain-
energy function is expressed by

ρ̄ ψ̄(I1, I2) = C1 (I1 − 3) + C2 (I2 − 3), (13.37)

where C1 and C2 are material constants.
The neo-Hookean material is the simplest model of rubber-like response. It is obtained as

a particular case of the Mooney–Rivlin model by setting C2 = 0, i.e.

ρ̄ ψ̄(I1) = C1 (I1 − 3). (13.38)

The regularised (compressible) version

In order to derive regularised (or compressible) versions of the Mooney–Rivlin and neo-
Hookean models, we resort to the concept of isochoric/volumetric split of the deformation
gradient introduced in Section 3.1.5 (page 49), whose main equations are repeated below for
convenience:

F = F iso F v, (13.39)

where
F v ≡ (det F )

1
3 I and F iso ≡ (det F )−

1
3 F (13.40)

are, respectively, the volumetric and isochoric components of F .
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With the above decomposition at hand, we define the isochoric left Cauchy–Green strain
tensor as

Biso ≡ F iso F T
iso = (det F )−

2
3 F F T , (13.41)

and the principal invariants

I∗1 ≡ trBiso I∗2 ≡ 1
2{(I

∗
1 )
2 − tr[B2iso]}. (13.42)

With the above definitions, a regularised version of the Mooney–Rivlin strain-energy
function can be postulated as

ρ̄ ψ̄∗(I∗1 , I∗2 , J) = C1 (I∗1 − 3) + C2 (I∗2 − 3) + 1
2K (ln J)2, (13.43)

where the material constant K is the logarithmic bulk modulus and relates the hydrostatic
pressure to the purely volumetric component of the deformation gradient. The corresponding
neo-Hookean function reads

ρ̄ ψ̄∗(I∗1 , J) = 1
2G (I∗1 − 3) + 1

2K (ln J)2, (13.44)

where G ≡ 2C1 is the shear modulus.

The stress constitutive function

The constitutive function for the Kirchhoff stress for the regularised Mooney–Rivlin material
is obtained by using the above strain-energy function in the potential relation (13.22). As the
Mooney–Rivlin function has been defined in terms of principal invariants, we apply the chain
rule and obtain

∂ψ̃

∂B
=
(

∂ψ̄

∂I∗1

∂I∗1
∂Biso

+
∂ψ̄

∂I∗2

∂I∗2
∂Biso

)
:
∂Biso
∂B

+
∂ψ̄

∂J

∂J

∂B
. (13.45)

The final equation for the Kirchhoff stress is obtained, after some straightforward algebra, in
compact form as

τ = 2(C1 + C2 I∗1 ) dev[Biso] − 2C2 dev[B2iso] + K (ln J) I. (13.46)

For the compressible neo-Hookean material, we have

τ = G dev[Biso] + K (ln J) I. (13.47)

Remark 13.1. The incompressible limit (where J = 1) is approached as K →∞. Regu-
larised models of the above type are frequently used to emulate incompressibility in finite
element analyses. In this case, the bulk modulus K may be seen as a penalty factor that
penalises volumetric deformations. This approach is adopted in the plane strain/axisymmetric
implementation of the Ogden material in HYPLAS. Note also that other formats of volumetric
(penalty) contribution to the strain-energy function may be adopted in this context. The
function

1
2 K (J − 1)2,

for instance, is also frequently adopted (see, among others, Crisfield 1997) in the finite
element analysis of nearly incompressible materials.
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Remark 13.2. In modelling materials whose compressibility is an important feature of the
overall response, the functional form of the volumetric contribution to the strain-energy
function should be determined on the basis of experimental evidence rather than just
postulated as above.

13.2.2. THE OGDEN MATERIAL MODEL

At very large strains, it is a well-known fact that the neo-Hookean and Mooney–Rivlin
models fail to represent the behaviour of rubbery materials (Ogden, 1984). To overcome this
problem, a particularly useful form of strain-energy function – based on principal stretches
representation (13.30) – has been proposed by Ogden (1972, 1984). Its general form is
given by

ρ̄ ψ̂(λ1, λ2, λ3) =
N∑

p=1

µp

αp
(λαp

1 + λ
αp

2 + λ
αp

3 − 3), (13.48)

where N is the total number of terms in the series and µp and αp (p = 1, . . . , N) are the
corresponding material constants. Perfect incompressibility is also assumed so that λ1λ2λ3 =
1. Thus, equivalently, the strain-energy can be expressed as a function of λ1 and λ2 only

ρ̄ ψ̃(λ1, λ2) =
N∑

p=1

µp

αp

(
λ

αp

1 + λ
αp

2 +
1

λ
αp

1 λ
αp

2

− 3
)

. (13.49)

As a particular case of an Ogden material, the Mooney–Rivlin model is obtained by setting
N = 2, µ1 = 2C1, µ2 = −2C2 and α1 = 2, α2 = −2. The standard neo-Hookean material is
recovered with N = 1, µ1 = 2C1 and α1 = 2.

The regularised Ogden model

Let {λ∗
1, λ

∗
2, λ

∗
3} be the principal isochoric stretches, i.e. the eigenvalues of the isochoric

stretch tensor
Viso ≡

√
Biso. (13.50)

The principal isochoric stretches λ∗
i are related to the principal stretches λi by

λ∗
i =

λi

J
1
3

=
λi

(λ1λ2λ3)
1
3

= λ
2
3
i (λjλk)−

1
3 , (13.51)

where (i, j, k) are cyclic permutations of (1, 2, 3). The strain-energy function for a regu-
larised compressible version of the Ogden model can be defined as

ρ̄ ψ̂∗(λ∗
1, λ

∗
2, λ

∗
3, J) =

N∑
p=1

µp

αp
[(λ∗
1)

αp + (λ∗
2)

αp + (λ∗
3)

αp − 3] + 1
2K (ln J)2. (13.52)

The corresponding constitutive function for the principal Kirchhoff stresses is obtained from
the potential relation (13.33). With the above regularised strain-energy function, we have

τi = λi ρ̄
∂ψ̂

∂λi
= λi ρ̄

(
∂ψ̂∗

∂λ∗
i

∂λ∗
i

∂λi
+

∂ψ̂∗

∂λ∗
j

∂λ∗
j

∂λi
+

∂ψ̂∗

∂λ∗
k

∂λ∗
k

∂λi
+

∂ψ̂∗

∂J

∂J

∂λi

)
(13.53)
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where no summation is implied on repeated indices and (i, j, k) are permutations of (1, 2, 3).
The final expression for the principal Kirchhoff stresses reads

τi =
N∑

p=1

µp J−αp/3[λαp

i − 1
3 (λ

αp

1 + λ
αp

2 + λ
αp

3 )] + K ln J. (13.54)

This formula is implemented in subroutine SUOGD of HYPLAS.

13.2.3. THE HENCKY MATERIAL

The Hencky model is the finite logarithmic strain-based extension of the standard linear
elastic material. It was proposed by Hencky (1933) to model the behaviour of vulcanised
rubbers. Let ε be the Eulerian logarithmic strain tensor

ε ≡ ln V = 1
2 ln B. (13.55)

The Hencky strain-energy function is defined in compact form as

ρ̄ ψ(ε) = 1
2 ε : D : ε, (13.56)

where D has the format of the infinitesimal isotropic elasticity tensor

D ≡ 2G IS + (K − 2
3G)I ⊗ I. (13.57)

Note that the functional format of the Hencky strain-energy function is identical to that of
infinitesimal elasticity. Equivalently, in terms of principal stretches, the Hencky strain-energy
function is given by

ρ̄ ψ̂(λ1, λ2, λ3) = G [(ln λ1)2 + (ln λ2)2 + (ln λ3)2]

+ 1
2 (K − 2

3G)[ln(λ1λ2λ3)]2. (13.58)

The above strain-energy renders the following linear relationship between the Kirchhoff
stress and the Eulerian logarithmic strain:

τ = ρ̄
∂ψ

∂ε
= D : ε, (13.59)

which has the same functional format as the infinitesimal linear elastic stress–strain relation.
That (13.59) follows from definition (13.56) (or (13.58)) can be demonstrated as follows.

Recall equation (13.22), which is valid for any isotropic hyperlastic material. By taking
definition (13.55) into account and applying the chain rule to differentiate the free-energy
function (13.56), we obtain the expression

∂ψ

∂B
=

1
2

∂ψ

∂ε
:
∂(ln B)

∂B
, (13.60)

which, substituted into (13.22), gives

τ = ρ̄

[
∂ψ

∂ε
:
∂(ln B)

∂B

]
B. (13.61)
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Now, note that by definition of ε, the tensors ε and B share the same principal axes (have the
same eigenvectors/eigenprojection tensors). Also, due to the isotropy of ψ, the tensor ∂ψ/∂ε
has the same principal axes. In addition, it should be noted that the tensor logarithm is a
member of the class of isotropic tensor functions discussed in Section A.5 (from page 740).
These observations in conjunction with the specialisation of the formulae (A.52) (page 744)
for the derivative ∂(ln B)/∂B lead, after some algebra, to the identity[

∂ψ

∂ε
:
∂(ln B)

∂B

]
B =

∂ψ

∂ε
, (13.62)

which, replaced in (13.61), yields the constitutive equation (13.59) for the Hencky material.

Deviatoric and volumetric logarithmic strains

By splitting the logarithmic strain into deviatoric and volumetric components, we have

ε = εd + 1
3 εvI, (13.63)

where
εd ≡ ε − 1

3 εvI (13.64)

is the deviatoric logarithmic strain and

εv ≡ tr ε (13.65)

is the volumetric logarithmic strain.
As in the infinitesimal strain theory, a traceless logarithmic strain tensor (ε with εv = 0)

corresponds to a finite volume-preserving deformation (a deformation with det F = 1). To
see this, without loss of generality, we represent ε in its diagonalised form, i.e. we use an
orthonormal basis formed by unit eigenvectors of ε:

[ε] =



ln λ1 0 0

0 ln λ2 0

0 0 ln λ3


, (13.66)

where λi are the eigenvalues of V. On the same basis, V is represented as

[V ] =



λ1 0 0

0 λ2 0

0 0 λ3


. (13.67)

It is then clear that
tr ε = ln(det V ). (13.68)

By recalling the standard identity det V = det F , it then follows that

εv ≡ tr ε = 0 ⇐⇒ det F = 1. (13.69)
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Let us now look at the properties of the logarithmic strain deviator. Using the definition of
εd, we obtain after a straightforward manipulation the following diagonal representation

[εd] =



ln λ

2
3
1 − ln λ

1
3
2 − ln λ

1
3
3 0 0

0 ln λ
2
3
2 − ln λ

1
3
3 − ln λ

1
3
1 0

0 0 ln λ
2
3
3 − ln λ

1
3
1 − ln λ

1
3
2


.

(13.70)
From the above and the definition (13.50) of the isochoric left stretch tensor, we then find that

εd = ln Viso; (13.71)

that is, as for the infinitesimal strain tensor, the logarithmic strain deviator is a measure of the
purely isochoric component of the strain.

13.2.4. THE BLATZ–KO MATERIAL

Another interesting isotropic hyperelastic solid model is the so called Blatz–Ko material.
This model was originally proposed by Blatz and Ko (1962) to describe the behaviour of
foamed (compressible) elastomers. Using the general representation (13.27), the Blatz–Ko
stress constitutive function is expressed as

τ = J

[
g(J) I +

µ0 f

2
B − µ0(1 − f)

2
B−1

]
, (13.72)

where µ0 and f are material constants and g(J) is the derivative of the strain-energy function
with respect to J . This derivative is a function of J only. Note that for the Blatz–Ko material
the corresponding elastic response functions βΓ (refer to representation (13.27)) depend
exclusively on J .

To validate the model, these authors have conducted a series of experiments, comprising
uniaxial and biaxial tension tests, on polyurethane rubbers. The explicit expression adopted
for the function g has been chosen by setting

J g(J) = −µ0[fJ−2ν/(1−2ν) − (1 − f)J2ν/(1−2ν)] (13.73)

where the constant ν is a finite strain extension to the conventional Poisson’s ratio of the
infinitesimal theory. The model recovers the incompressible limit when ν → 0.5.

13.3. Isotropic finite hyperelasticity in plane stress

The treatment of plane stress problems has been discussed in detail in Chapter 9 in the context
of infinitesimal elastoplasticity. There, it was shown that in spite of its triviality in the case
of linear elasticity, the plane stress constraint generally requires further consideration in the
elastoplastic range. This is also generally true for finite hyperelasticity and concepts such as
the use of plane stress-projected constitutive equations (discussed in Section 9.4, page 370)
and nested iterations for enforcement of the plane stress constraint (see Section 9.2.2, from
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page 362) can be applied to the hyperelastic case. As in infinitesimal elastoplasticity, the
derivation of plane stress-projected equations here is feasible when the relevant constitutive
model is sufficiently simple to allow the out-of-plane strain to be eliminated from the
formulation, becoming a dependent variable that can be expressed in closed form as an
explicit function of the in-plane strains. This approach is precisely that adopted in plane stress
linear elasticity reviewed in Section 9.1.1 (from page 358). As we shall see, the same concept
can be trivially applied to derive plane stress constitutive equations for the incompressible
Ogden model and the logarithmic strain-based Hencky model (both implemented in program
HYPLAS). These will be discussed, respectively, in Sections 13.3.1 and 13.3.2. Our discussion
on plane stress ends in Section 13.3.3 where we briefly outline the use of a nested iteration
approach in the computational treatment of finite hyperelasticity.

13.3.1. THE PLANE STRESS INCOMPRESSIBLE OGDEN MODEL

Let the direction 3 – associated with the principal stretch λ3 – be the out-of-plane direction.
The plane stress constraint requires that the principal stress in that direction vanishes:

τ3 = 0, (13.74)

and only the in-plane principal stresses, τ1 and τ2, may be non-zero. For a general hyperelastic
incompressible material, the stress tensor can be determined from the constitutive law up to
an arbitrary hydrostatic pressure. Thus, considering the particular case of the incompressible
Ogden material with strain-energy function defined by (13.48), the principal Kirchhoff
stresses are given by

τi = λi ρ̄
∂ψ̂

∂λi
+ Jp I =

{ N∑
p=1

µp λ
αp

i

}
+ Jp, (13.75)

where Jp is the Kirchhoff pressure. The pressure Jp can be determined by introducing the
plane stress state constraint. Indeed, (13.74) together with (13.75) gives

τ3 =
{ N∑

p=1

µp λ
αp

3

}
+ J p = 0, (13.76)

which implies

J p = −
N∑

p=1

µp λ
αp

3 , (13.77)

or, equivalently, since λ1λ2λ3 = 1 (incompressibility),

J p = −
N∑

p=1

µp (λ1λ2)−αp . (13.78)

Finally, the substitution of (13.78) into (13.75) results in the following plane stress-
projected constitutive relation for the incompressible Ogden model;

τβ =
N∑

p=1

µp [λαp

β − (λ1λ2)−αp ] for β = 1, 2. (13.79)

This formula is implemented in subroutine SUOGD of HYPLAS.
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Thickness update

At finite strains, the thickness at any point depends on the out-of-plane stretch λ3. In
spatial finite element formulations, where integrations are performed over the deformed
configuration, the current thickness (thickness in the deformed configuration) is required at
each Gauss point during the computation of the internal force vector and stiffness matrix.
With t0 denoting the thickness of the Gauss point of interest in its reference configuration,
the current thickness can be computed as

t = λ3 t0. (13.80)

In view of the incompressibility of the model, the above update formula is equivalent to

t =
t0

λ1λ2
. (13.81)

Remark 13.3. One important point to be considered is that for isotropic elastic materials, the
Kirchhoff stress tensor is coaxial with the left Cauchy–Green strain tensor B. Consequently,
since the hypothesis of plane stress implies that the non-zero stress components are in-plane,
the deformation pattern must be such that transverse shear strains vanish. Clearly, that can
only be a good approximation as long as the thickness deformation does not vary abruptly
within the plane. If abrupt thickness variations do occur, then the plane stress assumption no
longer makes sense.

13.3.2. THE PLANE STRESS HENCKY MODEL

For the Hencky model, the plane stress constraint can also be enforced in a trivial manner. As
its standard general version, the stress–strain relation of the plane stress counterpart has also
a functional format identical to that of plane stress linear elasticity. That is, its stress–strain
relation has the same format as (13.59) with τ and ε having only in-plane components and

D ≡ 2G IS + (K − 2
3G)

6G

3K + 4G
I ⊗ I (13.82)

– now a plane tensor – defined as the standard plane stress linear elasticity tensor.

Thickness update

Analogously to the linear elastic case, we have

ε33 = −3K − 2G

3K + 4G
tr[ε] = − ν

1 − ν
tr[ε], (13.83)

where, here,
tr[ε] = ε11 + ε22 (13.84)

is the trace of the plane tensor ε. In terms of logarithmic stretches, expression (13.83) is
equivalent to

ln λ3 = −3K − 2G

3K + 4G
(ln λ1 + ln λ2) = − ν

1 − ν
(ln λ1 + ln λ2). (13.85)
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The thickness stretch is then trivially obtained as

λ3 = exp
[
−3K − 2G

3K + 4G
(ln λ1 + ln λ2)

]
= exp

[
− ν

1 − ν
(ln λ1 + ln λ2)

]
. (13.86)

With the thickness stretch at hand, the updated thickness, t, can be computed according
to (13.80).

13.3.3. PLANE STRESS WITH NESTED ITERATIONS

In the above we have shown two examples where plane stress constitutive equations can be
easily derived in closed form from the general three-dimensional law. This, however, is not
generally feasible, especially when the nonlinear stress–strain relation has a more complex
format. In such cases, one possible alternative in the finite element implementation is to adopt
the nested iteration approach to enforce the plane stress constraint upon the three-dimensional
law. This methodology has been thoroughly discussed in Section 9.2.2, from page 362, in the
infinitesimal elastoplasticity context. As we shall see in what follows, its application to finite
hyperelasticity is straightforward.

Let us consider the case where the constitutive law is formulated in terms of principal
stretches/stresses, such as the Ogden model. The three-dimensional constitutive equation for
the principal Kirchhoff stresses reads

τi = τ(λi, λj , λk) for i = 1, 2, 3, (13.87)

where (i, j, k) are cyclic permutations of (1, 2, 3) and the function τ is nonlinear. For
the regularised Ogden model, for instance, the function τ is defined by (13.54). Now let
direction 3 be the out-of-plane principal direction and assume that the in-plane stretches
{λ1, λ2} are given. The enforcement of the plane stress constraint,

τ3 = 0,

then reduces to the solution of the following nonlinear equation for the unknown thickness
stretch λ3:

τ̄3(λ3) ≡ τ(λ3, λ1, λ2) = 0. (13.88)

The nested iteration stress update

A possible stress-updating procedure in this case can be summarised in the following steps:

1. Given the in-plane principal stretches {λ1, λ2}, use the Newton–Raphson method (any
other root-finding technique may be used) to solve the nonlinear equation

τ̄(λ3) = 0,

for λ3. For the typical kth Newton iteration, we update

λ
(k+1)
3 = λ

(k)
3 − τ

(k)
3

τ̄ ′ ,

where τ̄ ′ is the derivative of τ with respect to its first argument evaluated at
(λ(k)3 , λ1, λ2). The initial guess, λ(0)3 , may be taken as the thickness stretch obtained in
the last converged equilibrium configuration.
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2. With the solution λ3 at hand, use the three-dimensional constitutive function to update
the in-plane Kirchhoff stresses τ1 and τ2:

τ1 = τ(λ1, λ2, λ3)

τ2 = τ(λ2, λ3, λ1).

Clearly, τ3 vanishes within the prescribed tolerance for solution of the nonlinear plane
stress enforcement equation.

3. The current thickness is updated by the formula

t = λ3 t0.

The above procedure can be applied to any model. The remarks made in Section 9.2.2
concerning the computational implications of this approach, i.e. the introduction of an
iteration loop for plane stress enforcement at the Gauss point level – nested within an outer
equilibrium loop – applies equally to the present case.

13.4. Tangent moduli: the elasticity tensors

Firstly, let us recall the general component formula (C.31), given on page 757, for the tangent
modulus in the spatial frame – the spatial elasticity tensor. Under material isotropy, where
τ can be expressed as a function of B only, the spatial elasticity tensor can be equivalently
represented as

aijkl =
2
J

∂τij

∂Bkm
Bml − σil δjk. (13.89)

The above formula is obtained from (C.31) with the application of the chain rule considering
the functional dependence of τ on B and the dependence of B on F . Our objective in this
section is to derive exact expressions for the spatial tangent moduli consistent with some
of the above described hyperelastic constitutive models. In the finite element context, the
expressions derived can be employed in the assemblage of the element tangent stiffness,
needed by the Newton–Raphson scheme for solution of the (equilibrium) discrete boundary
value problem. We remark that for hyperelastic models (whether isotropic or not), the fourth-
order tensor a is symmetric, i.e. its Cartesian components have the symmetry

aijkl = aklij , (13.90)

which results in symmetric stiffness matrices in the spatial formulation.
It should be noted that the only term in (13.89) that depends on the particular hyperelastic

model is the components of the derivative (fourth-order tensor)

∂τ

∂B
.

Thus, in what follows, for each of the models considered, we derive an expression for the
derivative of the Kirchhoff stress which, when substituted in (13.89), yields a final model-
specific expression for a. Details of the computational implementation of formula (13.89) for
the particular case of the Ogden material model is described in Box 13.2, page 543.
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13.4.1. REGULARISED NEO-HOOKEAN MODEL

To obtain a compact representation of the spatial elasticity tensor for the regularised neo-
Hookean model, we start by differentiating expression (13.47), which gives

∂τ

∂B
= G Id :

∂Biso
∂B

+
K

J
I ⊗ ∂J

∂B
(13.91)

where the fourth-order tensor Id is the deviatoric projection operator in the space of symmetric
tensors, defined by expression (3.94), page 59. Next, a straightforward differentiation of
(13.41) leads to

∂Biso
∂B

= − 23 J− 5
3 B ⊗ ∂J

∂B
+ J− 2

3 IS . (13.92)

Substitution of this formula into (13.91), together with the expression

∂J

∂B
= 1
2 J B−1, (13.93)

gives

∂τ

∂B
= G Id : [J− 2

3 IS − 1
3 J− 2

3 Biso ⊗ B−1] + 1
2 K I ⊗ B−1

= G J− 2
3 Id − 1

3 τd ⊗ B−1 + 1
2 K I ⊗ B−1, (13.94)

where τd is the deviatoric component of the Kirchhoff stress tensor. Expression (13.93) is
obtained by direct application of the formula for the derivative of the determinant

d(det A)
dA

= (det A) A−T , (13.95)

valid for any invertible A, to the definition J ≡
√

det B. Finally, by replacing the component
form of (13.94) into (13.89), we arrive, after some algebra, at the following expression for a:

aijkl = cijkl + δikσjl (13.96)

where

c =
2G

3J
tr[Biso] Id − 2p IS +

K

J
I ⊗ I − 2

3 [s ⊗ I + I ⊗ s]. (13.97)

In the above expression, s is the deviatoric Cauchy stress and p denotes the Cauchy
hydrostatic pressure, i.e. p ≡ tr[σ]/3.

13.4.2. PRINCIPAL STRETCHES REPRESENTATION: OGDEN MODEL

Clearly, for all models discussed in this chapter, the Kirchhoff stress is an isotropic tensor
function of a single tensor, B. For the Ogden material model, however, the function τ(B) is
defined in such a way that the eigenvalues of the function, τi, can be expressed explicitly in
simple format as functions of the eigenvalues, bj , of the tensor argument B; that is, we have

τi = τ̂ (λi, λj , λk) = τ̃ (bi, bj, bk), (13.98)
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where (i, j, k) are cyclic permutations of (1, 2, 3) and

τ(B) =
3∑

i=1

τ̃(bi, bj , bk) ei ⊗ ei, (13.99)

where ei are unit eigenvectors of both τ and B. Note that

bi = λ2i , for i = 1, 2, 3. (13.100)

In the present case, it is crucial to observe that in (13.99) τ(B) is represented explicitly in
the same format as the general isotropic function defined by (A.15) in Appendix A (page 734).
Thus, the derivative ∂τ/∂B can be conveniently evaluated simply by setting Y = τ, yi = τi,
X = B and xi = bi in the general expressions for the derivative of isotropic tensor functions
summarised in Boxes A.3 and A.6, respectively, for the two- and three-dimensional cases. In
the computational implementation of the model (described in Section 13.5) we first evaluate
the components of ∂τ/∂B and then use (13.89) to compute the components of the spatial
elasticity tensor. Note (see Boxes A.3 and A.6) that the eigenvalue derivatives

∂τi

∂bj
, i, j = 1, 2, 3

are required to compute ∂τ/∂B. The explicit form of the eigenvalue derivatives is given in
what follows for the regularised version of the Ogden model as well as for the incompressible
model under plane stress. These expressions are implemented in subroutine CSTOGD of
program HYPLAS.

Regularised Ogden material

Straightforward differentiation of (13.54) leads to the following principal Kirchhoff stress
derivatives for the regularised Ogden material:

∂τi

∂bj
=

∂τi

∂λj

∂λj

∂bj

=
N∑

p=1

µpαp J−αp/3

6λ2j

[
1
3
(λαp

1 + λ
αp

2 + λ
αp

3 ) − λ
αp

i − λ
αp

j + 3λ
αp

i δij

]
+

K

2λ2j

(13.101)

where no summation is implied on repeated indices and δij is the Krönecker delta.

Incompressible Ogden material in plane stress

For the incompressible version under plane stress, we differentiate (13.79) to obtain

∂τi

∂bj
=

N∑
p=1

µpαp

2λ2j
[λαp

j δij + (λ1λ2)−αp ] (13.102)

with no summation on repeated indices.
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Remark 13.4. As any isotropic model admits a principal stretch-based representation of the
function τ(B), we can, in principle, apply the methodology described above for the Ogden
material to compute the elasticity tensor for any isotropic elastic model. For the regularised
neo-Hookean model, whose expression for a is given by (13.96, 13.97), the principal stretch-
based computation of a can be carried out by setting N = 1, µ1 = G and α1 = 2 in (13.101).
For this particular model, however, it is computationally more efficient to use the more
compact form (13.96, 13.97).

13.4.3. HENCKY MODEL

As the Kirchhoff stress for the Hencky material is a linear function of the logarithmic Eulerian
strain which, through its definition (13.55), is a function of B, the derivative ∂τ/∂B can be
derived by a straightforward application of the chain rule to (13.59). This gives

∂τ

∂B
=

∂τ

∂ε
:

∂ε

∂B
=

1
2

D : L, (13.103)

where

L ≡ ∂(ln B)
∂B

(13.104)

is the derivative of the tensor logarithm function evaluated at B.
At this point, we should observe that the tensor logarithm is a member of the class of

isotropic tensor functions discussed in Section A.5 of Appendix A. Thus, the fourth-order
tensor L can be evaluated according to the formulae shown in that section. The computation
of such derivatives in program HYPLAS is implemented in subroutine DISO2.

In order to derive a compact expression for the Hencky elasticity tensor, we note that
(13.89) is equivalent to

aijkl =
1
J

[
∂τ

∂B
: B

]
ijkl

− σilδjk, (13.105)

where we have defined the fourth-order tensor B by

Bijkl ≡ δikBjl + δjkBil. (13.106)

Finally, formula (13.105) together with (13.103) yields the following expression for the
Hencky spatial elasticity tensor

aijkl =
1
2J

[D : L : B]ijkl − σilδjk, (13.107)

which has a particularly simple format. We remark that the above formula is equally valid for
the plane stress case discussed in Section 13.3.2.

13.4.4. BLATZ–KO MATERIAL

Let us now consider the Blatz–Ko material with the stress constitutive function given
in (13.72). To derive an explicit formula for ∂τ/∂B, we differentiate expression (13.72) and
obtain

∂τ

∂B
= g′(J) I ⊗ ∂J

∂B
+ f µ0 IS − (1 − f)µ0

∂B−1

∂B
. (13.108)
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By differentiation of the identity‡ BikB−1
kj = δij the following component expression for the

last derivative on the right-hand side of the above formula is obtained:

∂B−1
ij

∂Bkl
= −1

2
(B−1

ik B−1
lj + B−1

il B−1
jk ). (13.109)

Substitution of this expression together with (13.93) into (13.108) then gives

∂τij

∂Bkl
=

J

2
g′(J) δijB

−1
kl +

f µ0
2

(δikδjl + δilδjk) +
(1 − f)µ0

2
(B−1

ik B−1
jl + B−1

il B−1
jk ).

(13.110)
Finally, by substituting the above expression into (13.89), the following explicit formula for
the Cartesian components of a is obtained:

aijkl = g′(J) δijδkl +
f µ0
J

(δikBjl + δjkBil)

+
(1 − f)µ0

J
(δilB

−1
jk + δjlB

−1
ik ) − σilδjk. (13.111)

The computational implementation of this formula is a relatively straightforward program-
ming exercise.

13.5. Application: Ogden material implementation

Practical use of the concepts introduced in the previous sections of this chapter is made
in this section where the computational implementation of the Ogden material model is
described in detail. The fundamental routines of HYPLAS shown here are: SUOGD (State Update
procedure for the OGDen material model), and CSTOGD (Consistent Spatial Tangent modulus
for the OGDen material model). These have been coded for the plane stress, plane strain and
axisymmetric cases and use the two versions of the model (incompressible and regularised)
as follows:

1. plane stress – incompressible version only (described in Section 13.3.1);

2. plane strain – regularised version only;

3. axisymmetric – regularised version only.

13.5.1. SUBROUTINE SUOGD

The pseudo-code of this procedure is provided in Box 13.1 which shows the steps required
(with the corresponding expressions) in the computation of the stress for the Ogden material
model. For a given deformation gradient F , SUOGD returns the corresponding Cauchy stress
components. In program HYPLAS, the stresses computed in SUOGD are used in subroutine
IFSTD2 (or IFFB2) to assemble the element internal force vector. The FORTRAN source
code of SUOGD in listed below.

‡B−1
kj denotes the component kj of the tensorB−1.
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Box 13.1. Stress-updating procedure for the Ogden material model.

HYPLAS procedure: SUOGD

(i) Given the deformation gradient, F , compute B := F F T

(ii) Perform spectral decomposition of B (routine SPDEC2) and compute principal
stretches

B =
∑

i

bi Mi, λi :=
√

bi

(iii) Compute principal Kirchhoff stresses

(a) Plane stress. Use incompressible model

τβ :=

N∑
p=1

µp[λ
αp

β − (λ1λ2)
−αp ]

(b) Plane strain and axisymmetric. Use regularised model

τi :=
N∑

p=1

µpJ−αp/3[λ
αp

i − 1
3
(λ

αp

1 + λ
αp

2 + λ
αp

3 )] + K ln J

(iv) Assemble Cauchy stress
σ := J−1

∑
i

τi Mi

1 SUBROUTINE SUOGD
2 1( B ,IPROPS ,NTYPE ,RPROPS ,RSTAVA ,

3 2 STRES ,THICK )

4 IMPLICIT DOUBLE PRECISION (A-H,O-Z)

5 PARAMETER(IPOGDC=2)
6 LOGICAL DUMMY
7 PARAMETER
8 1( MCOMP=4 ,MSTRE=4 ,NDIM=2 )
9 DIMENSION

10 1 B(MCOMP) ,IPROPS(*) ,RPROPS(*) ,

11 2 RSTAVA(MSTRE) ,STRES(MSTRE)
12 DIMENSION
13 1 EIGPRJ(MCOMP,NDIM) ,EIGB(NDIM) ,PSTRES(3) ,

14 2 PSTRTC(3)

15 DATA R1 ,R3 /

16 1 1.0D0,3.0D0/
17 C***********************************************************************
18 C STRESS UPDATE PROCEDURE FOR OGDEN TYPE HYPERELASTIC MATERIAL MODEL.
19 C PLANE STRESS, PLANE STRAIN AND AXISYMMETRIC IMPLEMENTATIONS.
20 C***********************************************************************
21 C Retrieve Ogden material constants

22 C =================================
23 C Number of terms in Ogden’s strain-energy function

24 NOGTRM=IPROPS(3)
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25 C Bulk modulus
26 BULK=RPROPS(IPOGDC+NOGTRM*2)
27 C Compute principal stretches

28 C ===========================
29 C Perform spectral decomposition of the left Cauchy-Green tensor B

30 CALL SPDEC2
31 1( EIGPRJ ,EIGB ,DUMMY ,B )
32 C Compute in-plane principal stretches

33 PSTRTC(1)=SQRT(EIGB(1))

34 PSTRTC(2)=SQRT(EIGB(2))
35 C...and out-of-plane stretches

36 IF(NTYPE.EQ.1)THEN

37 PSTRTC(3)=R1/(PSTRTC(1)*PSTRTC(2))

38 ELSEIF(NTYPE.EQ.2)THEN

39 PSTRTC(3)=R1
40 ELSEIF(NTYPE.EQ.3)THEN

41 PSTRTC(3)=SQRT(B(4))
42 ENDIF
43 C Compute principal Kirchhoff stresses

44 C ====================================
45 CALL RVZERO(PSTRES,3)

46 IF(NTYPE.EQ.1) THEN
47 C Plane stress: Exact incompressibility assumed

48 C ---------------------------------------------
49 DO 10 I=1,NOGTRM

50 CMU=RPROPS(IPOGDC-1+I*2-1)
51 ALPHA=RPROPS(IPOGDC-1+I*2)
52 PSTRES(1)=PSTRES(1)+CMU*(PSTRTC(1)**ALPHA-

53 1 (PSTRTC(1)*PSTRTC(2))**(-ALPHA))
54 PSTRES(2)=PSTRES(2)+CMU*(PSTRTC(2)**ALPHA-
55 1 (PSTRTC(1)*PSTRTC(2))**(-ALPHA))
56 10 CONTINUE
57 DETF=R1
58 ELSE IF(NTYPE.EQ.2.OR.NTYPE.EQ.3)THEN
59 C Plane strain and axisymmetric: Regularised Ogden constitutive law

60 C -----------------------------------------------------------------
61 C Compute principal deviatoric Kirchhoff stresses

62 R1D3=R1/R3

63 DETF=PSTRTC(1)*PSTRTC(2)
64 IF(NTYPE.EQ.3)DETF=DETF*PSTRTC(3)
65 DO 20 I=1,NOGTRM

66 CMU=RPROPS(IPOGDC-1+I*2-1)
67 ALPHA=RPROPS(IPOGDC-1+I*2)
68 FACTOR=R1D3*(PSTRTC(1)**ALPHA+PSTRTC(2)**ALPHA+

69 1 PSTRTC(3)**ALPHA)
70 FACVOL=DETF**(-ALPHA*R1D3)

71 PSTRES(1)=PSTRES(1)+CMU*FACVOL*(PSTRTC(1)**ALPHA-FACTOR)
72 PSTRES(2)=PSTRES(2)+CMU*FACVOL*(PSTRTC(2)**ALPHA-FACTOR)
73 PSTRES(3)=PSTRES(3)+CMU*FACVOL*(PSTRTC(3)**ALPHA-FACTOR)
74 20 CONTINUE
75 C Add hydrostatic Kirchhoff pressure (incompressibility penalty term)

76 PRESS=BULK*LOG(DETF)
77 DO 30 I=1,3

78 PSTRES(I)=PSTRES(I)+PRESS
79 30 CONTINUE
80 ENDIF
81 C Assemble array of Cauchy stress tensor components

82 C ==================================================
83 CALL RVZERO(STRES,3)

84 R1DDET=R1/DETF
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85 PSTRES(1)=PSTRES(1)*R1DDET

86 PSTRES(2)=PSTRES(2)*R1DDET
87 DO 50 ICOMP=1,3
88 DO 40 IDIR=1,2

89 STRES(ICOMP)=STRES(ICOMP)+PSTRES(IDIR)*EIGPRJ(ICOMP,IDIR)
90 40 CONTINUE
91 50 CONTINUE
92 IF(NTYPE.EQ.2.OR.NTYPE.EQ.3)STRES(4)=PSTRES(3)*R1DDET

93 C Update thickness (plane stress only) and store left Cauchy-Green

94 C tensor components in state variables vector RSTAVA

95 C ======================================================================
96 RSTAVA(1)=B(1)

97 RSTAVA(2)=B(2)

98 RSTAVA(3)=B(3)

99 IF(NTYPE.EQ.1)THEN

100 THICK=THICK*PSTRTC(3)

101 RSTAVA(4)=PSTRTC(3)*PSTRTC(3)

102 ELSEIF(NTYPE.EQ.2)THEN

103 RSTAVA(4)=R1

104 ELSEIF(NTYPE.EQ.3)THEN

105 RSTAVA(4)=B(4)
106 ENDIF
107 C
108 RETURN
109 END

The arguments of SUOGD

→ B [B]. Array containing the components of the current left Cauchy–Green strain tensor.

→ IPROPS. Array of integer material properties. IPROPS(3) contains the number of terms
in the Ogden strain-energy function, NOGTRM. This is the only integer material property
required by SUOGD. IPROPS(3) is set in subroutine RDOGD during the input phase of
HYPLAS.

→ NTYPE. Stress state-type flag. Its value is: 1 for plane stress, 2 for plane strain and 3 for
axisymmetric case.

→ RPROPS. Array of real material properties. It contains the Ogden constants {µp, αp}
for p = 1, . . . , NOGTRM and the logarithmic bulk modulus, K . The bulk modulus is
used only in the compressible version of the Ogden model, adopted in the plane strain
and axisymmetric cases only. It is not used in plane stress where the incompressible
version of the model is adopted. Array RPROPS is set in subroutine RDOGD during the
input phase of HYPLAS.

← RSTAVA [B]. Array of state variables other than the stress components. For the present
implementation of the Ogden material, this array stores the current left Cauchy–Green
tensor, B.

← STRES [σ]. Array containing the updated Cauchy stress tensor components.

↔ THICK [t0, t]. Initial Gauss point thickness, t0, on entry. Returns as the updated
thickness, t. Used only in the plane stress case.
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Some local variables and arrays of SUOGD

• EIGB [bi]. Array of eigenvalues of B.

• EIGPRJ [Mi, i = 1, 2]. Matrix containing the components of the in-plane eigenprojec-
tion tensors of B.

• PSTRES [τi]. Array of principal Kirchhoff stresses.

• PSTRTC [λi]. Array of principal stretches.

Function calls from SUOGD

• RVZERO. Initialises relevant arrays with zeros.

• SPDEC2. Called to perform the spectral decomposition of B.

13.5.2. SUBROUTINE CSTOGD

This routine computes the consistent (exact) spatial tangent modulus, a, for the Ogden
material model whose stress update is implemented in SUOGD. The main steps and expressions
(previously derived) involved in the computation of a are shown in Box 13.2 in pseudo-code
format. The FORTRAN source code of CSTOGD is given below.

1 SUBROUTINE CSTOGD
2 1( AMATX ,B ,IPROPS ,NTYPE ,RPROPS ,

3 2 STRES )
4 IMPLICIT DOUBLE PRECISION (A-H,O-Z)
5 LOGICAL OUTOFP ,REPEAT
6 PARAMETER
7 1( MADIM=5 ,MSTRE=4 ,NDIM=2 )

8 PARAMETER(IPOGDC=2)
9 DIMENSION

10 1 AMATX(MADIM,MADIM) ,B(MSTRE) ,IPROPS(*) ,

11 2 RPROPS(*) ,STRES(MSTRE)
12 DIMENSION
13 1 DELTA(3,3) ,DPSTRE(3,3) ,DTAUDB(MSTRE,MSTRE),

14 2 EIGPRJ(MSTRE,NDIM) ,EIGB(NDIM) ,PSTALP(3) ,

15 3 PSTRES(3) ,PSTRTC(3)
16 DATA
17 1 DELTA(1,1) ,DELTA(1,2) ,DELTA(1,3) /

18 2 1.0D0 ,0.0D0 ,0.0D0 /

19 3 DELTA(2,1) ,DELTA(2,2) ,DELTA(2,3) /

20 4 0.0D0 ,1.0D0 ,0.0D0 /

21 5 DELTA(3,1) ,DELTA(3,2) ,DELTA(3,3) /

22 6 0.0D0 ,0.0D0 ,1.0D0 /
23 DATA
24 1 R1 ,R2 ,R3 ,R6 /

25 2 1.0D0,2.0D0,3.0D0,6.0D0/
26 C***********************************************************************
27 C COMPUTATION OF THE CONSISTENT SPATIAL TANGENT MODULUS ’a’ FOR
28 C OGDEN TYPE HYPERELASTIC MATERIAL MODEL.
29 C PLANE STRESS, PLANE STRAIN AND AXISYMMETRIC IMPLEMENTATIONS.
30 C***********************************************************************
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Box 13.2. Computation of the spatial tangent modulus for the Ogden material
model.

HYPLAS procedure: CSTOGD

(i) Given the deformation gradient, F , compute B := F F T

(ii) Perform spectral decomposition of B (routine SPDEC2) and compute principal
stretches

B =
∑

i

bi Mi, λi :=
√

bi

(iii) Recover principal Kirchhoff stresses (from given σ)

τi := J σ : Mi

(iv) Compute principal Kirchhoff stress derivatives

(a) Plane stress. Use incompressible model

∂τi

∂bj
:=

N∑
p=1

µpαp

2λ2
j

[λ
αp

j δij + (λ1λ2)
−αp ]

(b) Plane strain and axisymmetric. Use regularised model

f := 1
3
(λ

αp

1 + λ
αp

2 + λ
αp

3 )

∂τi

∂bj
:=

N∑
p=1

µpαp J−αp/3

6λ2
j

[f − λ
αp

i − λ
αp

j + 3λ
αp

i δij ] +
K

2λ2
j

(v) Assemble ∂τ/∂B (use routine DGISO2)

(vi) Compute spatial tangent modulus

aijkl =
2

J

∂τij

∂Bkm
Bml − σil δjk

31 C Set Ogden material constants

32 C ============================
33 C Number of terms in Ogden’s strain-energy function

34 NOGTRM=IPROPS(3)

35 C Bulk modulus (incompressibility penalty parameter)

36 BULK=RPROPS(IPOGDC+NOGTRM*2)
37 C Compute principal stretches

38 C ===========================
39 C Perform spectral decomposition of the left Cauchy-Green tensor B

40 CALL SPDEC2
41 1( EIGPRJ ,EIGB ,REPEAT ,B )

42 C Compute in-plane principal stretches

43 PSTRTC(1)=SQRT(EIGB(1))

44 PSTRTC(2)=SQRT(EIGB(2))

45 C and out-of-plane stretches

46 IF(NTYPE.EQ.1)THEN
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47 PSTRTC(3)=R1/(PSTRTC(1)*PSTRTC(2))
48 DETF=R1
49 ELSEIF(NTYPE.EQ.2)THEN

50 PSTRTC(3)=R1
51 DETF=PSTRTC(1)*PSTRTC(2)
52 ELSEIF(NTYPE.EQ.3)THEN

53 PSTRTC(3)=SQRT(B(4))

54 DETF=PSTRTC(1)*PSTRTC(2)*PSTRTC(3)
55 ENDIF
56 C Recover principal Kirchhoff stresses (from the given Cauchy stress)

57 PSTRES(1)=(STRES(1)*EIGPRJ(1,1)+STRES(2)*EIGPRJ(2,1)+

58 1 R2*STRES(3)*EIGPRJ(3,1))*DETF

59 PSTRES(2)=(STRES(1)*EIGPRJ(1,2)+STRES(2)*EIGPRJ(2,2)+

60 1 R2*STRES(3)*EIGPRJ(3,2))*DETF

61 IF(NTYPE.EQ.2.OR.NTYPE.EQ.3)PSTRES(3)=STRES(4)*DETF
62 C Compute derivatives of principal Kirchhoff stresses

63 C ===================================================
64 CALL RVZERO(DPSTRE,9)

65 IF(NTYPE.EQ.1) THEN
66 C Plane stress: Perfectly incompressibility assumed

67 C -------------------------------------------------
68 NSTRA=2
69 DO 10 IP=1,NOGTRM

70 ALPHA=RPROPS(IPOGDC+IP*2-1)
71 ALPHMU=ALPHA*RPROPS(IPOGDC+IP*2-2)
72 PSTALP(1)=PSTRTC(1)**ALPHA
73 PSTALP(2)=PSTRTC(2)**ALPHA
74 FACTOR=R1/(PSTALP(1)*PSTALP(2))
75 DO I=1,NSTRA
76 DO J=1,NSTRA

77 DPSTRE(I,J)=DPSTRE(I,J)+ALPHMU/(R2*PSTRTC(J)**2)*

78 1 (PSTALP(J)*DELTA(I,J)+FACTOR)
79 END DO
80 END DO
81 10 CONTINUE
82 ELSE IF(NTYPE.EQ.2.OR.NTYPE.EQ.3)THEN
83 C Plane strain and axisymmetric: Regularised Ogden model

84 C ------------------------------------------------------
85 C compute principal Kirchhoff stresses derivatives

86 R1D3=R1/R3
87 IF(NTYPE.EQ.2)THEN
88 NSTRA=2
89 ELSEIF(NTYPE.EQ.3)THEN
90 NSTRA=3
91 ENDIF
92 DO 40 IP=1,NOGTRM

93 CMU=RPROPS(IPOGDC-1+IP*2-1)
94 ALPHA=RPROPS(IPOGDC-1+IP*2)
95 PSTALP(1)=PSTRTC(1)**ALPHA
96 PSTALP(2)=PSTRTC(2)**ALPHA
97 PSTALP(3)=PSTRTC(3)**ALPHA
98 ALPHMU=ALPHA*CMU
99 FACTOR=R1D3*(PSTALP(1)+PSTALP(2)+PSTALP(3))

100 FACVOL=DETF**(-ALPHA*R1D3)
101 DO 30 I=1,NSTRA
102 DO 20 J=1,NSTRA

103 DPSTRE(I,J)=DPSTRE(I,J)+ALPHMU*FACVOL/(R6*PSTRTC(J)**2)*

104 1 (FACTOR-PSTALP(I)-PSTALP(J)+R3*PSTALP(I)*
105 2 DELTA(I,J))
106 20 CONTINUE
107 30 CONTINUE
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108 40 CONTINUE
109 DO 60 I=1,NSTRA
110 DO 50 J=1,NSTRA

111 DPSTRE(I,J)=DPSTRE(I,J)+BULK/(R2*PSTRTC(J)**2)
112 50 CONTINUE
113 60 CONTINUE
114 ENDIF
115 C Compute the derivative of the Kirchhoff stress with respect to B

116 C (use routine for computation of derivative of general isotropic

117 C tensor functions of one tensor)
118 C ================================================================
119 IF(NTYPE.EQ.3)THEN
120 OUTOFP=.TRUE.
121 NADIM=5
122 ELSE
123 OUTOFP=.FALSE.
124 NADIM=4
125 ENDIF
126 CALL DGISO2
127 1( DPSTRE ,DTAUDB ,EIGPRJ ,EIGB ,PSTRES ,

128 2 OUTOFP ,REPEAT )
129 C Assemble the spatial tangent modulus ’a’

130 C ========================================
131 R2DDET=R2/DETF
132 C upper triangle and diagonal terms

133 AMATX(1,1)=R2DDET*(DTAUDB(1,1)*B(1)+DTAUDB(1,3)*B(3))-STRES(1)

134 AMATX(1,2)=R2DDET*(DTAUDB(1,3)*B(1)+DTAUDB(1,2)*B(3))

135 AMATX(1,3)=R2DDET*(DTAUDB(1,1)*B(3)+DTAUDB(1,3)*B(2))-STRES(3)

136 AMATX(1,4)=R2DDET*(DTAUDB(1,3)*B(3)+DTAUDB(1,2)*B(2))

137 AMATX(2,2)=R2DDET*(DTAUDB(3,3)*B(1)+DTAUDB(3,2)*B(3))

138 AMATX(2,3)=R2DDET*(DTAUDB(3,1)*B(3)+DTAUDB(3,3)*B(2))-STRES(2)

139 AMATX(2,4)=R2DDET*(DTAUDB(3,3)*B(3)+DTAUDB(3,2)*B(2))

140 AMATX(3,3)=R2DDET*(DTAUDB(3,1)*B(3)+DTAUDB(3,3)*B(2))

141 AMATX(3,4)=R2DDET*(DTAUDB(3,3)*B(3)+DTAUDB(3,2)*B(2))-STRES(3)

142 AMATX(4,4)=R2DDET*(DTAUDB(2,3)*B(3)+DTAUDB(2,2)*B(2))-STRES(2)

143 IF(NTYPE.EQ.3) THEN

144 AMATX(1,5)=R2DDET*DTAUDB(1,4)*B(4)

145 AMATX(2,5)=R2DDET*DTAUDB(3,4)*B(4)

146 AMATX(3,5)=R2DDET*DTAUDB(3,4)*B(4)

147 AMATX(4,5)=R2DDET*DTAUDB(2,4)*B(4)

148 AMATX(5,5)=R2DDET*DTAUDB(4,4)*B(4)-STRES(4)
149 ENDIF
150 C lower triangle

151 DO 80 J=1,NADIM
152 DO 70 I=J+1,NADIM

153 AMATX(I,J)=AMATX(J,I)
154 70 CONTINUE
155 80 CONTINUE
156 C
157 RETURN
158 END

The arguments of CSTOGD

← AMATX [a]. Spatial tangent modulus arranged in matrix form.

→ B [B]. Array containing the components of the current left Cauchy–Green strain tensor.

→ IPROPS. Array of integer material properties (refer to page 541).



546 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APPLICATIONS

→ NTYPE. Stress state type flag (refer to page 541).

→ RPROPS. Array of real material properties (refer to page 541).

→ STRES [σ]. Array of current Cauchy stress tensor components.

Some local variables and arrays of CSTOGD

• DELTA [δij]. Krönecker delta.

• DPSTRE [∂τi/∂bj]. Matrix containing the derivatives of the principal Kirchhoff
stresses.

• EIGB [bi]. Array of eigenvalues of B.

• EIGPRJ [Mi, i = 1, 2]. Matrix containing the components of the in-plane eigenprojec-
tion tensors of B.

• PSTRES [τi]. Array of principal Kirchhoff stresses.

• PSTRTC [λi]. Array of principal stretches.

Function calls from CSTOGD

• DGISO2. Called to assemble the isotropic tensor function derivative ∂τ/∂B.

• RVZERO. Initialises relevant arrays with zeros.

• SPDEC2. Called to perform the spectral decomposition of B.

13.6. Numerical examples

A set of seven finite element examples of finite hyperelasticity applications is presented this
section. The examples presented here illustrate the application of the framework discussed
above in the numerical simulation of solids modelled by means of hyperelastic theories. The
numerical results of the first two examples have been obtained with program HYPLAS. The
remaining examples include three-dimensional membrane applications as well as a plane and
an axisymmetric problem involving contact constraints. We recall that such features – three-
dimensional membranes and contact constraints – are not available in the standard version
of HYPLAS that accompanies this book. Different finite element programs have been used
in such examples. It should be emphasised, however, that the basic hyperelastic algorithm
– the stress-updating procedure and the computation of the elasticity tensor – employed in
such programs are the ones described in the previous sections of this chapter. These are fully
incorporated into HYPLAS.
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Figure 13.1. Annular plate: (a) geometry and boundary conditions; (b) reaction-displacement diagram.
(Reproduced with permission from Finite elasticity in spatial description: Linearization aspects with
membrane applications, EA de Souza Neto, D Perić and DRJ Owen, International Journal for
Numerical Methods in Engineering, Vol 38 c© 1995 John Wiley & Sons, Ltd.)

13.6.1. AXISYMMETRIC EXTENSION OF AN ANNULAR PLATE

This example studies the axisymmetric stretching of an annular rubber sheet. This problem
has been considered by Parisch (1986). The sheet, with initial geometry illustrated in
Figure 13.1(a), is assumed to be made of an incompressible Mooney–Rivlin material with
constants

C1 = 18.35 psi and C2 = 1.468 psi.

In program HYPLAS, the Ogden model in plane stress is used with the following set of material
parameters:

N = 2, µ1 = 2C1, µ2 = −2C2, α1 = 2, α2 = −2,

which correspond to the above Mooney–Rivlin material. Recall that in the HYPLAS imple-
mentation of the Ogden model, perfect incompressibility is assumed under plane stress. Due
to symmetry, only one quadrant of the sheet is considered. A mesh containing 432 three-
noded constant strain triangular elements is used to discretize the sheet with a total number
of 247 nodes. A radial displacement of 6 in is prescribed on the external edge as indicated
in Figure 13.1(a). The reaction force obtained on the external edge, corresponding to a 45o

slice of the plate, is plotted in Figure 13.1(b) against the radial displacement of the external
and internal edges. The results are in very close agreement with the shell simulation reported
by Parisch (1986). We emphasise that, due to the use of the full Newton–Raphson algorithm,
the final configuration (6 in radial displacement of the external edge) can be reached in one
single step with the quadratic rate of convergence depicted in Table 13.1.

13.6.2. STRETCHING OF A SQUARE PERFORATED RUBBER SHEET

The problem here consists of the axial stretching of a square rubber sheet containing a
circular hole. Again, the incompressible Mooney–Rivlin strain-energy function is adopted.
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Table 13.1. Annular plate. Newton–Raphson convergence.

Iteration Residual force norm

1 0.545187 E + 01
2 0.134653 E + 01
3 0.148804 E + 00
4 0.148151 E − 02
5 0.198144 E − 06
6 0.974865 E − 13
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Figure 13.2. Square perforated sheet. Initial geometry and boundary conditions. (Reproduced with
permission from Finite elasticity in spatial description: Linearization aspects with membrane applica-
tions, EA de Souza Neto, D Perić and DRJ Owen, International Journal for Numerical Methods in
Engineering, Vol 38 c© 1995 John Wiley & Sons, Ltd.)

The material constants are

C1 = 25 and C2 = 7.

As in the previous example, the corresponding incompressible Ogden material in plane stress
is adopted in HYPLAS. The initial geometry and the boundary conditions are schematically
illustrated in Figure 13.2. We define the non-dimensional factor

γ ≡ U

l
,

and the simulation is carried out up to γ = 1. A mesh containing 528 three-noded triangles
discretises the symmetric quarter of the sheet. It corresponds to a total 549 degrees of freedom
in the structure. Figure 13.3 shows the finite element mesh at the initial configuration (γ = 0)
alongside the final deformed mesh (γ = 1). The final configuration is reached in two equal-
size steps requiring five Newton–Raphson iterations per step for convergence with a tolerance
of 10−12 in the Euclidean norm of the out-of-balance forces. For both increments, the residual
norm of the kth iteration, ||Gk|| is plotted in Figure 13.4 against the residual of the subsequent
iteration k + 1. Note that, as a logarithmic scale is used in both axes, the slope 2:1 indicated
corresponds to quadratic convergence. In Figure 13.5, we plot the results obtained for the
reaction force R on the restrained edge versus the load parameter γ. It is in good agreement
with the numerical solutions presented by Parisch (1986) and Oden (1972).
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Figure 13.3. Square perforated sheet. Finite element meshes. (Reproduced with permission from Finite
elasticity in spatial description: Linearization aspects with membrane applications, EA de Souza Neto,
D Perić and DRJ Owen, International Journal for Numerical Methods in Engineering, Vol 38 c© 1995
John Wiley & Sons, Ltd.)
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Figure 13.4. Square perforated sheet. Convergence behaviour. (Reproduced with permission from Finite
elasticity in spatial description: Linearization aspects with membrane applications, EA de Souza Neto,
D Perić and DRJ Owen, International Journal for Numerical Methods in Engineering, Vol 38 c© 1995
John Wiley & Sons, Ltd.)
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Figure 13.5. Square perforated sheet. Edge reactions. (Reproduced with permission from Finite
elasticity in spatial description: Linearization aspects with membrane applications, EA de Souza Neto,
D Perić and DRJ Owen, International Journal for Numerical Methods in Engineering, Vol 38 c© 1995
John Wiley & Sons, Ltd.)

13.6.3. INFLATION OF A SPHERICAL RUBBER BALLOON

In this problem, we consider the simulation of a spherical rubber membrane inflated under
internal pressure. A mesh of 675 isoparametric three-noded plane stress three-dimensional
membrane elements, shown in Figure 13.6, discretises one octant of the sphere with symmetry
boundary conditions imposed along the edges. Recall that three-dimensional membranes are
not available in program HYPLAS. The present simulation was carried out with a different
finite element program. Also note that, here, the pressure load is non-conservative. In order to
achieve quadratic rates of convergence to equilibrium under such a configuration-dependent
load, appropriate linearisation of the external finite element force vector is needed which
results in an extra term – the load-stiffness matrix – to be added to the element stiffness
matrix.§ This facility is not available in HYPLAS, but has been considered in the simulation
reported here. A three-term incompressible Ogden strain energy function is assumed. The
material constants are

α1 = 1.3, α2 = 5.0, α3 = −2.0,
µ1 = 6.3, µ2 = 0.012, µ3 = −0.1 kg/cm2.

These parameters have been determined by Ogden (1972) in order to fit the experiments
carried out by Treloar (1944) on natural vulcanised rubber. The analytical solution for a
general hyperelastic spherical balloon has been presented by Ogden (1972, 1984). Needleman
(1977) has used the Ritz–Galerkin method to investigate aspherical equilibrium configura-
tions of initially imperfect balloons. The elastic stability of this problem is known to be
crucially dependent on the specific strain-energy function adopted (Beatty, 1987; Ogden,
1972). Pressure instability is detected, in particular, for the three-term Ogden function with

§The derivation of load-stiffness matrices is discussed in Section 4.3.6, page 106.
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Figure 13.6. Spherical balloon. Finite element mesh. (Reproduced with permission from Finite
elasticity in spatial description: Linearization aspects with membrane applications, EA de Souza Neto,
D Perić and DRJ Owen, International Journal for Numerical Methods in Engineering, Vol 38 c© 1995
John Wiley & Sons, Ltd.)

the constants chosen above. For this reason, the Arc-Length Method was employed here in
conjunction with the Newton–Raphson algorithm to allow equilibrium to be found beyond the
instability point. The Arc-Length Method has been described in Chapter 4. For convenience,
we define the normalised internal pressure

p∗ ≡ p r0
2 t0

,

and the expansion ratio of the balloon

λ ≡ r

r0
,

where r and r0 are, respectively, the current and initial radii of the balloon, t0 is the initial
thickness of the rubber membrane and p is the current internal pressure. Ten increments
were employed to reach the final configuration with λ = 747%. In Figure 13.7, the expansion
ratio obtained in the finite element simulation is plotted versus p∗. For comparison, Ogden’s
membrane analytical solution is also plotted. The numerical result matches the exact pressure-
expansion curve very closely.

13.6.4. RUGBY BALL

The simulation of the inflation of an axisymmetric ellipsoidal balloon is carried out in this
example. The initial geometry of the balloon corresponds to the shape of an official rugby
ball: the axial and the transverse radii, r1 and r2, measure respectively 14.5 and 9.5 cm.
The ball is assumed to be made of the three-term Ogden material of the previous example
with 3 mm uniform initial thickness. The topology of the finite element mesh as well as
the boundary conditions are the same as in the spherical balloon problem and the arc-length
method is also used in conjunction with the Newton–Raphson algorithm. The evolution of the
radii r1 and r2 obtained in the simulation is plotted in the diagram of Figure 13.8. The snap-
through behaviour observed in the example of Section 13.6.3 is also detected for the present
problem. As shown in the graph, starting from its initial configuration (Figure 13.9(a)),
the ball inflates under internal pressure maintaining its ellipsoidal shape (r2 < r1) until it
reaches a critical point with internal pressure p = 0.149 kg/cm2. Then, a sharp decrease of
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Figure 13.7. Spherical balloon. Pressure-expansion diagram. (Reproduced with permission from Finite
elasticity in spatial description: Linearization aspects with membrane applications, EA de Souza Neto,
D Perić and DRJ Owen, International Journal for Numerical Methods in Engineering, Vol 38 c© 1995
John Wiley & Sons, Ltd.)

internal pressure occurs followed by a monotonic increase. Interestingly, in the descending
branch of the pressure-expansion diagram, the radii r1 and r2 are nearly equal, i.e. the ball
has an approximately spherical shape. The configuration corresponding to point A of the
diagram, with r1 = r2 = 22.6 cm and p ≈ 0.109 kg/cm2, is depicted in Figure 13.9(b). After
the minimum pressure (p = 0.065 kg/cm2) is reached, the ball recovers its ellipsoidal shape
with r2 < r1.

13.6.5. INFLATION OF INITIALLY FLAT MEMBRANES

In this example, we simulate the inflation of a circular and a square initially flat thin rubber
sheet. The simulation of the circular membrane has been carried out by Wriggers and
Taylor (1990) employing an axisymmetric membrane formulation. The inflation of the square
membrane illustrates a truly three-dimensional application. The geometry of the problems
and the finite element discretisations are shown in Figure 13.10. In both cases, a mesh
containing 512 three-noded three-dimensional membrane triangular elements was employed
to discretise the corresponding symmetric quadrant of the problem. The material parameters
are the same as in the previous two examples. Again, the Arc-Length Method is used in
order to capture the snap-through behaviour. To avoid numerical problems arising from the
zero tangent stiffness of the flat membranes in the normal direction, both sheets are slightly
prestretched before the pressure loading is applied. The results for the normal deflections of
the mid points A and B (indicated in Figure 13.10) are plotted in the diagram of Figure 13.11
versus the applied pressure p. The pressure–deflection diagram obtained for both membranes
are similar. After reaching a critical point, a considerable drop is followed by a monotonic
increase of the pressure load. This behaviour has also been observed in the spherical balloon
example. Note that instability occurs at lower pressure (and larger mid-deflection) for the
square sheet. Figure 13.12 depicts the evolution of the deformed geometry of the square
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Figure 13.8. Rugby ball. Pressure-expansion diagram. (Reproduced with permission from Finite
elasticity in spatial description: Linearization aspects with membrane applications, EA de Souza Neto,
D Perić and DRJ Owen, International Journal for Numerical Methods in Engineering, Vol 38 c© 1995
John Wiley & Sons, Ltd.)

(a) (b)

Figure 13.9. Rugby ball. (a) Initial configuration, and (b) spherical configuration corresponding to
point A of the pressure–expansion diagram. (Reproduced with permission from Finite elasticity in
spatial description: Linearization aspects with membrane applications, EA de Souza Neto, D Perić and
DRJ Owen, International Journal for Numerical Methods in Engineering, Vol 38 c© 1995 John Wiley
& Sons, Ltd.)
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from Finite elasticity in spatial description: Linearization aspects with membrane applications, EA
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Figure 13.11. Flat membranes. Pressure-deflection diagram. (Reproduced with permission from Finite
elasticity in spatial description: Linearization aspects with membrane applications, EA de Souza Neto,
D Perić and DRJ Owen, International Journal for Numerical Methods in Engineering, Vol 38 c© 1995
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membrane. The initially flat sheet evolves into a spherical-type shape. Figures 13.12(a),
(b), (c) and (d) correspond, respectively, to the mid-deflections dB = 4.94, dB = 12.01,
dB = 17.49 and dB = 27.34 cm. The deformed state shown in Figure 13.12(b) is very close
to the instability point observed in the pressure–deflection curve.
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(a) (b)

(c) (d)

Figure 13.12. Square membrane. Deformed configurations; (a) dB = 4.94 cm; (b) dB = 12.01 cm;
(c) dB = 17.49 cm, and (d) dB = 27.34 cm. (Reproduced with permission from Finite elasticity in
spatial description: Linearization aspects with membrane applications, EA de Souza Neto, D Perić and
DRJ Owen, International Journal for Numerical Methods in Engineering, Vol 38 c© 1995 John Wiley
& Sons, Ltd.)

13.6.6. RUBBER CYLINDER PRESSED BETWEEN TWO PLATES

The plane strain simulation of the compression of a long rubber cylinder between two
frictionless rigid plates is carried out in this example. Two different material models which
fit the same experimental data are used:

1. the regularised Mooney–Rivlin material, with constants

C1 = 0.293 MPa, C2 = 0.177 MPa, K = 1410 MPa;

2. a three-term regularised Ogden model with coefficients

µ1 = 0.746 MPa, µ2 = −0.306 MPa, µ3 = 6.609× 10−5 MPa,

α1 = 1.748, α2 = −1.656, α3 = 7.671

and the same bulk modulus as for the Mooney–Rivlin simulation.
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Figure 13.13. Rubber cylinder pressed between two plates: (a) geometry and boundary conditions;
(b) initial mesh; and (c) deformed mesh at u = 250 mm. (Reproduced with permission from Design of
simple low-order finite elements for large-strain analysis of nearly incompressible solids, EA de Souza
Neto, D Perić, M Dutko and DRJ Owen, International Journal of Solids and Structures, Vol 33, Issue
20–22 c© 1996 Elsevier Science Ltd.)

Note that the high bulk modulus adopted here makes the material virtually incompressible,
so that appropriate treatment of quasi-incompressibility is required for a successful finite
element simulation. Here, the F-bar methodology thoroughly discussed in Chapter 15 is
adopted to overcome the problem. This problem has been considered originally by Sussman
and Bathe (1987) in the context of hybrid u/p finite elements and by Simo and Taylor (1991),
who employed a mixed formulation in conjunction with an augmented Lagrangian procedure
to handle near-incompressibility. The geometry of the problem and the boundary conditions
are illustrated in Figure 13.13(a). For symmetry reasons, only one quarter of the cylinder
cross-section is considered in the simulation. It is discretised with the mesh of 48 four-
noded F-bar elements shown in Figure 13.13(b). We remark that this type of finite element is
available in program HYPLAS. The deformed mesh obtained with a prescribed displacement
u = 250 mm of the plate is depicted in Figure 13.13(c). It is in good qualitative agreement
with the deformed mesh shown by Simo and Taylor (1991). The reaction forces per unit
thickness of the plate, obtained for the Mooney–Rivlin and Ogden models, are plotted in
Figure 13.14 against the plate deflection u. The curves are plotted up to u = 200 mm. For both
materials the results shown here agree with those obtained by Sussman and Bathe (1987).

13.6.7. ELASTOMERIC BEAD COMPRESSION

The numerical simulation of the compression of an elastomeric axisymmetric bead is
carried out in this example. The bead – a circular ring with trapezoidal cross-section –
is schematically represented in Figure 13.15. Its function is to provide sealing when the
plate, which contacts its top edge, is pressed downwards. Extremely high compressive strains
occur in this problem. In the finite element simulation, the bottom edge of the ring seal is
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Figure 13.14. Rubber cylinder pressed between two plates. Load-deflection curves. (Reproduced
with permission from Design of simple low-order finite elements for large-strain analysis of nearly
incompressible solids, EA de Souza Neto, D Perić, M Dutko and DRJ Owen, International Journal of
Solids and Structures, Vol 33, Issue 20–22 c© 1996 Elsevier Science Ltd.)

assumed clamped to a flat rigid base and both plate and base are idealised as rigid bodies with
frictionless contact condition on the boundaries. The bead is modelled as a regularised neo-
Hookean material with constant C = 2.5 and bulk modulus k = 1000. A mesh of 520 four-
noded F-bar axisymmetric elements is used to discretise the bead. Figure 13.16(a) shows the
mesh in its initial configuration. A total vertical displacement u = 0.25 is applied to the plate
in 25 increments. Deformed meshes obtained at different stages of the compression process
are depicted in Figures 13.16(b), (c) and (d). They correspond, respectively, to u = 0.09,
0.17 and the final configuration with u = 0.25. At the early stage shown in Figure 13.16(b),
the lateral surfaces of the seal make contact only with the top plate. At the later stages of
Figures 13.16(c) and (d), contact also occurs between the bead and the rigid base. The reaction
force obtained in the plate is plotted in the diagram of Figure 13.17 versus the imposed
displacement u.

13.7. Hyperelasticity with damage: the Mullins effect

It has been mentioned in Section 12.1.2 (page 473) that some rubbery materials are partic-
ularly susceptible to internal damaging. The underlying microscopic mechanism associated
with internal damaging of filled polymers has been briefly discussed in the text surrounding
Figure 12.2.

The phenomenological manifestation of the damage mechanism in filled rubbers is the
so-called Mullins effect. In a uniaxial cyclic extension experiment, the Mullins effect is
characterised by the degradation of the elastic stiffness at strain levels below the maximum
strain attained in the history of deformation (Mullins, 1969; Stern, 1967). A simplified
schematic illustration of the Mullins effect is given in Figure 13.18. During a typical (quasi-
static) uniaxial experiment with a filled polymer, the initial stretching up to ε1 follows the
stress–strain path A with unloading from ε1 via curve B. A subsequent stretching up to ε2
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Figure 13.15. Elastomeric bead compression. Initial geometry and boundary conditions. (Reproduced
with permission from Design of simple low-order finite elements for large-strain analysis of nearly
incompressible solids, EA de Souza Neto, D Perić, M Dutko and DRJ Owen, International Journal of
Solids and Structures, Vol 33, Issue 20–22 c© 1996 Elsevier Science Ltd.)
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Figure 13.16. Elastomeric bead compression. Finite element discretisation on the initial configuration
and deformed meshes obtained with the present element: (a) initial configuration; (b) u = 0.09;
(c) u = 0.17; and (d) final configuration, u = 0.25. (Reproduced with permission from Design of simple
low-order finite elements for large-strain analysis of nearly incompressible solids, EA de Souza Neto,
D Perić, M Dutko and DRJ Owen, International Journal of Solids and Structures, Vol 33, Issue 20–22
c© 1996 Elsevier Science Ltd.)

will follow path BC. Then, unloading will follow curve D with a third stretch occurring via
DE and so on. The above description shows that the Mullins effect is a clearly dissipative
phenomenon. Therefore, it cannot be modelled by means of purely hyperelastic theories.

The first attempt to model the Mullins effect through a phenomenological constitutive
theory appears to have been made by Gurtin and Francis (1981) in the one-dimensional
context. The Gurtin–Francis uniaxial model is very simple in concept. It is described in the
following.
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Figure 13.18. Mullins effect. Schematic representation.
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13.7.1. THE GURTIN–FRANCIS UNIAXIAL MODEL

The starting point of this model is the choice of the maximum axial strain attained in the
history of deformation

εm(t) ≡ max
0≤s≤t

{ε(s)}, (13.112)

as a measure of damage. Note that this phenomenological measure of damage is in fact closely
related to the microscopic mechanism of internal deterioration in filled polymers discussed
in Section 12.1.2. The number of broken polymer chains between filler particles (effectively
defining the state of internal damage) increases as the material is stretched and will remain
constant at strains below the maximum attained strain.¶

Having defined the damage measure, a constitutive equation expressing the uniaxial stress,
σ, as a function of the current axial strain, ε, and the state of damage (characterised by εm) is
then postulated as

σ(ε, εm) = f̄(ζ) σ0(εm), (13.113)

where ζ is the relative strain, defined as

ζ ≡ ε

εm
. (13.114)

From the definition of εm, it follows that

ζ ≤ 1 ∀ ε. (13.115)

The function f̄(ζ), named the master damage curve, satisfies for any ζ

0 ≤ f̄(ζ) ≤ 1, (13.116)

and the factor f̄ defines the loss of stiffness experienced by the polymer at strain levels below
the maximum previously attained strain, εm. The following additional condition is imposed
on f̄(ζ):

f̄(1) = 1, (13.117)

so that when the maximum strain occurs at the current time, i.e. when

εm = ε ⇔ ζ = 1,

the axial stress is given by
σ = σ0(εm). (13.118)

The stress–strain curve defined by the function σ0 is called the virgin curve. It is the stress–
strain curve obtained in a simple uniaxial experiment with monotonically increasing strain.
To characterise completely the material parameters for this model, we need, in addition to
the virgin curve, to determine the master damage curve f̄(ζ). This curve is obtained from
unloading experiments.

¶Here, we disregard other potentially important phenomena such as thermally activated damage, strain rate
effects, etc.
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Figure 13.19. Hencky-based uniaxial hyperelastic damage model. Stress–strain curves.

Example

The above concepts can be illustrated in the following simple example. Let us consider the
uniaxial version of the Hencky hyperelastic model of Section 13.2.3. For this model, the axial
Kirchhoff stress is given by

τ = E ε, (13.119)

where E is the logarithmic Young’s modulus and ε is the axial logarithmic strain. A Gurtin–
Francis-type model with underlying Hencky hyperelastic behaviour can be obtained by taking
the above logarithmic-based stress–strain relation as the virgin curve:

τ0(εm) ≡ E εm, (13.120)

where εm is the maximum logarithmic strain, and postulating a master damage curve defined
by, say,‖

f̄(ζ) ≡ ζ2 = (ε/εm)2. (13.121)

The final hyperelastic damage stress–strain relation will then be given by

τ = f̄(ζ) τ0(εm) = E ε2/εm. (13.122)

The resulting behaviour is illustrated in the graph of Figure 13.19 where the solid straight line
corresponds to monotonic loading and the parabolas plotted with dashed lines correspond
to the stress–strain relation upon unloading/reloading below the maximum attained strains:
εm = 0.4 and εm = 0.8.

‖We remark that the master damage curve adopted in the present example has been chosen only for the purpose
of illustrating the damage model. It is not based on experimental data.
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Maximum strain-dependent damage curve

A constitutive refinement of the above model can be introduced by making f̄ dependent also
on the maximum strain, εm; that is, we now have

f̄ = f̄(ζ, εm), (13.123)

and the stress constitutive equation reads

σ(ε, εm) = f̄(ζ, εm) σ0(εm). (13.124)

The above refinement allows different experimental unloading curves, obtained by unloading
from different maximum strain levels, to be accurately reproduced by the model.

13.7.2. THREE-DIMENSIONAL MODELLING. A BRIEF REVIEW

A pioneering step in the development of three-dimensional phenomenological constitutive
models capable of capturing the Mullins effect in finite element simulations was provided
by Simo (1987). This author proposed a continuum damage theory based on the principle
of strain equivalence (refer to Chapter 12) within a viscoelastic constitutive framework.
Subsequently, Govindjee and Simo (1991) developed a rate-independent theory meant to
model the Mullins effect in carbon black-filled rubbers. Their model, which was based
on micromechanical considerations, was further extended to account for viscous effects
(Govindjee and Simo, 1992). In the context of the rate-independent theory, the authors
(de Souza Neto et al., 1994b) introduced a purely phenomenological model whose finite
element implementation assumes a particularly simple format. This model will be described
in detail in Section 13.7.3. Further work in the field has been developed by Miehe (1995)
and Miehe and Keck (2000). In particular, the model proposed by Miehe and Keck (2000),
which incorporates viscous effects and plastic deformations, is reported to model accurately
the behaviour of certain filled rubbers subjected to relatively complex strain paths. Further
reference to recent developments in the constitutive description of damage in rubbers is
provided by Holzapfel (2000).

13.7.3. A SIMPLE RATE-INDEPENDENT THREE-DIMENSIONAL MODEL

In this section we describe the three-dimensional rate-independent hyperelastic damage
model proposed by the authors (de Souza Neto et al., 1994b). Its computational implemen-
tation into an implicit finite element framework will be addressed in Section 13.7.5. The
objective here is mainly to outline the basic concepts associated with hyperelastic damage
and its finite element implementation in the multidimensional case. The inherent simplicity
of this particular model, we believe, makes it especially suitable for practical applications.

The model is based on concepts analogous to those underlying the Gurtin–Francis uniaxial
theory. Firstly, let us consider a conventional isotropic hyperelastic model governed by a
free-energy function ψ0. The derivation that follows will be based on the principal stretch
representation of the free-energy function. Note, however, that the particular choice for the
representation of ψ0 is immaterial and all arguments of the following discussion remain
valid if any other equivalent representation is adopted. According to expression (13.33), the
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principal Kirchhoff stresses for such a material are given by

τi = ρ̄
∂ψ0

∂λi
λi, (13.125)

with no summation implied on repeated indices.
The crucial step in the definition of the hyperelastic damage model is the assumption

that the above constitutive equation for stress is valid only upon monotonic loading and
reloading with damage evolution. In addition, similarly to (13.113), we postulate a general
stress constitutive function given by

τi = f(ξ) τ0i (λ1, λ2, λ3), (13.126)

where

τ0i (λ1, λ2, λ3) ≡ ρ̄
∂ψ0

∂λi
λi, (13.127)

again with no summation implied on repeated indices. Analogously to its one-dimensional
counterpart, f̄ , the function f : [0, 1] → [0, 1] is expressed in terms of some, as yet not
defined, three-dimensional measure of relative strain ξ. It also satisfies

f(1) = 1. (13.128)

The damage variable

Generalising the idea of maximum strain of the Gurtin–Francis model (see expres-
sion (13.112)), the new variable, D, is defined as a history recording parameter for the
phenomenon of internal damage in general three-dimensional situations:

D(t) ≡ max
0≤s≤t

{ρ̄ ψ0(s)}. (13.129)

Remark 13.5. Definition (13.129) implies that the damage variable grows equally in tension
and compression so that the model cannot distinguish between these two situations. As filled
rubbers typically suffer substantially more damage in tension than in compression, the use
of the present model in situations where the damageable body is subjected to both tension
and compression is expected to produce unrealistic predictions. One possible alternative to
overcome this deficiency could be to link the damage variable to the maximum principal
stretch instead. This approach was adopted, for instance, by Govindjee and Simo (1992).

The relative strain measure

With the above-defined damage variable, the uniaxial relative strain, ζ, defined in (13.114)
may then be immediately generalised to the three-dimensional case as

ξ ≡ ρ̄ ψ0

D
. (13.130)

This completes the characterisation of the model.



564 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APPLICATIONS

Box 13.3. Three-dimensional constitutive model for damage in highly filled
polymers.

(i) Damage variable

D(t) ≡ max
0≤s≤t

{ρ̄ ψ0(s)}

(ii) Stress constitutive relation

τi = f(ξ) ρ̄
∂ψ0

∂λi
λi (no summation)

ξ ≡ ρ̄ ψ0

D

Material properties identification

For convenience, we summarise the overall model in Box 13.3. The identification of material
properties for the present model consists solely of the determination of the functions ψ0

and f .

Elastoplasticity analogy

Following the definition (13.129) for the damage internal variable, a straightforward analogy
between classical elastoplasticity (refer to Chapter 6) and the present model for elastic
damage may be established by introducing a damage surface (cf. yield surface) in the space
of principal stretches, defined by the equation

Φ(λ1, λ2, λ3, D) ≡ ρ̄ ψ0(λ1, λ2, λ3) − D = 0. (13.131)

For fixed D, the damage surface delimits the region of the space of principal stretches in
which the behaviour of the material is purely hyperelastic without evolution of damage. The
above definitions also imply the following complementarity law associated with the evolution
of damage or damage loading/unloading (cf. plastic loading/unloading criterion):

Φ ≤ 0, Ḋ ≥ 0, ḊΦ = 0. (13.132)

Thermodynamical aspects

Alternatively to the above arguments, the present constitutive equations for damage in filled
polymers can be obtained by postulating the existence of a free-energy function of the form

ρ̄ ψ(λ1, λ2, λ3, D) ≡ ρ̄ ψ(ρ̄ ψ0(λ1, λ2, λ3), D) =
∫ ρ̄ψ0

0

f

(
κ

D

)
dκ, (13.133)

recalling that ψ0 is the free-energy of the hypothetical hyperelastic (non-damageable) rubber
that governs the behaviour of the material upon continuous loading and f is the damage
master curve. Indeed, with the free-energy defined by (13.133), the principal Kirchhoff
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stresses are given by

τi = ρ̄
∂ψ

∂λi
λi = f

(
ρ̄ ψ0

D

)
ρ̄

∂ψ0

∂λi
λi, (13.134)

which is precisely the constitutive function (13.126). Note that within the elastic domain, i.e.
in the region of the principal stretches space delimited by the damage surface (with fixed
D), the expression above defines an essentially hyperelastic behaviour characterised by the
strain–energy function ψ.

Second law of thermodynamics

With the specific free-energy defined by (13.133), the second law of thermodynamics, in the
form of the Clausius–Duhem inequality (refer to Sections 3.4 and 3.5) requires that

−ρ̄
∂ψ

∂D
Ḋ ≥ 0. (13.135)

It has been shown by the authors de Souza Neto et al. (1994b) that a sufficient condition for
the Clausius–Duhem inequality to be satisfied is that f be a non-decreasing function. This,
together with the fact that f is a non-negative function, also guarantees that a ψ0 convex in
λi produces a potential ψ also convex in λi.

13.7.4. EXAMPLE: THE MODEL PROBLEM

To give the reader a better picture of the behaviour of the above model, this example utilises a
uniaxial stress–strain curve obtained under cyclic loading in the above model. The objective
is to show the capability of the theory in describing the Mullins effect at the local level.
The particular form of the function ψ0 employed to describe the stress–strain behaviour
during loading corresponds to an incompressible neo-Hookean strain-energy function (see
expression (13.38)) with the constant C1 chosen as

C1 = 135 psi.

The master damage curve adopted is plotted in Figure 13.20 (ρ̄ taken as unity). In a
uniaxial test, when subjected to the cyclic axial strain path shown in Figure 13.21(a), the
material described by the parameters above produces the uniaxial stress–strain curve plotted
in Figure 13.21(b). The axial strain measure referred to in the graph of Figure 13.21(b)
has been defined as λ − 1 where λ is the principal stretch in the axial direction. The stress
plotted in Figure 13.21(b) is the corresponding Cauchy principal stress. The solid line is the
virgin curve followed during monotonic loading. The dotted lines correspond to the material
behaviour with ρ̄ψ0 < D and illustrate the ability of the model to capture the Mullins effect.

13.7.5. COMPUTATIONAL IMPLEMENTATION

The computational implementation of the above model within the implicit finite element
framework of Chapter 4 requires, as usual, the two essential ingredients: (1) a procedure
to update the stress consistently with the constitutive equation of the model, and (2) the
computation of the corresponding tangent modulus. These are discussed in the following.
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Figure 13.20. Master damage curve. (Reproduced with permission from A phenomenological three-
dimensional rate-independent continuum damage model for highly filled polymers: Formulation and
computational aspects, EA de Souza Neto, D Perić and DRJ Owen, Journal of the Mechanics and
Physics of Solids, Vol 42, Issue 10 c© 1994 Elsevier Science Ltd.)

We remark that the hyperelastic-damage model is not incorporated into the standard version
of program HYPLAS that accompanies this book. However, as we shall see below, its
incorporation is a straightforward programming exercise that we will leave for the interested
reader.

Stress updating

Due to the path-dependent nature of the above elastic damage constitutive equations, a
numerical algorithm is required for the evaluation of stress and damage evolution throughout
the deformation history. The derivation of such an algorithm for the present model is
straightforward. The underlying idea is the following. Considering the typical (pseudo-) time
interval [tn, tn+1], if the current value of ρ̄ψ0 at tn+1 is greater than the previous maximum
value (Dn), then damage evolution necessarily occurs within the interval. If the current value
of ρ̄ψ0 is smaller than or equal to the previous maximum, then it will be assumed that no
damage evolution has occurred throughout the interval. The algorithm is listed in Box 13.4
in pseudo-code format.

Remark 13.6. In contrast to numerical integration procedures employed in classical elasto-
plasticity (these are thoroughly discussed in Chapter 7), the algorithm of Box 13.4 is exact,
independently of the increment size, provided that in the actual deformation path between
times tn and tn+1, the material is being loaded monotonically (ψ0 increasing monotonically)
or unloaded monotonically with possible reloading below the maximum attained value
of ρ̄ψ0.

Remark 13.7. The implementation of the algorithm of Box 13.4 in program HYPLASwith, for
instance, the Ogden material as the underlying hyperelastic law, is a straightforward exercise.
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Figure 13.21. The model problem: (a) strain history, and (b) uniaxial stress–strain curve. (Reproduced
with permission from A phenomenological three-dimensional rate-independent continuum damage
model for highly filled polymers: Formulation and computational aspects, EA de Souza Neto, D Perić
and DRJ Owen, Journal of the Mechanics and Physics of Solids, Vol 42, Issue 10 c© 1994 Elsevier
Science Ltd.)

The essential modification required to the existing Ogden stress updating implementation
(refer to subroutine SUOGD) in order to accommodate damage is the incorporation of the
operations carried out in items (ii)–(iv). Also, the storage of one extra state variable – the
damage internal variable, D – is required. This variable is to be handled completely analo-
gously to other internal state variables such as, for instance, the accumulated plastic strain
in conventional elastoplasticity models (refer, for example, to subroutine SUVM described
on page 224 for details). A logical flag similar to IFPLAS of SUVM is also needed. This is
addressed in Remark 13.8 below.

The tangent modulus

The second crucial component of the implicit finite element implementation of the model is
the calculation of its associated tangent moduli.
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Box 13.4. Algorithm for integration of hyperelastic damage constitutive equations.

(i) Given the deformation gradient F n+1, compute Bn+1 := F F T and perform the
spectral decomposition of Bn+1

Bn+1 =

3∑
i=1

λ2
i Mi

(ii) Evaluate current value of ψ0

ψ0
n+1 := ψ0(λ1, λ2, λ3)

(iii) Update damage variable

IF Φtrial
n+1 := ρ̄ψ0

n+1 − Dn ≤ 0 THEN

no damage evolution ⇒ Dn+1 := Dn

ELSE

damage evolution ⇒ Dn+1 := ρ̄ψ0
n+1

ENDIF

(iv) Update principal Kirchhoff stresses

ξ :=
ρ̄ψ0

n+1

Dn+1

τi := f(ξ) ρ̄
∂ψ0

∂λi
λi

∣∣∣∣
n+1

(v) Assemble Kirchhoff stress tensor

τn+1 :=
3∑

i=1

τi Mi

In contrast to purely hyperelastic theories, the situation here is similar to that of classical
elastoplasticity (with elastic and elastoplastic tangents) in that two possible tangents exist
at points on the virgin curve: one tangent to the loading path and another tangent to the
unloading path (the situation is clearly illustrated in Figure 13.21(b)). Below the maximum
attained strain level of ψ0 (the dotted lines of Figure 13.21(b), excluding their intersection
with the virgin curve), the tangent is unique.

Now let us recall (refer to Section 13.4.2) that, when the principal stretch representation
is adopted, the essential model-related derivatives required to assemble the spatial tangent
modulus, a, are the principal Kirchhoff stress derivatives: ∂τi/∂bj , where bj = λ2j are the
eigenvalues of B. The only difference between the present model and a standard hyperelastic
one in the calculation of the tangent modulus is that, following what was said in the previous
paragraph, two distinct situations have to be considered:
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1. unloading or reloading with ρ̄ψ0 < D is assumed to occur, i.e. the process is purely
elastic. The tangent is unique and the corresponding derivatives are obtained by differ-
entiating the principal stress constitutive equation (ii) of Box 13.3 with constant D:

∂τi

∂bj
=

1
2λj

[
f(ξ)

∂τ0i
∂λj

+
f ′(ξ) τ0i τ0j

D λj

]
(13.136)

with no summation implied on repeated indices and with f ′ denoting the derivative
of f ;

2. otherwise damage evolution occurs (loading). In this case, ξ = constant = 1, f(ξ) = 1
and f ′ = 0 so that

∂τi

∂bj
=

∂τ0i
∂bj

=
1

2λj

∂τ0i
∂λj

, (13.137)

with no summation implied.

Remark 13.8. The incorporation of the above into an existing hyperelastic computational
implementation is also straightforward. One important practical aspect that needs to be
taken into consideration in the implementation of this hyperelastic damage model is that
the decision on whether to use the expression of item 1 or item 2 above has to be made
in the computation of the tangent modulus. This can be done in the same manner as in the
computation of the tangent modulus in elastoplasticity where a logical flag, set before the
tangent modulus computation subroutine is called, indicates which tangent (either elastic
or elastoplastic) is to be computed. The interested reader is referred to subroutine CTVM
(Consistent Tangent computation for the Von Mises model), described in Section 7.4.3
(page 235), where the logical argument EPFLAG (set in subroutine MATICT before CTVM is
called) defines which tangent will be computed. Damage loading (and use of item 2 above)
and unloading/reloading without damage evolution (with use of item 1 above) should be
assumed under the same conditions that set EPFLAG, respectively, to .TRUE. and .FALSE. in
subroutine MATICT of program HYPLAS). Note that a logical algorithmic variable (analogous
to IFPLAS in subroutine SUVM), indicating whether the step is purely elastic (no damage
evolution) or whether there is damage evolution, must be set in the corresponding stress-
updating procedure. As in elastoplasticity, this flag can be transferred between the stress-
updating routine and the tangent modulus computation routine stored in the logical global
array LALGVA.

13.7.6. EXAMPLE: INFLATION/DEFLATION OF A DAMAGEABLE RUBBER
BALLOON

In this example, we use the above hyperelastic damage model to simulate one infla-
tion/deflation cycle of a rubber balloon. The geometry of the problem, loading and finite
element mesh are identical to those of the purely hyperelastic simulation described in
Section 13.6.5. The underlying function ψ0 is assumed to be a three-term Ogden function
with the same constants as the strain–energy function of the example of Section 13.6.5. The
master damage curve adopted is the straight line shown in Figure 13.22 (again, ρ̄ is taken as
unity).
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Figure 13.22. Damageable rubber balloon. Master damage curve. (Reproduced with permission from
A phenomenological three-dimensional rate-independent continuum damage model for highly filled
polymers: Formulation and computational aspects, EA de Souza Neto, D Perić and DRJ Owen, Journal
of the Mechanics and Physics of Solids, Vol 42, Issue 10 c© 1994 Elsevier Science Ltd.)
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Figure 13.23. Damageable rubber balloon. Pressure–expansion diagram. (Reproduced with permission
from A phenomenological three-dimensional rate-independent continuum damage model for highly
filled polymers: Formulation and computational aspects, EA de Souza Neto, D Perić and DRJ Owen,
Journal of the Mechanics and Physics of Solids, Vol 42, Issue 10 c© 1994 Elsevier Science Ltd.)
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By means of arc-length control, starting from the initial configuration (λ = 1), the internal
pressure is applied gradually and the membrane is inflated until the configuration defined
by λ = 5.182 (point A of Figure 13.23) is reached. At this stage, the load is reversed
and the balloon is deflated returning to its initial configuration. The pressure–expansion
curve obtained is presented in Figure 13.23. As inflation occurs under monotonically
increasing circumferential stretching, the inflation branch of the pressure–expansion diagram
corresponds to the behaviour governed by the strain-energy function ψ0. Indeed, it matches
exactly the hyperelastic solution obtained in the example of Section 13.6.5. The deflation
branch of the curve shows clearly the softening effect of damage at the global level. The
pressure–expansion curve shown here has a good qualitative agreement with the balloon
inflation experiment discussed by Beatty (1987). However, in the experiment studied by this
author, a residual circumferential strain was observed after complete deflation of the balloon
(p = 0). Incorporation of this effect would require the consideration of additional internal
variables leading to a theory that allows for description of inelastic deformations with possible
inclusion of viscous effects.





14 FINITE STRAIN
ELASTOPLASTICITY

THE present chapter is devoted to the theory and finite element implementation of
finite strain elastoplasticity. The theory and numerical algorithms discussed here are

an extension of those seen in Part Two of this book where infinitesimal elastoplasticity has
been thoroughly discussed.

As we have seen in Part Two, infinitesimal theories can be adopted to model the behaviour
of inelastic solids so long as the strains and rotations remain sufficiently small. In many
industrial applications of the theory of plasticity, however, the infinitesimal deformation
hypothesis cannot be introduced without significant loss of accuracy. Typical examples
include the analysis of metal-forming operations and crashworthiness problems where the
underlying deformation processes are dominated by very large strains and rotations. In fact,
over the last two decades, the use of finite element models to simulate large deformations
of inelastic solids has become an essential part of the design process, particularly in highly
competitive sectors such as the automotive manufacturing industry. The use of finite element
models in such cases is gradually replacing classical predictive tools (which have been largely
based on empirical knowledge developed on a trial-and-error basis) with a more rational and
scientifically based approach. Such a move towards continuum mechanics/finite element-
based simulation tools follows the ever-increasing need for reduction of design-to-production
time and costs.

The outline of this chapter is as follows. We start in Section 14.1 with a brief review
of the development of finite strain computational plasticity. In Section 14.2 we introduce
a one-dimensional finite strain plasticity model. We then move on, in Section 14.3, to the
description of a general multiaxial hyperelastic-based multiplicative plasticity model. The
description of the general model is followed, in Section 14.4, by the detailed derivation
of an elastic predictor/return-mapping-type algorithm for integration of the finite plasticity
constitutive equations. Section 14.5 focuses on the derivation of the associated general
consistent spatial tangent modulus, which is crucial to the implicit finite element imple-
mentation of program HYPLAS. The corresponding principal stress-based implementation is
addressed in Section 14.6. The issue of treatment of the plane stress constraint within the
multiplicative finite plasticity framework is discussed in Section 14.7 and the viscoplastic
formulation is briefly discussed in Section 14.8. This is followed, in Section 14.9, by a set of
finite element examples illustrating applications of the multiplicative plasticity framework.
Section 14.10 reviews alternative hypoelastic-based approaches to the modelling of finite
inelastic deformations. Finally, Section 14.11 addresses the issue of kinematic hardening
modelling under finite strains.

Computational Methods for Plasticity: Theory and Applications EA de Souza Neto, D Perić and DRJ Owen
c© 2008 John Wiley & Sons, Ltd
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14.1. Finite strain elastoplasticity: a brief review

The formulation of elastoplastic constitutive models in the geometrically nonlinear range can
be traced back to the late 1950s. Early references to this fascinating subject are provided by
the pioneering works of Hill (1958) and Green and Naghdi (1965). In view of its potential
application in many areas of practical engineering interest, it did not take long before large
strain elastoplastic formulations were brought within the finite element context. The first
papers on the subject were published in the 1970s. Initial developments (Argyris and Kleiber,
1977; Argyris et al., 1978; Hibbitt et al., 1970; McMeeking and Rice, 1975; Nagtegaal and de
Jong, 1981) have relied exclusively on the use of hypoelastic-based constitutive formulations
whereby standard infinitesimal elastoplasticity models are extended to the finite strain range
by recasting the original evolution equations in terms of suitably chosen objective (or frame-
invariant) stress rates. During early stages of development, hypoelastic-based descriptions
have been the subject of intense debate within the finite element community. Many con-
troversial issues have arisen, ranging from the use of different objective stress rates in the
formulation of the constitutive equations (Atluri, 1984; Nemat-Nasser, 1982; Perić, 1992) to
fundamental drawbacks such as the possible lack of objectivity of (algorithmic) incremental
constitutive laws (Hughes, 1984; Hughes and Winget, 1980; Rubinstein and Atluri, 1983)
as well as observed oscillatory stress response under monotonic loading (Nagtegaal and
de Jong, 1982) and dissipative behaviour within the ‘elastic’ range (Kojić and Bathe, 1987;
Simo and Pister, 1984). In this context, hyperelastic-based formulations of finite plasticity
have emerged (Simo, 1985; Simo and Ortiz, 1985). Based on the hyperelastic description
of the reversible behaviour (as in the general constitutive theory alluded to in Chapter 3)
in conjunction with the multiplicative elastoplastic split of the deformation gradient (Lee
and Liu, 1967), such theories naturally by-pass the inherent drawbacks of hypoelastic-
based approaches. In particular, dissipative response becomes impossible within the elastic
range and the requirement of incremental objectivity (frame invariance of the algorithmic
constitutive rule) is trivially satisfied. Moreover, when the Hencky strain energy function
(described in Section 13.2.3, page 528) is adopted to model the elastic behaviour, a small
strain format return mapping-based stress-updating procedure can be elegantly recovered
with the use of a suitable exponential map-based integrator for the plastic flow equation
(Cuitiño and Ortiz, 1992a; Eterovic and Bathe, 1990; Perić and Owen, 1991; Perić et al.,
1992; Simo, 1992; Simo and Miehe, 1992; Weber and Anand, 1990). Throughout the last
decade, the hyperelastic-based multiplicative approach has gained widespread acceptance
(see Simo (1998), for an extensive review of both theory and related numerical methods) and
is currently adopted in many commercial finite element codes for large-strain elastoplastic
analysis. Hyperelastic-based formulations have proven successful not only in the context of
conventional isotropic J2 metal plasticity but also with other underlying theories such as
soil plasticity (Meschke and Liu, 1999), damage mechanics (de Souza Neto and Perić, 1996;
de Souza Neto et al., 1992, 1994a, 1998; Li, 1995; Steinmann et al., 1994) and anisotropic
single crystal plasticity (discussed in detail in Chapter 16) as well as in the modelling of
various structural elements such as membranes (Ibrahimbegović, 1994) and shells (Miehe,
1998b).
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14.2. One-dimensional finite plasticity model

Following a format similar to that of Chapter 6, we choose here to introduce the basic
concepts of finite elastoplasticity by firstly formulating a one-dimensional constitutive model.
The model presented here extends the uniaxial infinitesimal theory of Section 6.2 (from
page 141) to the finite strain regime.

Before proceeding, we remark that the generalisation of the infinitesimal one-dimensional
model to the finite strain range is by no means unique; that is, an infinite number of large
strain models may be defined such that their small strain limit is the infinitesimal theory of
Section 6.2. The particular finite strain generalisation presented here is one that contains
all the basic ingredients of the large strain isotropic multiaxial model to be introduced
in Section 14.3. This should assist the reader in becoming familiarised with the essential
concepts involved in the derivation of the multidimensional finite plasticity model.

At the outset, we introduce the axial stretch (in analogy with the infinitesimal axial strain
of the small strain theory) as the main kinematic variable of the model. Referring back to
Section 6.2, if we assume constant strain over the uniaxially loaded bar of Figure 6.2 and with
l0 and l denoting, respectively, the reference length and the length of the bar at an arbitrarily
deformed configuration, the axial stretch is given by

λ =
l

l0
. (14.1)

14.2.1. THE MULTIPLICATIVE SPLIT OF THE AXIAL STRETCH

Let us now assume that, at the deformed configuration defined by l, the bar has already
been loaded past the elastic limit. Upon complete unloading from this configuration, the
plastified bar will have a (permanently deformed) length lp. The length lp, thus, defines
an unstressed configuration of the bar. This configuration will also be referred to as the
intermediate or plastic configuration. The axial plastic stretch, that is, the stretch associated
with the unstressed configuration is defined, similarly to (14.1), as

λp =
lp
l0

. (14.2)

The unloading process, that is, the deformation from the configuration defined by l to the
unstressed configuration defined by lp, is elastic. This motivates the definition of the elastic
axial stretch,

λe =
l

lp
. (14.3)

From the above, we establish that any deformed state of the bar is characterised by the
multiplicative split of the axial stretch (14.1) into an elastic stretch, λe, and a plastic stretch,
λp, i.e.

λ = λeλp. (14.4)

This expression is a generalisation of the additive split (6.2) of the infinitesimal strain to the
finite strain case.
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14.2.2. LOGARITHMIC STRETCHES AND THE HENCKY HYPERELASTIC LAW

The Hencky hyperelastic model has been presented in Section 13.2.3 (from page 528) as
an immediate generalisation of the conventional linear elastic law to the finite strain range.
Under uniaxial stress conditions, Hencky’s hyperelasticity law (13.59) reads

τ = E ln λ, (14.5)

where τ denotes the Kirchhoff axial stress. Here we shall adopt an analogous law in terms
of the elastic stretch, i.e. we will use the following finite extension of the one-dimensional
elastic constitutive equation (6.4)

τ = E εe, (14.6)

where τ is the axial Kirchhoff stress and εe is the elastic logarithmic strain

εe = ln λe. (14.7)

14.2.3. THE YIELD FUNCTION

The yield function, Φ, is defined in complete analogy with (6.5) as

Φ(τ, τy) = |τ | − τy, (14.8)

where |τy| is the yield Kirchhoff axial stress. The corresponding elastic domain is given by

E = {τ | Φ(τ, τy) < 0}. (14.9)

14.2.4. THE PLASTIC FLOW RULE

In addition to the above, a plastic flow rule is required to define the evolution of the plastic
stretch, λp. Here we shall postulate the following law

λ̇p(λp)−1 = γ̇ sign(τ), (14.10)

which is complemented by the usual condition

Φ ≤ 0, γ̇ ≥ 0, γ̇Φ = 0. (14.11)

Note that, from the definition of λp, we have the identity

λ̇p(λp)−1 =
l̇p
lp

, (14.12)

that is, the right-hand side of (14.10) is the instantaneous rate of plastic straining measured
with respect to the plastic configuration defined by λp. Also note, with the logarithmic axial
plastic strain defined by

εp = ln λp, (14.13)

that (14.10) can be equivalently expressed as

ε̇p = γ̇ sign(τ), (14.14)

which has the same functional format as its infinitesimal counterpart (6.10). We remark,
however, that the above law in terms of the logarithmic axial plastic strain does not generalise
to the multiaxial case treated in Section 14.3.
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Box 14.1. One-dimensional finite strain elastoplastic constitutive model.

(i) Multiplicative split of the axial stretch

λ = λeλp

(ii) Uniaxial Hencky elastic law
τ = E ln λe

(iii) Yield function
Φ(τ, τy) = |τ | − τy

(iv) Plastic flow rule
λ̇p(λp)−1 = γ̇ sign(τ )

(v) Hardening law
τy = τy(ε̄p)

˙̄εp = γ̇

(vi) Loading/unloading criterion

Φ ≤ 0, γ̇ ≥ 0, γ̇Φ = 0

14.2.5. THE HARDENING LAW

To define completely the one-dimensional constitutive model, a hardening law is required.
Following the same arguments of Section 6.2.5, we introduce hardening by letting τy be a
given function

τy = τy(ε̄p), (14.15)

of the accumulated logarithmic axial plastic strain, ε̄p, defined by the evolution equation

˙̄εp = |ε̇p| = γ̇. (14.16)

The resulting one-dimensional finite strain elastoplasticity constitutive model is sum-
marised in Box 14.1.

14.2.6. THE PLASTIC MULTIPLIER

The determination of the plastic multiplier γ̇ under plastic flow follows the same steps as in
Section 6.2.7. The final expression reads

γ̇ =
E

H + E
sign(τ)

λ̇

λ
. (14.17)

Equivalently, in terms of the total logarithmic axial strain,

ε = ln λ, (14.18)
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expression (14.17) can be rewritten as

γ̇ =
E

H + E
|ε̇|, (14.19)

which has the identical functional format as its infinitesimal counterpart given by equa-
tion (6.30).

14.3. General hyperelastic-based multiplicative plasticity model

A generic finite strain hyperelastic-based multiplicative plasticity model is described in
detail in this section. The theory introduced here forms the basis of the isotropic large
strain plasticity framework whose finite element implementation (incorporated in program
HYPLAS) is addressed in Sections 14.4 and 14.5. We remark that some of the crucial features
of the model, namely the multiplicative elastoplastic kinematics and the use of a Hencky
(logarithmic strain-based) hyperelasticity law, have already been introduced in the simpler
context of the one-dimensional finite plasticity model discussed in the preceding section.

14.3.1. MULTIPLICATIVE ELASTOPLASTICITY KINEMATICS

The main hypothesis underlying the finite strain elastoplasticity constitutive framework
described here is the multiplicative decomposition of the deformation gradient, F , into
elastic and plastic contributions; that is, it is assumed that the deformation gradient can be
decomposed as the product

F = F eF p, (14.20)

where F e and F p are named, respectively, the elastic and plastic deformation gradients. The
multiplicative split of F , introduced by Lee and Liu (1967) and Lee (1969), embodies the
assumption of the existence of a local unstressed intermediate configuration defined by the
plastic deformation gradient, F p. At each material point, the local intermediate configuration
is obtained from the fully deformed configuration by a purely elastic unloading (associated
with the inverse of F e) of its neighbourhood. The concept is schematically illustrated in
Figure 14.1. It is a multiaxial generalisation of the one-dimensional multiplicative split (14.4).
It must be emphasised that, unlike in the one-dimensional case, the unstressed intermediate
configuration concept in the multiaxial case is valid only in the local (pointwise) sense.
Compatible unstressed configurations of multiaxially stretched elastoplastic bodies do not
exist in general; that is, it is generally not possible to find a deformation ϕp such that

F p =
dϕp

dp
.

For a number of years since its introduction, the multiplicative kinematic description has
been the subject of intense investigation (Dafalias, 1984, 1985; Dashner, 1986; Lubarda and
Lee, 1981; Mandel, 1973; Nemat-Nasser, 1979, 1982) and much light has been shed on its
constitutive implications. Some aspects and kinematic consequences of the multiplicative
decomposition assumption are addressed in the following.
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Figure 14.1. Multiplicative decomposition of the deformation gradient.

Remark 14.1. Rather than being just a convenient mathematical extension of the standard
additive decomposition of the strain tensor adopted in the infinitesimal theory, the multiplica-
tive decomposition of F finds a solid and consistent physical justification in the slip theory
of crystals (Asaro, 1983; Peirce et al., 1982, 1983; Rice, 1971). Essentially, the macroscopic
plastic deformation of metallic crystals is the result of microscopic sliding between blocks
of crystals along certain crystallographic planes (for more details on the plastic deformation
of crystals, we refer to Chapter 16, where the computational treatment of an elastoplastic
single crystal model is addressed). This mechanism is schematically illustrated in Figure 14.2.
Under generic finite straining, crystal blocks slide over each other under the simultaneous
action of lattice rotation and distortion. The plastic deformation gradient, F p, is associated
with the pure sliding between crystal blocks. The elastic contribution, F e, on the other hand,
represents the crystal lattice rotation and distortion.

Elastic and plastic stretch and rotation tensors

Following the above multiplicative split of F , the stretches and rotations associated with the
elastic and plastic parts of the deformation gradient are obtained by performing the polar
decompositions

F e = Re U e = V eRe (14.21)

and
F p = Rp U p = V pRp. (14.22)

The resulting tensors U e (U p), V e (V p) and Re (Rp), are named, respectively, the elastic
(plastic) right stretch tensor, the elastic (plastic) left stretch tensor and the elastic (plastic)
rotation tensor.
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Figure 14.2. Multiplicative decomposition of the deformation gradient. Micromechanical basis.

The meaning of the above tensors is analogous to that of the tensors obtained from the
polar decomposition (3.40) (page 49) of the total deformation gradient; that is, U p represents
a pure plastic stretch along three mutually orthogonal axes starting from the reference
configuration, U e represents a pure elastic stretch along three mutually orthogonal axes
starting from the intermediate configuration, Rp is the pure rotation between the reference
and intermediate configurations, and so forth.

The velocity gradient: elastic and plastic contributions

Let us now look at the consequences of the assumed multiplicative split of F on the velocity
gradient (refer to Section 3.1.8, from page 55) defined by

L ≡∇xv = Ḟ F −1. (14.23)

With the introduction of (14.20) into the above formula, a straightforward differentiation
using the product rule gives the following additive decomposition of L,

L = Le + F eLp(F e)−1, (14.24)

where Le and Lp are defined as

Le ≡ Ḟ e(F e)−1, Lp ≡ Ḟ
p
(F p)−1. (14.25)

We shall refer to Le and Lp, respectively, as the elastic and plastic velocity gradients.
Analogously to the velocity gradient discussed in Section 3.1.8, the plastic velocity

gradient as defined in the above is a quantity of the intermediate configuration. The velocity
gradient, L, itself is a quantity of the spatial (or deformed) configuration. Note that,
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accordingly, in the plastic contribution

F eLp(F e)−1,

to L, the plastic velocity gradient Lp is pre- and post-multiplied, respectively, by F e (which
maps the local intermediate configuration into the deformed configuration) and its inverse.
This renders the above plastic contribution to L a spatial quantity.

The plastic stretching and spin tensors

In order to formulate a plastic flow rule within the multiplicative plasticity framework, it is
convenient here to define the plastic stretching (or rate of plastic deformation) and the plastic
spin tensors as

Dp ≡ sym[Lp], W p ≡ skew[Lp]. (14.26)

The above definitions are analogous to the decomposition of the velocity gradient in
Section 3.1.8 into the stretching and spin tensors.

The meaning of the plastic stretching and spin

It has been shown in Section 3.1.8 that the stretching tensor D (defined by expression (3.65))
is associated with a purely straining velocity field that stretches the body locally along
the three mutually orthogonal directions of its current deformed configuration defined by
the eigenvectors of D (refer to expression (3.69) and the surrounding text). An analogous
interpretation can be given to Dp. As Dp is associated only with F p, which defines
the intermediate configuration, Dp measures the instantaneous rate of plastic straining
that stretches the intermediate configuration along the three mutually orthogonal directions
defined by the eigenvectors of Dp. With {ei} denoting an orthonormal basis of eigenvectors
of Dp, we have

Dp =
3∑

i=1

dp
i ei ⊗ ei, (14.27)

where dp
i is the eigenvalue of Dp associated with the eigenvector ei. Each dp

i gives the
instantaneous rate of stretching of the intermediate configuration along the direction of ei.

The plastic spin tensor, W p, defined by (14.26)2, on the other hand, represents an
instantaneous rate of rigid spinning of the intermediate configuration.

Spatially rotated plastic stretching

In the following sections, the spatial configuration will be used to formulate the general finite
isotropic multiplicative plasticity constitutive model. Accordingly, all kinematic quantities
involved in the constitutive formulation will be expressed as spatial quantities (i.e. in the
deformed configuration). In the context of the present constitutive framework, we shall work
with the following rotation of Dp,

D̃p ≡ Re Dp ReT = Re sym[Ḟ pF p−1] ReT (14.28)

in the definition of the plastic flow rule. The above tensor represents the rate of plastic
stretching rotated (by the elastic rotation) to the spatial (or deformed) configuration and
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will be called the spatially rotated (or simply spatial) plastic stretching (or rate of plastic
deformation). It can be represented as

D̃
p

=
3∑

i=1

dp
i ẽi ⊗ ẽi, (14.29)

where ẽi ≡ Re ei.

14.3.2. THE LOGARITHMIC ELASTIC STRAIN MEASURE

Recall that in Chapter 3, Eulerian (or spatial) strain measures have been defined as functions
of the left stretch tensor V. Likewise, spatial elastic strain measures can be defined as
functions of the elastic left stretch tensor, V e. In the present general model of finite strain
elastoplasticity, the logarithmic strain will be adopted to measure elastic deformations. As we
shall see in what follows, the use of the logarithmic (or natural) strain measure to describe the
elastic behaviour is particularly convenient. In addition to its physical appeal as an extension
of the infinitesimal elastic strain measure, its use, allied to suitable approximations to the
plastic flow rule, results in substantial simplifications in the stress integration algorithm and
allows a natural extension, to the finite strain range, of the elastic predictor/return-mapping
algorithms of infinitesimal elastoplasticity described in Chapter 7. The Eulerian logarithmic
elastic strain is defined by

εe ≡ ln V e = 1
2 ln Be, (14.30)

where ln(·) above denotes the tensor logarithm of (·) and

Be = F e(F e)T = (V e)2

is the left elastic Cauchy–Green strain tensor.

Deviatoric and volumetric logarithmic strains

By performing the deviatoric/volumetric split of the elastic logarithmic strain, we obtain

εe = εe
d + 1

3ε
e
v I, (14.31)

where
εe
d ≡ εe − 1

3 tr[εe] I,

and the volumetric logarithmic elastic strain is given by

εe
v ≡ tr[εe] = ln Je,

with
Je ≡ det F e.

Due to the properties of the logarithmic strain measure (refer to the discussion starting on
page 529), analogously to the infinitesimal theory, a traceless εe (εe

v = 0) corresponds to a
finite volume-preserving elastic deformation, i.e. a deformation with det F e = 1.
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14.3.3. A GENERAL ISOTROPIC LARGE-STRAIN PLASTICITY MODEL

A rather general class of isotropic hyperelastic-based finite strain elastoplastic constitutive
models, formulated in the spatial configuration, can be defined by following the formalism
of thermodynamics with internal variables described in Section 3.4. Essentially, the model is
defined by postulating

1. a free-energy potential, from which the hyperelastic law is derived;

2. a yield function to define the onset of plastic yielding;

3. a dissipation potential, from which the plastic flow rule and the evolution laws for the
internal variables are derived.

It is emphasised that the model described here is restricted to the isothermal case. Its general
constitutive equations are presented in the following.

The free-energy potential: hyperelastic law

At the outset, the free-energy potential is assumed to have the general form

ψ(εe, α); (14.32)

that is, ψ is here expressed as a function of the elastic logarithmic strain and a generic set
α ≡ {α1, α2, . . . , αk} of k internal variables associated with dissipative mechanisms.

It will be shown in Section 14.3.4 that the above defined potential yields the following
constitutive law for the Kirchhoff stress tensor

τ = ρ̄
∂ψ

∂εe
. (14.33)

The set A ≡ {A1, A2, . . . , Ak} of thermodynamical forces conjugate to the internal
variables is defined as usual by

Ai = ρ̄
∂ψ

∂αi
(i = 1, . . . , k). (14.34)

The yield criterion

A general yield function, Φ(τ, A), expressed in terms of the Kirchhoff stress and the set A of
conjugate thermodynamical forces is adopted to define the onset of plastic flow. Accordingly,
the elastic domain where only reversible phenomena take place is defined as the set

E = {τ | Φ(τ, A) < 0},

of the space of stresses. Plastic yielding may take place only if τ lies on the yield surface –
the boundary of the elastic domain – defined by

Y = {τ | Φ(τ, A) = 0}. (14.35)

Admissible Kirchhoff stresses must lie either in the elastic domain or on the yield surface.
For a given A, the set of admissible Kirchhoff stresses is defined as

Ē = {τ | Φ(τ, A) ≤ 0}. (14.36)
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Finite strain plastic flow rule

A general plastic flow potential, Ψ(τ, A), also expressed as a function of the Kirchhoff stress
and the thermodynamical force set, A, is adopted. With the dissipation potential, the evolution
of the plastic deformation gradient – the plastic flow – is defined by the following constitutive
equation for the rotated plastic stretching

D̃p = γ̇
∂Ψ
∂τ

, (14.37)

complemented by postulating a zero plastic spin†

W p = 0. (14.38)

The two equations above completely define the evolution of F p. Indeed, the definition (14.28)
of D̃p together with the constitutive laws (14.37) and (14.38) are equivalent to the following
evolution law for the plastic deformation gradient

Lp ≡ Ḟ
p
(F p)−1 = γ̇ (Re)T ∂Ψ

∂τ
Re, (14.39)

which is a multidimensional extension of the one-dimensional plastic flow equation (14.14).

Remark 14.2. Plastic isotropy implies that τ and ∂Ψ/∂τ are coaxial (i.e. they share the
same principal axes). Thus, in the above constitutive equation, the (instantaneous) principal
directions of stretching of the intermediate configuration are the directions obtained by
rotating the principal axes of the Kirchhoff stress back to the intermediate configuration.
In the absence of elastic rotations, the principal directions of plastic stretching coincide with
those of the Kirchhoff stress.

Under elastoplastic isotropy (a condition to which the present model is restricted), the
above plastic flow rule is equivalent to the following constitutive equation for the total plastic
contribution, F eLp(F e)−1, to the velocity gradient (14.39),

F eLp(F e)−1 = γ̇
∂Ψ
∂τ

. (14.40)

The equivalence between the two equations can be established by first making use of the left
polar decomposition of F e, which after a straightforward rearrangement gives

Lp = γ̇ (Re)T (V e)−1
∂Ψ
∂τ

V eRe. (14.41)

Due to the assumed elastoplastic isotropy, V e and ∂Ψ/∂τ commute so that the terms V e and
(V e)−1 are cancelled out of the above equation, leading to (14.39).

†The assumption of zero plastic spin is compatible with plastic isotropy – the condition to which the present
model is restricted. Introduction of plastic anisotropy requires the definition of an appropriate constitutive equation
for the plastic spin. In the anisotropic single-crystal model described in Chapter 16, a micromechanically-based
constitutive law which defines a generally non-vanishing plastic spin is adopted. The reader is referred to Dafalias
(1984, 1985) for an in-depth discussion on this topic.
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Equivalent elastic rate-based equations

Recall that in the infinitesimal theory, the additive split of the strain tensor allows, in a rather
trivial manner, the elastoplasticity model to be equivalently cast in terms of either the plastic
strain rate, as in (6.49), page 150, or the elastic strain rate, as in (7.6)1, page 193. The
definition of equivalent elastic rate-based rate equations is also possible within the present
framework for finite plasticity. However, due to the multiplicative nature of the elastoplastic
kinematic split, the relationship between the elastic and plastic-based rates is more complex
than that of the infinitesimal theory. The elastic deformation gradient evolution equation
corresponding to the plastic flow equation (14.39) within the multiplicative kinematics
framework is given by

˙F e (F e)−1 = Ḟ F −1 − γ̇
∂Ψ
∂τ

(14.42)

or, with a more compact notation,

Le = L − γ̇
∂Ψ
∂τ

. (14.43)

The above equation is a finite strain counterpart of the elastic strain evolution law (7.6)1 and
is obtained simply by introducing the plastic flow equation (14.40) into the velocity gradient
expression (14.24)–(14.25).

Another alternative definition of the present model in terms of an elastic rate can be made
by exploiting the so-called Lie derivative concept (the reader is referred to Marsden and
Hughes 1983, for a precise mathematical definition of the Lie derivative.) Let

£vB
e ≡ Ḃe − LBe − BeLT (14.44)

denote the Lie derivative of Be with respect to the velocity field v. The above derivative
is identified with the Oldroyd objective rate‡ introduced in (14.130)–(14.131). The plastic
flow rule (14.39) (or (14.40)) is equivalent to the following constitutive equation for the Lie
derivative of the elastic left Cauchy–Green tensor

1
2

£vB
e = −γ̇

∂Ψ
∂τ

Be. (14.45)

The equivalence between the two constitutive equations can be established as follows. We
start by post-multiplying both sides of (14.40) by Be and expanding the resulting expression
with use of (14.24). This gives

γ̇
∂Ψ
∂τ

Be = F eLp(F e)−1 Be

= [L − Le]Be

= L Be − Ḟ e(F e)T . (14.46)

‡The concept of objective rates will be discussed only in Section 14.10.1 in connection with the definition of
hypoelastic-based elastoplasticity models. The reader who is unfamiliar with the concept of objective rates of a
tensor may prefer to read that section before proceeding further. We remark, however, that the alternative formulation
presented here in terms of the Lie derivative (or Oldroyd objective rate) of the elastic left Cauchy–Green tensor is
not required for the computational treatment of the model discussed in Section 14.4.
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Due to the isotropy of Ψ and the elastic response, the tensors Be and ∂Ψ/∂τ commute (refer
to Section A.1.2, page 732) so that the left-hand side of the above equation is symmetric and
the right-hand side must equal its symmetrised counterpart; that is, we have

γ̇
∂Ψ
∂τ

Be =
1
2

[L Be + Be LT − Ḟ e(F e)T − (F e)T Ḟ e]. (14.47)

Now, note that the definition of Be gives

Ḃe = [F e(F e)T ]̇ = Ḟ e(F e)T + (F e)T Ḟ e. (14.48)

Equation (14.45) is recovered by substituting this formula into (14.47) and taking the
definition (14.44) into account.

Evolution of the internal variables

A general evolution equation for the internal variables set is postulated as having the same
functional format as the infinitesimal law

α̇ = γ̇ H(τ, A). (14.49)

If the potential formulation of the internal variable evolution is adopted, then the constitutive
function H is given by

H(τ, A) = − ∂Ψ
∂A

. (14.50)

In the above, the plastic multiplier, γ̇, is required to satisfy the standard complementarity
relation

Φ ≤ 0, γ̇ ≥ 0, γ̇Φ = 0. (14.51)

Summary of the model

The overall finite strain elastoplastic constitutive model is completely defined by equa-
tions (14.20), (14.32)–(14.38) and (14.49)–(14.51). The model is summarised in Box 14.2.

14.3.4. THE DISSIPATION INEQUALITY

Following assumption (14.32), the time derivative of the free energy reads

ψ̇ =
∂ψ

∂εe
: ε̇e +

1
ρ̄

A ∗ α̇, (14.52)

where the appropriate product (denoted by *) is assumed between the thermodynamical
forces A and internal variables rate α̇. Equivalently, by applying the chain rule to the
definition (14.30) of εe,

ψ̇ =
1
2

∂ψ

∂εe
:
∂(ln Be)

∂Be : Ḃe +
1
ρ̄

A ∗ α̇

=
1
2

[
∂ψ

∂εe
:
∂(ln Be)

∂Be

]
Be : Ḃe Be−1 +

1
ρ̄

A ∗ α̇. (14.53)
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Box 14.2. General isotropic finite strain multiplicative elastoplastic model.

(i) Multiplicative decomposition of the deformation gradient

F = F eF p

(ii) Isotropic hyperelastic law

τ = ρ̄
∂ψ(εe, α)

∂εe

(iii) Evolution equations for F p and internal variable set α

˙F pF p−1
= γ̇ ReT ∂Ψ

∂τ
Re

α̇ = γ̇ H

(iv) Loading/unloading criterion

Φ ≤ 0, γ̇ ≥ 0, γ̇Φ = 0

To obtain the first summand of the last expression in the above, we have made use of identity
(ii) of page 22. Note that the tensors εe, Be and ∂ψ/∂εe in (14.53) share the same principal
axes. The situation here is completely analogous to that leading to equation (13.62) (page 529)
for the Hencky hyperelastic model. Accordingly, the following identity holds in the present
case

∂ψ

∂εe
:
∂(ln Be)

∂Be Be =
∂ψ

∂εe
, (14.54)

and then, (14.53) can be rewritten as

ψ̇ =
1
2

∂ψ

∂εe
: Ḃe Be−1 +

1
ρ̄

A ∗ α̇. (14.55)

By definition, Be = F eF eT , or, in view of the multiplicative elastoplastic decomposition
assumption, Be = F (F p)−1(F p)−T F T . Time differentiation of this last expression and
substitution into (14.55) result, after some straightforward manipulations, in

ψ̇ =
∂ψ

∂εe
:
{

D +
1
2
[F eF p(F p−1)̇ F eT + F e(F p−T )̇ F pT F e−1]

}
+

1
ρ̄

A ∗ α̇

=
∂ψ

∂εe
:
{

D − 1
2
V eRe[L̄p + L̄pT

]ReT V e−1
}

+
1
ρ̄

A ∗ α̇, (14.56)

where use has been made of the relations

F p(F p−1)̇ = −Ḟ pF p−1 = −Lp (14.57)

and
(F p−T )̇ F pT = −F p−T (F pT )̇ = −LpT , (14.58)
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obtained, respectively, from the time differentiation of the identities

F pF p−1 = I and F p−T F pT = I. (14.59)

Finally, with the introduction of definition (14.28) of the spatially rotated plastic stretching
tensor, D̃p, and by taking into account the elastic isotropy, the rate of change of free energy
can be expressed as

ψ̇ =
∂ψ

∂εe
: (D − D̃p) +

1
ρ̄

A ∗ α̇. (14.60)

When thermal effects are ignored, the Clausius–Duhem inequality (3.142) can be
expressed as

τ : D − ρ̄ ψ̇ ≥ 0, (14.61)

so that by introducing (14.60), we obtain(
τ − ρ̄

∂ψ

∂εe

)
: D + ρ̄

∂ψ

∂εe
: D̃p − A ∗ α̇ ≥ 0. (14.62)

As the above dissipation inequality must hold for any motion (and, consequently, any
D), it implies the constitutive equation (14.33) for the Kirchhoff stress. The non-negative
dissipation requirement is then reduced to

τ : D̃p − A ∗ α̇ ≥ 0. (14.63)

14.3.5. FINITE STRAIN EXTENSION TO INFINITESIMAL THEORIES

Expressions (14.33) and (14.63) as well as the adopted plastic flow rule (14.37) are
completely analogous to their small strain counterparts. In the small strain limit, εe and D̃p

reduce, respectively, to the standard infinitesimal elastic strain tensor and plastic strain rate.
In fact, all equations of the finite strain model reduce to those of small strain plasticity as
the small strain limit is approached. Thus, the present approach allows a natural extension, to
the finite strain range, of general isotropic infinitesimal elastoplastic models. A generic small
strain model defined by an elastic potential ψs, a yield function Φs and a flow potential Ψs

can be extended to finite strains by adopting, in the constitutive equations above, ψ, Φ and
Ψ with the same functional format as the respective small strain counterparts. Finite strain
extensions obtained as such preserve some very important properties of the original small
strain model. These are briefly discussed below.

Volume-preserving plastic deformations

Firstly, a large strain measure of volumetric plastic strain is defined. With Jp ≡ det F p the
volumetric plastic strain is defined as

εp
v ≡ ln Jp = ln[λp

(1) λp
(2) λp

(3)]

= ln λp
(1) + ln λp

(2) + ln λp
(3) = tr[ln V p] (14.64)

where λp
(i) are the principal plastic stretches, i.e. the eigenvalues of the plastic stretch tensor

V p ≡
√

F pF pT .
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A volume-preserving plastic deformation gradient satisfies

det F p = 1,

which in view of definition (14.64) holds if and only if

εp
v = 0.

In other words, the (local) plastic deformation is volume-preserving if and only if the above
defined volumetric plastic strain vanishes.

Finite plastic incompressibility

Attention is now focused on the condition under which isochoric plastic flow occurs within
the present finite strain plasticity theory. As Jp is constant under volume-preserving plastic
flow, it follows that the plastic flow is isochoric if and only if the rate of the above-defined
volumetric plastic strain vanishes,

ε̇p
v = 0.

By using the chain rule together with the standard rule for differentiation of the determinant
of an invertible tensor, we obtain the identity

ε̇p
v ≡ (ln[det F p]). =

1
det F p (det F p).

= tr[Ḟ
p
(F p)−1].

From the evolution law (14.39) for F p, it follows that the rate of the above defined volumetric
plastic strain is given by

ε̇p
v = γ̇ tr

[
∂Ψ
∂τ

]
, (14.65)

so that, clearly, as in the infinitesimal theory, flow potentials whose derivative with respect
to stress – the flow vector – is traceless (such as the classical von Mises and Tresca
functions) produce isochoric plastic flow. In summary, within the present framework, the
crucial infinitesimal plasticity property of plastic incompressibility under a traceless flow
vector is naturally extended to the finite strain range.

Associativity and maximum plastic dissipation at large strains

Analogously to the small strain theory, if Φ is taken as the flow potential, then the principle
of maximum plastic dissipation discussed in Chapter 6 (see page 170) is extended to the
finite strain range. In that case, the loading/unloading criterion (14.51) is the Kuhn–Tucker
optimality condition for the left-hand side of (14.63) to reach a maximum subjected to the
plastic admissibility constraint, Φ ≤ 0.
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14.4. The general elastic predictor/return-mapping algorithm

The use of elastic predictor/return-mapping algorithms in the integration of elastoplastic
constitutive equations has been thoroughly discussed in Chapter 7, in the context of the
infinitesimal theory. In this section, we show that an integration algorithm can be derived for
the general finite multiplicative plasticity model based on completely analogous concepts.
As we will see, the finite strain algorithm is particularly appealing from the computational
point of view. Its structure is such that it allows an elegant extension of existing infinitesimal
plasticity codes with reuse of the basic routines for stress updating and computation of
associated tangent operators. We remark that the procedure is fully implemented in program
HYPLAS.

14.4.1. THE BASIC CONSTITUTIVE INITIAL VALUE PROBLEM

Let us start by stating in the following the finite strain elastoplastic constitutive initial value
problem associated with the general isotropic model of Box 14.2.

Problem 14.1 (The finite elastoplasticity initial value problem). Given the initial values
F p(t0) and α(t0) and given the history of the deformation gradient F (t), t ∈ [t0, T ], find
the functions F p(t), α(t) and γ̇(t) that satisfy

˙F p(t) [F p(t)]−1 = γ̇(t) Re(t)T ∂Ψ
∂τ

∣∣∣∣
t

Re(t)

α̇(t) = γ̇(t) H(τ(t), A(t))
(14.66)

and
γ̇(t) ≥ 0, Φ(τ(t), A(t)) ≤ 0, γ̇(t)Φ(τ(t), A(t)) = 0 (14.67)

for each instant t ∈ [t0, T ], with

τ(t) = ρ̄
∂ψ

∂εe

∣∣∣∣
t

, A(t) = ρ̄
∂ψ

∂α

∣∣∣∣
t

(14.68)

and the kinematic relations

εe(t) = ln V e(t)

V e(t) = [F e(t) F e(t)T ]
1
2

Re(t) = [V e(t)]−1 F e(t)

F e(t) = F (t) [F p(t)]−1.

(14.69)

Remark 14.3. In the above definition of the constitutive initial value problem, we have
used the plastic deformation gradient as the primary kinematic unknown in the system
of differential equations of evolution. This is conceptually at variance with Problem 7.1
(page 193) for the infinitesimal strain case, where the elastic strain has been chosen as the
primary kinematic variable. The choice of the plastic deformation gradient in Problem 14.1
is motivated only by the fact that it allows, in the finite strain context, a more straightforward
derivation of the integration algorithm. We stress, however, that in both cases (small and
large strains) the basic initial value problem (and the corresponding numerical integration
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algorithm) may be equivalently defined in terms of evolution of either the elastic or the plastic
kinematic variable. In Problem 14.1, the equivalent formulation having F e as the primary
kinematic unknown is obtained by replacing (14.66)1 with the differential equation (14.42)
for the elastic deformation gradient.

14.4.2. EXPONENTIAL MAP BACKWARD DISCRETISATION

In Section 7.2.2 (page 194), the small-strain elastoplastic constitutive initial value problem
has been discretised by means of a standard backward Euler difference scheme, which has led
to the incremental version – Problem 7.2. Then, it has been shown that the discrete evolution
problem gives rise to the infinitesimal elastic predictor/plastic corrector scheme of Box 7.1
(page 199). As we shall see in the following, the numerical solution of Problem 14.1 can also
be undertaken by an elastic predictor/return-mapping scheme. The procedure is derived here
following the same basic steps as in the derivation of its infinitesimal counterpart.

The starting point is the use of a numerical scheme for integration of the differential
equations (14.66) and constraints (14.67). As in the infinitesimal case, the evolution of
the hardening internal variables will be discretised here by a conventional backward Euler
scheme. Then, (14.66)2 is transformed into the following incremental counterpart

αn+1 = αn + ∆γ Hn+1. (14.70)

Similarly, the discrete version of the constraints (14.67) is obtained as

∆γ ≥ 0, Φ(τn+1, An+1) ≤ 0, ∆γ Φ(τn+1, An+1) = 0. (14.71)

The above expressions have the same functional format as their infinitesimal counterparts.

The exponential integrator for the plastic flow equation

The crucial difference between the discretisation of the large strain problem and the infinites-
imal one lies in the numerical approximation of the plastic flow equation. The structure of
the plastic flow equation (14.66)1 makes algorithms based on exponential map integrators
ideal for numerical approximation. At this point, the reader who is not familiar with the
exponential map integrator concept is referred to Section B.3 (from page 751) for further
details. Here we shall choose to adopt the backward exponential integrator, whose general
formula is obtained from expression (B.24) by setting θ = 1. The discretisation of (14.66)1
by means of the resulting scheme, leads to the update formula for the plastic deformation
gradient

F p
n+1 = exp

[
∆γ Re T

n+1

∂Ψ
∂τ

∣∣∣∣
n+1

Re
n+1

]
F p

n, (14.72)

or, equivalently, in view of the isotropy of the tensor exponential function (refer to (B.8)),

F p
n+1 = Re T

n+1 exp
[
∆γ

∂Ψ
∂τ

∣∣∣∣
n+1

]
Re

n+1 F p
n. (14.73)

Remark 14.4. The incompressibility of the plastic flow for pressure insensitive flow
potentials is carried over exactly to the incremental rule (14.73). Indeed, for a traceless flow
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vector, ∂Ψ/∂τ, det[exp[∆γ ∂Ψ/∂τ]] = 1 which ensures that the updating formula (14.73)
is volume preserving. This basic property of the exponential map is listed in Section B.1.1
of Appendix B. Had we adopted, for instance, a standard backward Euler difference scheme
to discretise the plastic flow equation (14.66)1, the resulting updating formula for the plastic
deformation gradient would be

F p
n+1 =

(
I − ∆γ Re T

n+1

∂Ψ
∂τ

∣∣∣∣
n+1

Re
n+1

)−1
F p

n. (14.74)

By simple inspection, we can easily establish that the above update formula for F p is not
volume-preserving in general; that is, given F p

n such that det F p
n = 1 and a traceless ∂Ψ/∂τ,

the resulting F p
n+1 is such that, in general, det F p

n+1 
= 1. This approach would result in
substantial accuracy loss in the numerical integration of elastoplastic constitutive equations
of plastically incompressible models.

Elastic deformation gradient update

By combining the above formula for F p
n+1 with the multiplicative elastoplastic split and

making use of property (B.9), we obtain the following equivalent kinematic update expression
in terms of the elastic deformation gradient

F e
n+1 = F∆F e

n Re T
n+1 exp

[
−∆γ

∂Ψ
∂τ

∣∣∣∣
n+1

]
Re

n+1, (14.75)

where F∆ is the incremental deformation gradient,

F∆ ≡ F n+1(F n)−1 = I + ∇xn [∆u], (14.76)

i.e. the gradient of the deformation that maps the configuration of time tn onto the
configuration of tn+1, with ∆u denoting the corresponding incremental displacement field.
Note that (14.75) is a finite strain version of the infinitesimal elastic strain incremental
equation (7.10)1 (page 194).

With the above discretised evolution equations at hand, we now proceed to state the
incremental version of Problem 14.1. In order to remain consistent with the infinitesimal
counterpart (Problem 7.2, where the elastic strain is the primary kinematic unknown), rather
than using (14.73), we shall here adopt the equivalent formula (14.75) in the definition of
the incremental problem. This will result in a reduced system having the elastic deformation
gradient as the primary kinematic unknown.

Problem 14.2 (The incremental finite plasticity problem). Given F e
n and αn at the

beginning of the interval [tn, tn+1] and given the prescribed incremental deformation
gradient, F∆, for this interval, solve the following system of algebraic equations

F e
n+1 = F∆F e

n Re T
n+1 exp

[
−∆γ

∂Ψ
∂τ

∣∣∣∣
n+1

]
Re

n+1

αn+1 = αn + ∆γ Hn+1

(14.77)
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for the unknowns F e
n+1, αn+1 and ∆γ, subjected to the constraints

∆γ ≥ 0, Φ(τn+1, An+1) ≤ 0, ∆γ Φ(τn+1, An+1) = 0, (14.78)

with

τn+1 = ρ̄
∂ψ

∂εe

∣∣∣∣
n+1

, An+1 = ρ̄
∂ψ

∂α

∣∣∣∣
n+1

(14.79)

and the kinematic relations

εe
n+1 = ln V e

n+1

V e
n+1 = [F e

n+1 (F e
n+1)

T ]
1
2

Re
n+1 = [V e

n+1]
−1 F e

n+1.

(14.80)

After the solution of the above problem, the updated plastic strain can be determined promptly
from the multiplicative elastoplastic split as

F p
n+1 = (F e

n+1)
−1F n+1. (14.81)

Clearly, Problem 14.2 has the same structure as its infinitesimal counterpart (Problem 7.2)
and all arguments leading to the establishment of the elastic predictor/return-mapping scheme
in Section 7.2.3 remain valid in the present case. The resulting large-strain algorithm is
described next.

The elastic predictor/return-mapping scheme

The elastic predictor step, obtained by solving (14.77) with ∆γ = 0, gives the elastic trial
state

F e trial
n+1 = F∆F e

n

αtrialn+1 = αn.
(14.82)

If the pair {τtrialn+1, A
trial
n+1}, obtained from the potential constitutive relations at the elastic

trial state, is plastically admissible, i.e. if

Φ(τtrialn+1, A
trial
n+1) ≤ 0, (14.83)

then the elastic trial state is accepted as the actual state at tn+1. Otherwise, we solve the
return-mapping equations

F e
n+1 = F e trial

n+1 Re T
n+1 exp

[
−∆γ

∂Ψ
∂τ

∣∣∣∣
n+1

]
Re

n+1

αn+1 = αtrialn+1 + ∆γ Hn+1

Φ(τn+1, An+1) = 0,

(14.84)

for F e
n+1, αn+1 and ∆γ, with τn+1 and An+1 obtained from their potential constitutive

relations.
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Logarithmic strains and infinitesimal format return mapping

A substantial simplification of the return-mapping equation (14.84)1 can be achieved by
rewriting it equivalently in terms of the logarithmic elastic strain measure (rather than the
elastic deformation gradient). This is shown in the following.

Firstly, note that the post-multiplication of both sides of (14.75) by Re T
n+1 results in

V e
n+1 = F e trial

n+1 Re T
n+1 exp

[
−∆γ

∂Ψ
∂τ

∣∣∣∣
n+1

]
, (14.85)

or, equivalently, by making use of (B.9) in the inversion of the exponential term,

V e
n+1 exp

[
∆γ

∂Ψ
∂τ

∣∣∣∣
n+1

]
= F e trial

n+1 Re T
n+1. (14.86)

Then, a further post-multiplication of each side by its transpose, together with the use of
property (B.10), gives

V e
n+1 exp

[
2 ∆γ

∂Ψ
∂τ

∣∣∣∣
n+1

]
V e

n+1 = (V e trial
n+1 )2. (14.87)

Recall that, due to the assumed elastic and plastic isotropy, V e and ∂Ψ/∂τ commute. Then,
by rearranging the terms and taking the square root of both sides of (14.87), we obtain

V e
n+1 = V e trial

n+1 exp
[
−∆γ

∂Ψ
∂τ

∣∣∣∣
n+1

]
. (14.88)

Further, by taking the tensor logarithm of both sides of (14.88), we obtain the much simpler
formula in terms of logarithmic Eulerian strain tensors

εe
n+1 = εe trial

n+1 − ∆γ
∂Ψ
∂τ

∣∣∣∣
n+1

. (14.89)

Remarkably, the above expression has the same format as the elastic strain update formula
of the backward return-mapping algorithms of the infinitesimal theory derived in Chapter 7
(compare (14.89) with expression (7.25)1 of page 196).

Finally, by replacing (14.84)1 with its equivalent (14.89) in terms of logarithmic strains,
the return-mapping equation system of the finite strain incremental problem is reduced to

εe
n+1 = εe trial

n+1 − ∆γ
∂Ψ
∂τ

∣∣∣∣
n+1

αn+1 = αn + ∆γ Hn+1

Φ(τn+1, An+1) = 0,

(14.90)

which has the same functional format as the infinitesimal counterpart (7.25).
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Elastic rotation update

For the elastic rotation, the above algorithm results in the following update formula

Re
n+1 = Re trial

n+1 . (14.91)

To see this, note that by comparing (14.85) to (14.88), we find

V e trial
n+1 = F e trial

n+1 Re T
n+1 = V e trial

n+1 R e trial
n+1 Re T

n+1, (14.92)

which leads to (14.91).

14.4.3. COMPUTATIONAL IMPLEMENTATION OF THE GENERAL ALGORITHM

As the elastic law is defined here in terms of the spatial elastic logarithmic strain, in the actual
computational implementation of the above elastic predictor/return-mapping procedure we
shall take εe as the kinematic variable to be stored in the computer memory. Accordingly, the
computational procedure follows the steps:

• firstly, after retrieving the elastic logarithmic strain, εe
n, of tn, we recover the corre-

sponding elastic left Cauchy–Green tensor according to

B e
n = exp[2 εe

n]; (14.93)

• the elastic trial left Cauchy–Green tensor is computed next by means of the formula

Be trial
n+1 ≡ F e trial

n+1 (F e trial
n+1 )T = F∆Be

n(F∆)T ; (14.94)

• with Be trial
n+1 at hand, the elastic trial logarithmic strain tensor is computed as

εe trial = 1
2 ln[Be trial

n+1 ].

In program HYPLAS, this calculation is carried out in subroutine LOGSTR. The actual
computation of 12 ln[B etrial

n+1 ] is performed in the general subroutine ISO2, called by
LOGSTR. Subroutine ISO2 computes general isotropic tensor functions of a single
tensor belonging to the family described in Section A.5 of Appendix A. The above
function, 12 ln[·], is a particular member of this class of isotropic tensor functions;

• the elastic trial internal variable set is simply given by

αtrialn+1 = αn;

• having computed the elastic trial state, we proceed now to the standard small strain
integration algorithm to update εe, α and the corresponding forces τ and A. This
procedure comprises the standard admissibility check followed by the application of
the return-mapping procedure – solution of the system (14.90) – when the trial state is
not plastically admissible;
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Box 14.3. General integration algorithm for isotropic multiplicative finite strain
elastoplasticity.

HYPLAS procedure: MATISU

(i) Given incremental displacement ∆u, update the deformation gradient

F ∆ := I + ∇n[∆u], F n+1 := F ∆ F n

(ii) Compute elastic trial state

B e
n := exp[2 εe

n]

B e trial
n+1 := F ∆ Be

n (F ∆)T

εe trial
n+1 := ln[V e trial

n+1 ] = 1
2

ln[B e trial
n+1 ]

αtrial
n+1 := αn

(iii) GOTO BOX 14.4 – small-strain algorithm (update τ, εe and α)

(iv) Update the Cauchy stress

σn+1 := det[F n+1]
−1 τn+1

• finally, the updated Cauchy stress tensor, required to assemble the internal finite
element force vector f int(e), is evaluated

σn+1 =
1

det F n+1
τn+1.

The overall algorithm for integration of the large-strain elastoplastic constitutive equations is
listed in Boxes 14.3 and 14.4.

Remark 14.5. The operations carried out in items (i), (ii) and (iv) of Box 14.3 are related
exclusively to the kinematics of finite strains. Due to the use of the logarithmic elastic
strain measure in conjunction with the backward exponential approximation (14.73) to
the plastic flow rule, the essential material-related stress-updating procedure, shown in
Box 14.4, preserves the format of the general elastic predictor/return-mapping algorithm for
infinitesimal plasticity described in Chapter 7 and summarised in Box 7.1 (page 199). Further,
if the Hencky model (linear relation between the Kirchoff stress and the elastic logarithmic
strain) is adopted to describe the elastic behaviour, then the resulting algorithms will have the
same functional format as the specific procedures seen in Part Two of this book, for which
the return mapping is effectively carried out in the space of stresses. In computational terms,
it means that all small-strain elastoplastic integration subroutines described in Part Two can
be reused in the finite strain range without modification. For instance, in the finite strain
extension to the von Mises model, subroutine SUVM (Boxes 7.3 and 7.4 and Section 7.3.5)
is used in program HYPLAS to carry out the procedure of Box 14.4. Clearly, the kinematic
operations of Box 14.3 have to be performed before and after these routines are called.
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Box 14.4. General integration procedure – small strains.

(i) Given εe trial
n+1 and αtrial

n+1, compute

τ trial
n+1 = ρ̄

∂ψ

∂εe

∣∣∣∣
trial

n+1

, A trial
n+1 = ρ̄

∂ψ

∂α

∣∣∣∣
trial

n+1

(ii) Check plastic admissibility

IF Φ(τ trial
n+1 , Atrial

n+1) ≤ 0

THEN set (·)n+1 := (·)trialn+1 and EXIT

(iii) Return mapping. Solve the algebraic system


εe
n+1 − εe trial

n+1 + ∆γ
∂Ψ

∂τ

∣∣∣∣
n+1

αn+1 − αn − ∆γ H(τn+1, An+1)

Φ(τn+1, An+1)




=




0

0

0




for εe
n+1, αn+1 and ∆γ, with

τn+1 = ρ̄
∂ψ

∂εe

∣∣∣∣
n+1

, An+1 = ρ̄
∂ψ

∂α

∣∣∣∣
n+1

(iv) EXIT

Remark 14.6. It is important to emphasise that the simplicity of the integration algorithm
of Boxes 14.3 and 14.4 came as a result of the assumptions of elastoplastic isotropy and
the particular implicit exponential approximation adopted to discretise the plastic flow rule.
As already mentioned, other schemes such as the standard backward Euler method of
equation (14.74) or the fully explicit (forward) Euler method may be used to discretise the
plastic flow law. However, the adoption of schemes other than the exponential approximation
will generally result in quite complex integration algorithms in which kinematic and material-
related operations cannot be carried out separately.

14.5. The consistent spatial tangent modulus

The next step towards the complete incorporation of the general finite strain plasticity model
into the implicit finite element framework of Chapter 4 is the derivation of a closed formula
for the spatial tangent modulus consistent with the integration algorithm of Boxes 14.3
and 14.4. In Appendix C, the Cartesian components of the spatial tangent modulus have
been shown to be given by the following expression

aijkl =
1
J

∂τij
∂Fkq

Flq − σil δjk , (14.95)

where J = det F . The derivation of a for the finite strain elastoplasticity case is described in
the following.
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14.5.1. DERIVATION OF THE SPATIAL TANGENT MODULUS

Firstly, note that in the small strain integration algorithm of Box 14.4, the updated stress
Kirchhoff stress, τn+1, is obtained as a function of the internal variable set αn, at tn, and the
elastic trial logarithmic strain. This procedure can be regarded as an incremental constitutive
function of the form

τn+1 = τ̃ (αn, εe trial
n+1 ). (14.96)

This algorithmic function has the same functional format and properties as the function σ̄
referred to in expression (7.110), page 230, in the small-strain context.

In the general procedure of Box 14.3, εe trial
n+1 is computed as a function of B e trial

n+1

which, in turn, is a function of F p
n and F n+1. With εe trial

n+1 at hand, the Kirchhoff stress
is then updated by means of the incremental constitutive function τ̃ (small strain algorithm –
Box 14.4). Thus, the overall operator split algorithm, comprising the operations carried out in
Boxes 14.3 and 14.4, defines an implicit function τ̂ (the incremental constitutive function),
for the updated Kirchhoff stress, that can be generally expressed as

τ̂ (αn, F n+1) = τ̃ (αn, εe trial
n+1 (B e trial

n+1 (F p
n, F n+1))). (14.97)

The term ∂τij/∂Fkq taking part in (14.95) is the derivative of this implicit function. To obtain
this derivative, we apply the chain rule to (14.97) and obtain

∂τ̂

∂F n+1
=

∂τ̃

∂εe trial
n+1

:
∂εe trial

n+1

∂B e trial
n+1

:
∂B e trial

n+1

∂F n+1
. (14.98)

Substitution of this expression into (14.95) results, after straightforward manipulations, in the
following closed formula for the components of the spatial tangent modulus consistent with
the present operator split algorithm

aijkl =
1

2 J
[ D : L : B ]ijkl − σil δjk , (14.99)

where D is the small-strain elastic or elastoplastic consistent tangent operator, associated
exclusively with the integration algorithm of Box 14.4

D =
∂τ̃

∂εe trial
n+1

. (14.100)

The fourth-order tensor L is defined as

L =
∂ ln[B e trial

n+1 ]

∂B e trial
n+1

, (14.101)

i.e. it is the derivative of the tensor logarithm function at B e trial
n+1 . The fourth-order tensor B

is defined by the Cartesian components

Bijkl = δik (Be trial
n+1 )jl + δjk (Be trial

n+1 )il. (14.102)
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The structure of the tangent modulus

Note that D is the only material-related contribution to the spatial modulus a; that is, D is the
only term of (14.99) that depends on the elastic law and yield surface. All other terms taking
part in its assemblage in (14.99) are related purely to the geometry of finite deformations
and are completely independent of the particular material model adopted. The operator D has
exactly the same functional format as the tangent consistent with the corresponding implicit
integration algorithms for infinitesimal plasticity.

Thus, the complete separation between large-strain kinematics and material-related oper-
ations observed in the general integration algorithm of Boxes 14.3 and 14.4 is also possible
in the assemblage of the spatial consistent tangent modulus.

Elastic and elastoplastic moduli

It is important here to recall the remarks made in Chapter 7 on the differentiability of the algo-
rithmic stress constitutive function associated with the small-strain elastic predictor/return-
mapping algorithm (refer to Section 7.4.1, from page 229). When the stress is in the elastic
domain, the function τ̃ is differentiable and its derivative D is the standard small-strain
elasticity modulus. However, when the Kirchhoff stress lies on the yield surface, τ̃ is non-
differentiable. In this case, if elastic unloading is assumed to occur, then D is taken as
the elastic modulus – the infinitesimal elasticity tensor – in the assemblage of a. If plastic
loading is assumed to occur, then D is taken as the infinitesimal elastoplastic consistent
tangent modulus, Dep, whose derivation in the general case is described in Section 7.4.4
(from page 238).

14.5.2. COMPUTATIONAL IMPLEMENTATION

From the above comments on the structure of a, it is clear that the same subroutines used
to compute the consistent tangent operator for infinitesimal plasticity models can be used
without modification to compute D in the assemblage of the spatial tangent modulus; that is,
for the finite strain extension to the von Mises model, D will be computed in subroutine CTVM
(Section 7.4.3, page 235). For the finite strain extension to the Tresca model, subroutine CTTR
(Section 8.1.5, page 291) will be used, and so on. Tangent operators for other infinitesimal
plasticity models have been derived in Chapters 8 and 10.

Another important observation regarding the computer implementation of a is the fact
that the tensor logarithm is a member of the class of isotropic tensor functions described in
Section A.5. In expression (A.48), the tensor logarithm corresponds to y(·) ≡ ln(·) and X ≡
B e trial

n+1 . In program HYPLAS, L is computed in subroutine DISO2. DISO2 is a general routine
for computation of the derivative of any isotropic tensor function of the class discussed in
Section A.5.

14.6. Principal stress space-based implementation

In the context of the infinitesimal theory, it was seen in Chapter 8 that the computational
implementation of some isotropic plasticity models may be more efficient and clear if a
principal stress-based representation is adopted. This was the case, for instance, for the
Tresca and Mohr–Coulomb isotropically hardening models whose principal stress-based
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implementations are described in Sections 8.1 and 8.2, respectively. Even though any
isotropic model may be formulated and implemented in terms of principal stresses and strains,
it has been emphasised in Chapter 8 that this approach may not be optimal in certain cases. For
example, the computer implementation of the infinitesimal isotropically hardening von Mises
model turns out to be more efficient and clear when the standard component representation is
adopted.

Equivalent principal stress representations are also possible in finite isotropic plasticity.
The general computational schemes for stress updating and tangent modulus evaluation for
isotropic finite strain plasticity described in Sections 14.4 and 14.5 can be alternatively
implemented in principal stress space-based format. This approach has been extensively
exploited by Simo (1992). We also refer to Rosati and Valoroso (2004) for a recently proposed
general framework, also based on the principal space description. An outline of the principal
stress space-based treatment of finite plasticity is presented in the following.

14.6.1. STRESS-UPDATING ALGORITHM

In this section, we reformulate the general numerical integration algorithm of Boxes 14.3
and 14.4 in an equivalent principal stress-based form. We begin the derivation of the fully
principal stress-based algorithm by recalling that, for any isotropic model, εe trial

n+1 and τn+1

have the same principal axes. This means that the small-strain part of the algorithm (Box 14.4)
can be implemented in terms of the principal values of τn+1 and εe trial

n+1 . By observing that
Be trial

n+1 and εe trial
n+1 also share the same principal directions, we may reformulate the algorithm

of Boxes 14.3 and 14.4 in the following equivalent form

1. Given ∆u, compute F∆, F n+1 and Be trial
n+1 (as in Box 14.3).

2. Perform spectral decomposition of Be trial
n+1

Be trial
n+1 =

3∑
i=1

be trial
i ei ⊗ ei, (14.103)

and compute the principal elastic trial strains

εe trial
i := 1

2 ln be trial
i . (14.104)

3. With the principal elastic trial strains and the set αn of internal variables at tn at hand,
use a principal stress-based integration algorithm to obtain the eigenvalues τi, of τn+1,
and εe

i , of εe
n+1.

4. Assemble the updated Cauchy stress tensor

σn+1 :=
1
J

3∑
i=1

τi ei ⊗ ei. (14.105)
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14.6.2. TANGENT MODULUS COMPUTATION

Instead of computing the tensors D and L of expression (14.99) individually and then
calculating the product D : L (as we do in HYPLAS – refer to subroutines MATICT and CSTEP2),
the computation of the spatial tangent modulus can be made more efficient by exploiting a
fully principal stress-based approach. This can be achieved by recalling that τn+1, εe trial

n+1 and
Be trial

n+1 all share the same principal directions. Thus, the product

1
2
D : L =

∂τn+1

∂Be trial
n+1

=
∂τn+1

∂εe trial
n+1

:
∂εe trial

n+1

∂Be trial
n+1

, (14.106)

that takes part in (14.99) can be evaluated by directly computing the principal stress derivative

∂τi

∂be trial
j

=
1

2 be trial
j

∂τi

∂εe trial
j

(no summation implied) (14.107)

and then assembling the corresponding fourth-order tensor (the product (14.106)) as an
isotropic tensor-valued function of one tensor of the type alluded to in Section 14.5.2.

Remark 14.7. Further efficiency can be gained if the eigenprojection tensors Mi ≡ ei ⊗ ei

(no summation over i) obtained in the spectral decomposition carried out in the stress-
updating stage (item 2 of Section 14.6.1) is stored in memory and then retrieved later for use
in the computation of the above fourth-order tensor. This approach (not adopted in HYPLAS)
avoids the re-computation of the eigenprojections of Be trial

n+1 during the evaluation of the
tangent modulus.

14.7. Finite plasticity in plane stress

The treatment of plane stress problems has been discussed in Chapter 9 and Section 13.3,
respectively, in the context of infinitesimal plasticity and finite hyperelasticity. The finite
element implementation of hyperelastic-based multiplicative plasticity models in plane stress
follows completely analogous concepts; that is, procedures such as the nested iteration
methodology for enforcement of the plane stress constraint or plane stress-projected constitu-
tive models can be equally derived for finite strain elastoplasticity. Again, as in infinitesimal
plasticity or finite elasticity, plane stress-projected constitutive models can be practically
derived only when the equations of the model are sufficiently simple to allow the elimination
of out-of-plane terms from the formulation. This is the case, for instance, of the finite strain
extension of the von Mises model as we shall see below. The (generally computationally more
expensive) nested iteration method, on the other hand, can be relatively easily implemented
for any model whose axisymmetric implementation already exists. The two approaches are
described in this section. We start by presenting in the sequel the plane-stress projected
implementation of the finite strain extension of the von Mises model. The application of
the nested iteration methodology is then described for a generic underlying plasticity model.

14.7.1. THE PLANE STRESS-PROJECTED FINITE VON MISES MODEL

Let us consider the plane stress-projected version of the finite strain extension of the
isotropically hardening von Mises model. Before proceeding further, the reader is advised
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to review Section 9.4 where the infinitesimal plane stress-projected von Mises model is
described in detail. Of particular relevance to our discussion are the constitutive model and
the corresponding integration algorithm summarised, respectively, in Boxes 9.3 (page 374)
and 9.4 (page 377).

The extension of the infinitesimal plane stress-projected model (Box 9.3) to the finite
strain range within the present logarithmic strain-based multiplicative framework is given by
the following set of constitutive equations:

1. the standard multiplicative split (item (i) of Box 14.2) where, now, only the in-plane
components of F , F e and F p are required;

2. the Hencky hyperelastic relationship

τ = De εe,

where τ and εe are the arrays of in-plane components of the Kirchhoff stress and
logarithmic elastic strain

τ = [τ11, τ22, τ12]T , εe = [εe
11, εe

22, 2εe
12]

T ;

3. a yield function defined in terms of in-plane stress components

Φ = 1
2 τTP τ − 1

3σ
2
y(ε̄p)

where matrix P is defined in Box 9.3 (page 374);

4. the plastic flow rule

d̃p = γ̇ P τ

where d̃p is the array of in-plane components of D̃
p
;

5. hardening variable evolution

˙̄εp = γ̇
√
2
3 τT P τ;

6. together with the standard loading/unloading criterion

γ̇ ≥ 0, Φ ≤ 0, γ̇ Φ = 0.

The integration algorithm

The operator split integration algorithm in the present case has essentially the same format as
the general finite strain procedure listed in Box 14.3. It comprises the following steps:

(a) Perform the calculations of items (i) and (ii) of Box 14.3 taking into consideration only
the in-plane components of the tensor variables F∆, F n+1, etc.
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(b) Having computed the elastic trial state, apply the integration algorithm of the small
strain plane stress-projected model (Box 9.4) to update the in-plane components of τ
and εe as well as the hardening variable. From the Hencky hyperelastic law, the updated
thickness logarithmic elastic strain

εe
33 ≡ ln λe

3 (14.108)

can also be computed according to the trivial relation

εe
33 = − ν

1 − ν
(εe
11 + εe

22). (14.109)

In program HYPLAS, these calculations are carried out in subroutine SUVMPS.

(c) Perform the calculations of item (iv) of Box 14.3, including the computation of the
out-of-plane component of the elastic left Cauchy–Green tensor. Note that before com-
puting the updated Cauchy stress components, it is necessary to compute det F n+1;
that is, the determinant of the full deformation gradient which includes the contri-
bution from the thickness (or out-of-plane) strain. At this point an extra operation is
required. The situation here is completely analogous to that of the plane stress Hencky
hyperelastic model (see Section 13.3.2, from page 532). Note that, due to the plastic
incompressibility of the von Mises model, the determinants of the total and elastic
deformation gradient coincide

det F = det F e. (14.110)

This, together with the use of the logarithmic elastic strain measure, allows det F n+1

to be computed from the relation

det F = tr[ln U e] = exp[εe
11 + εe

22 + εe
33]. (14.111)

The above computation is carried out in subroutine TUVM of HYPLAS). Once det F n+1

is computed, we then update the Cauchy stress

σn+1 := (det F −1
n+1) τn+1. (14.112)

Thickness update

Within the finite element environment, the current thickness at Gauss points is required in
the computation of the internal force vector and tangent stiffness. With t0 denoting the initial
thickness (in the reference configuration) at a generic Gauss point, the current thickness t is
given by

t = λ3 t0. (14.113)

Within the structure of program HYPLAS, where the determinant of the current total
deformation gradient (in-plane deformation gradient in the plane stress case) is readily
available during the stress-update phase (see subroutine MATISU), the thickness stretch, λ3,
for the von Mises model can be conveniently computed as follows. With F̃ n+1 denoting the
current in-plane deformation gradient, we have the trivial relation

det F n+1 = (det F̃ n+1) λ3. (14.114)
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Thus, after the computation of det F n+1 by (14.111), the thickness stretch is promptly
evaluated as

λ3 :=
det F n+1

det F̃ n+1

. (14.115)

The thickness is then updated according to (14.113). These operations are performed in
subroutine TUVM of HYPLAS.

The tangent modulus

The consistent tangent modulus in the present case is computed quite trivially. Basically, the
spatial tangent operator is a plane tensor defined by expression (14.99) where D is either
the standard plane stress infinitesimal elasticity tensor or, under plastic flow, the elastoplastic
tangent tensor consistent with the small strain plane stress return-mapping algorithm whose
expression is given in Box 9.6 (page 384). The elastoplastic infinitesimal tangent operator for
the plane stress-projected von Mises model is computed in subroutine CTVMPS of program
HYPLAS.

14.7.2. NESTED ITERATION FOR PLANE STRESS ENFORCEMENT

Readers not already familiar with the nested iteration procedure for plane stress enforcement
are advised to review Section 9.2 with particular attention to Section 9.2.2 where the method-
ology is described in the context of infinitesimal elastoplasticity. The generic infinitesimal
plasticity nested iteration algorithm is presented in pseudo-code format in Box 9.1 (page 364).
It is also worth revisiting Section 13.3.3 which describes the application of this method to
finite hyperelasticity models.

In the present context, the nested iteration algorithm may be cast in the following form:

1. Perform the calculations of items (i) and (ii) of Box 14.3 taking into consideration only
the in-plane components of the tensor variables F∆, F n+1, etc.

2. With the elastic trial state at hand, apply the small-strain nested iteration procedure
(refer to Box 9.1). The procedure will update τ, the in-plane components of εe and the
internal variables of the model.

3. Perform the calculations of item (iv) of Box 14.3 again taking into consideration only
in-plane components. Again (see item (c), page 603), the determinant of F n+1 (which
includes the thickness stretching) needs to be computed before the Cauchy stress can
be updated. For a plastically incompressible model, det F n+1 can be computed as
described in item (c) of the plane stress-projected finite von Mises algorithm. For more
general models, the following procedure may be adopted. Firstly, let us recall that at
a (plane stress) converged state of the plane stress enforcement loop, both the elastic
trial and updated elastic thickness logarithmic strains, εe trial

33 and εe
33 (with subscripts

n + 1 dropped for convenience), are available as a by-product of the algorithm. Now
let us define the plastic logarithmic thickness strain as

εp
33 ≡ ln λp

3.
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Trivially, the total logarithmic thickness strain satisfies

ε33 ≡ ln λ3 = εe
33 + εp

33 = ln(λe
3λ

p
3) (14.116)

and, as in the infinitesimal case,

εp
33 = (εp

33)n + εe trial
33 − εe

33, (14.117)

where the subscript n denotes the (equilibrium) converged value at the end of the
previous load step. To compute det F n+1, we proceed as follows:

(a) update the plastic thickness strain using (14.117);

(b) then compute the total logarithmic thickness strain using (14.116) and obtain the
total thickness stretch

λ3 := exp(ε33);

(c) finally compute
det F n+1 := (det F̃ n+1) λ3,

and update the Cauchy stress according to (14.112).

Thickness update

With λ3 already computed, the current Gauss point thickness is promptly updated with
expression (14.113).

The tangent modulus

The comments made on page 604 regarding the spatial tangent modulus for the plane
stress-projected model apply equally to the present case. Here, however, the infinitesimal
elastoplastic tangent operator is generally obtained from formula (9.24) (page 366).

14.8. Finite viscoplasticity

Isotropic finite strain viscoplasticity can be equally accommodated within the hyperelastic-
based multiplicative plasticity framework discussed in the previous sections of this chapter.
Here, we will assume that the reader is already familiar with the theory of viscoplasticity
discussed in Chapter 11 in the infinitesimal strain context. Analogously to the infinitesimal
case, the general finite viscoplasticity model is defined by simply replacing, in Box 14.2, the
large-strain plastic flow rule (evolution equation for F p) and the evolution equation for the
set α of internal variables with the following expressions:

D̃p = G(τ, A)

α̇ = J(τ, A),
(14.118)

where G and J are given explicit functions of τ and the set A of thermodynamical
forces. The resulting model is a finite strain extension (under isotropic conditions) of the
infinitesimal viscoplasticity model of Box 11.3 (page 451). It incorporates, for instance, the
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finite strain extension of all von Mises-based infinitesimal viscoplasticity models discussed
in Section 11.3 (from page 445).

For viscoplastic models with a yield surface, the above evolution equations can be written
in the more specialised format (refer to equations (11.71) on page 456)

D̃p = γ̇(τ, A) N(σ, A)

α̇ = γ̇(τ, A) H(σ, A),
(14.119)

where N is the flow vector and H represents the generalised hardening moduli. The scalar
function γ̇ is zero within the elastic domain or on the yield surface and positive outside the
elastic domain as, for instance, in the definitions given in Sections 11.3.1 and 11.3.2.

14.8.1. NUMERICAL TREATMENT

The numerical treatment of hyperelastic-based multiplicative viscoplasticity models is com-
pletely analogous to the rate-independent case thoroughly discussed earlier in this chapter;
that is, in the constitutive integration algorithm, the effective material-related integration
scheme has the same format as the small strain counterpart, with the finite strain-related
operations confined to the level of kinematics. Thus, the integration can be performed by
means of the procedure of Box 14.3, with the small-strain algorithm referred to in item
(iii) replaced with a small-strain viscoplasticity algorithm described in Chapter 11 (refer
to Boxes 11.4 and 11.5 on pages 456 and 457, respectively). The same applies to the
computation of the consistent tangent matrix. In the viscoplastic case, the small-strain tangent
modulus D on the right-hand side of (14.99) becomes the consistent tangent operator of
the corresponding infinitesimal viscoplasticity model/algorithm. Infinitesimal viscoplastic
consistent tangent operators were discussed in Sections 11.5.3 and 11.6.3.

We note that this framework can be readily extended to include the combined effects
of hyperelasticity, viscoplasticity, viscoelasticity and damage as described, for example, by
Reese and Govindjee (1998), Miehe and Keck (2000) and Perić and Dettmer (2003).

14.9. Examples

In this section we present a set of finite element examples where the hyperelastic-based
multiplicative plasticity framework described in the preceding sections has been used. Unless
otherwise stated, the results presented have been obtained with program HYPLAS. Again,
in all examples, the full Newton–Raphson algorithm is selected to solve the incremental
equilibrium problem.

14.9.1. FINITE STRAIN BENDING OF A V-NOTCHED TRESCA BAR

This is the finite strain version of the numerical example presented is Section 8.4.1 (from
page 343). The problem consists of a wide rectangular metal bar containing a deep 90◦

V-shaped notch and subjected to bending. The material model adopted for the bar is the
hyperelastic-based multiplicative finite strain extension of the Tresca elasto-perfectly plastic
model. Plane strain state is assumed. The initial geometry and material parameters are
identical to those of the infinitesimal analysis and are shown in Figure 8.17 (page 344).
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Please Wait..

Figure 14.3. Large strain bending of a V-notched bar. Deformed configuration with eight-noded
quadrilaterals mesh. (Reproduced with permission from A new computational model for Tresca
plasticity at finite strains with an optimal parametrization in the principal space, D Perić and EA
de Souza Neto, Computer Methods in Applied Mechanics and Engineering, Vol 171 c© 1999 Elsevier
Science S.A.)

Finite element solutions are obtained here with two different meshes. The first mesh, of
eight-noded quadrilaterals with four-point reduced integration, is identical to that employed
in the infinitesimal analysis. The second solution is obtained with a mesh of 312 F-bar four-
noded quadrilaterals. The F-bar four-noded quadrilateral element is described in detail in
Chapter 15. This element is especially suited for large strain analysis of nearly incompressible
materials. The adopted discretisation coincides with that shown in Figure 8.18 (page 344).
In this case, however, the mesh contains only 345 nodes, as opposed to 1001 nodes used
in the corresponding discretisation with eight-noded quadrilaterals. Due to the occurrence
of geometric softening of the bar under large strains, the arc-length procedure described
in Chapter 4 (see Section 4.4, from page 107) is used in conjunction with the Newton–
Raphson algorithm in the equilibrium iterations. A deformed configuration obtained with
the eight-noded elements is depicted in Figure 14.3. The corresponding vertical displacement
of the mid-node of the edge where the forces are applied is 10.288 mm. This configuration
was reached in 30 steps. The results obtained with the F-bar element mesh are shown in
Figure 14.4. Figures 14.4(a) and (b) show the deformed configurations of the bar, with
the corresponding contour plot of accumulated plastic strains, respectively with 2.50 mm
and 12.77 mm of displacement of the mid-node. These configurations have been reached,
respectively, at load steps 10 and 30. The corresponding moment–deflection diagram obtained
in the simulation is shown in Figure 14.5. The normalised applied moment plotted in the
diagram is measured in the current configuration of the specimen. It should be noted that
after the limit load is reached, global softening is observed. This phenomenon – not captured
in the corresponding small strain analysis – is due to the reduction of cross-sectional area
near the notch. The behaviour of the Newton–Raphson algorithm for equilibrium iterations
is illustrated in Table 14.1, where the evolution of the relative residual norm is shown during
a typical load increment. The quadratic rates of convergence of the Newton algorithm, which
results from the consistent linearisation of the algorithms involved, are evident.

14.9.2. NECKING OF A CYLINDRICAL BAR

This example consists of the simulation of the necking of a cylindrical bar, with radius
6.413 mm and length 53.334 mm, in a tensile test. Two material models are adopted, the
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(a)

(b)

Figure 14.4. Large strain bending of a V-notched bar. Deformed configuration with four-noded F-bar
quadrilaterals mesh. Mid-node displacements: (a) 2.503 mm; and (b) 12.836 mm. (Reproduced with
permission from A new computational model for Tresca plasticity at finite strains with an optimal
parametrization in the principal space, D Perić and EA de Souza Neto, Computer Methods in Applied
Mechanics and Engineering, Vol 171 c© 1999 Elsevier Science S.A.)
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Figure 14.5. Finite strain bending of a V-notched bar. Moment–deflection diagram.

Tresca and the von Mises model with elastic constants

E = 206.9 GPa, ν = 0.29,

and the following hardening curve

σy(ε̄p) ≡ (σ∞ − σ0)[1 − exp(−δ ε̄p)] + H ε̄p,

where

σ0 = 0.45 GPa, σ∞ = 0.715 GPa, δ = 16.93, H = 0.12924 GPa.
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Table 14.1. V-notched Tresca bar. Typical convergence table.

Iteration Relative residual norm (%)

1 0.167404 E+03

2 0.777646 E+01

3 0.368556 E+00

4 0.650100 E−01

5 0.606889 E−04

6 0.385324 E−09

Simo and Armero (1992) used this problem, with the von Mises model, to study the
performance of enhanced assumed strain elements in large strain localisation problems.

We first carry out an axisymmetric analysis of the problem. Due to obvious symmetry,
only one quarter of the bar is discretised with the appropriate boundary conditions being
imposed on the symmetry lines. The mesh of 200 four-node axisymmetric F-bar elements
(refer to Chapter 15) shown in Figure 14.6(a) is used. The mesh contains 231 nodal points. A
geometric imperfection of 1.8% of the radius is introduced at the centre of the bar to trigger
the necking. A vertical displacement u = 7.0 mm is imposed incrementally at the top of the
bar. The final deformed meshes, in which the development of necking in the central zone
can be clearly seen, are plotted in Figure 14.6(b) and (c) and correspond, respectively, to the
Tresca and von Mises material models. The final configuration was reached in 23 steps for
the Tresca model and 17 steps for the von Mises model. Figure 14.7 shows the reaction–
displacement curves obtained in the present computation. It is noted that up to approximately
u = 3.0 mm – where the limit reaction is attained – the reactions obtained with the Tresca
model are virtually identical to those obtained with the von Mises material. This is an obvious
consequence of the fact that the dominant stresses up to that stage are uniaxial – a condition
under which the behaviour of both material models coincide in the present set-up. Some
discrepancy in reactions is observed after strain localisation is triggered, in the descent branch
of the displacement–reaction curve. This is attributed to the stronger influence of shear under
localisation. It should be noted that the final deformed configurations of Figures 14.6(b) and
(c) differ quite considerably in the necking zone.

Three-dimensional analysis

We now carry out a three-dimensional analysis of the cylindrical bar necking problem. Only
the von Mises model is used. The analysis reported here was not carried out in program
HYPLAS. Two different meshes – one with 120 and another with 960 eight-noded F-bar
hexahedra – are used to discretise the symmetric octant of the specimen, with the appropriate
boundary conditions imposed on the symmetry planes. The initial meshes are shown in
Figure 14.8. The final deformed configurations with imposed edge displacement u = 7.0 mm
obtained for both meshes are shown in Figure 14.9 along with the von Mises effective
stress contour plot obtained for the finer mesh. For ease of visualisation, the deformed
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(a) (b) (c)

Figure 14.6. Necking of a cylindrical bar. Axisymmetric analysis: (a) initial mesh. Deformed meshes
with imposed displacement u = 7.0 mm; (b) Tresca model; (c) von Mises model. (Reproduced with
permission from A new computational model for Tresca plasticity at finite strains with an optimal
parametrization in the principal space, D Perić and EA de Souza Neto, Computer Methods in Applied
Mechanics and Engineering, Vol 171 c© 1999 Elsevier Science S.A.)

symmetric octant has been mirrored to produce a full deformed specimen in Figures 14.9(a)
and (b). The upper half of Figure 14.9(c) shows the distribution of von Mises effective
stress within the longitudinal cross-section of the specimen whereas its lower half shows
the distribution on the boundary of the specimen. Both fine and coarse meshes are able to
predict correctly the necking phenomenon. The final shape resulting from the simulation with
960 eight-node hexahedra is virtually identical to that predicted by the above axisymmetric
simulation. The deformed transversal cross-section obtained with the fine mesh simulation is
depicted in Figure 14.10 where, again, the deformed symmetric octant has been mirrored for
ease of visualisation. The reaction–displacement curves obtained for both three-dimensional
simulations are plotted in Figure 14.11 along with results of the axisymmetric analysis. The
results for the finer three-dimensional mesh are almost indistinguishable from those obtained
in the axisymmetric simulation.
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Figure 14.7. Necking of a cylindrical bar. Axisymmetric analysis. Force–displacement diagrams.
(Reproduced with permission from A new computational model for Tresca plasticity at finite strains
with an optimal parametrization in the principal space, D Perić and EA de Souza Neto, Computer
Methods in Applied Mechanics and Engineering, Vol 171 c© 1999 Elsevier Science S.A.)

(a) (b)

Figure 14.8. Necking of a cylindrical bar. Initial meshes for three-dimensional analysis: (a) 120 eight-
noded F-bar hexahedra; (b) 960 eight-noded F-bar hexahedra. (Reproduced with permission from
Design of simple low-order finite elements for large-strain analysis of nearly incompressible solids,
EA de Souza Neto, D Perić, M Dutko and DRJ Owen, International Journal of Solids and Structures,
Vol 33, Issue 20–22 c© 1996 Elsevier Science Ltd.)

14.9.3. PLANE STRAIN LOCALISATION

In this example we simulate the occurrence of shear bands during the finite stretching of an
elastoplastic rectangular bar. This problem was considered by Simo and Armero (1992) to test
the ability of assumed enhanced strain element formulations in capturing strain localisation.
Here, we use a mesh of F-bar four-noded quadrilaterals under plane strain condition. Due
to symmetry, only one quarter of the bar is discretised. A total number of 200 elements is
used. Figure 14.12(a) shows the initial geometry and the finite element mesh. The von Mises
model is adopted. The material constants are the same as in the previous example except that
the hardening modulus here is

H = −0.012924 GPa.
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Figure 14.9. Necking of a cylindrical bar. Three-dimensional analysis. Results at u = 7.0 mm.
(a) Deformed configuration with coarse mesh; (b) deformed configuration with fine mesh; (c) von Mises
effective stress contour obtained with the fine mesh. (Reproduced with permission from Design of
simple low-order finite elements for large-strain analysis of nearly incompressible solids, EA de Souza
Neto, D Perić, M Dutko and DRJ Owen, International Journal of Solids and Structures, Vol 33, Issue
20–22 c© 1996 Elsevier Science Ltd.)

Figure 14.10. Necking of a cylindrical bar. Three-dimensional analysis. Deformed transversal cross-
section obtained with fine mesh at u = 7.0 mm.

To trigger strain localisation, a width reduction of 1.8% is introduced in the centre of the bar.
The displacement u on the constrained (top) edge is prescribed incrementally until the final
deformed configuration with u = 5.0 mm is reached. The final deformed mesh obtained in
the simulation is shown in Figure 14.12(b). At that stage, a very localised shear band can be
observed. Figure 14.13 shows the displacement–reaction diagram obtained. The substantial
decrease in reaction forces occurring near u = 3.0 mm corresponds to the development of
the localised shear band. To emphasise the need for an appropriate element formulation in
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Figure 14.11. Necking of a cylindrical bar. Force–displacement diagrams for axisymmetric and three-
dimensional analysis with the von Mises model. (Reproduced with permission from Design of simple
low-order finite elements for large-strain analysis of nearly incompressible solids, EA de Souza Neto,
D Perić, M Dutko and DRJ Owen, International Journal of Solids and Structures, Vol 33, Issue 20–22
c© 1996 Elsevier Science Ltd.)

capturing strain localisation phenomena,§ we also plot the results obtained with the Q1/E4
enhanced strain element of Simo and Armero (1992) as well as the results obtained with
the standard four-noded quadrilateral. Both F-bar and Q1/E4 elements are able to capture
localisation (producing substantial global softening) whereas the conventional four-noded
element produces an over-stiff solution with no localisation.

14.9.4. STRETCHING OF A PERFORATED PLATE

This example consists of the plane stress analysis of the stretching of a rectangular perforated
plate and has been studied in Sections 9.5.3 (page 390) and 11.7.2 (page 469), respectively,
in the context of infinitesimal (rate-independent) elastoplasticity and viscoplasticity. Here
we consider the large strain version of this problem and analyse both elastoplastic and
viscoplastic cases. Note that the viscoplastic case results presented here were not obtained
with program HYPLAS. The reader is referred to Sections 9.5.3 and 11.7.2 for the details of
geometry, material parameters and finite element mesh used. The results obtained for the
constrained edge reaction as a function of the edge prescribed displacement are shown in
Figure 14.14. The rate-independent solution is plotted together with the viscoplastic solution
obtained for different values of rate-sensitivity parameter, ε. Figure 14.14 is to be compared
with the infinitesimal strain solutions shown in Figure 11.8 (page 468). All comments made in
Section 11.7.2 regarding the behaviour of the viscoplastic model with various rate-sensitivity
parameters and stretching rates apply to the finite strain results shown here. The major
difference between the small and large strain results lies in the fact that, in spite of the linear
hardening law considered, the finite strain analysis show a marked softening in the reaction–
displacement curves in all cases considered. This global geometric softening is caused by the

§Refer to Chapter 15 for further discussions on element technology issues.
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Figure 14.12. Plane strain localisation: (a) initial geometry (dimensions in mm) and finite element
mesh; (b) final deformed mesh with u = 5.0 mm. (Reproduced with permission from Design of simple
low-order finite elements for large-strain analysis of nearly incompressible solids, EA de Souza Neto,
D Perić, M Dutko and DRJ Owen, International Journal of Solids and Structures, Vol 33, Issue 20–22
c© 1996 Elsevier Science Ltd.)

change in geometry (reduction of cross-section) that occurs as the plate is stretched. In the
infinitesimal theory, the change in geometry is neglected as all calculations are based on the
initial geometry. Thus, this phenomenon cannot be captured by the infinitesimal strain theory
that predicts global hardening in all cases.

14.9.5. THIN SHEET METAL-FORMING APPLICATION

This example considers the simulation of a thin sheet metal-forming operation. This example
has not been solved with program HYPLAS. The problem consists of a thin circular sheet
stretched by a rigid spherical punch and is frequently taken as a benchmark example (Oñate
et al., 1995). The sheet lies on a rigid cylindrical die and its edge is assumed to be clamped.
The geometry and material parameters are shown in Figure 14.15. The material is modelled
as a hyperelastic-based extension of the von Mises model with isotropic strain hardening.
Due to the symmetry of the problem, only one quarter of the domain is considered in the
finite element simulation. A mesh with 736 three-noded membrane elements is used in the
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Figure 14.13. Plane strain localisation. Force–displacement diagrams. (Reproduced with permission
from Design of simple low-order finite elements for large-strain analysis of nearly incompressible
solids, EA de Souza Neto, D Perić, M Dutko and DRJ Owen, International Journal of Solids and
Structures, Vol 33, Issue 20–22 c© 1996 Elsevier Science Ltd.)

discretisation of the sheet. The penalty based approach described by Perić and Owen (1992)
is employed in the treatment of the frictional contact between the sheet, punch and die.
Coulomb dry friction with friction coefficient µ = 0.3 is assumed between the sheet, punch
and die. The surfaces of the punch and the die are discretised, respectively, by 2145 and
612 flat triangular elements. Figure 14.16 shows the finite element meshes used. Note that
within membrane elements, a plane stress state is assumed. In the present case, the plane
stress projected approach to the finite strain von Mises model (described in Section 14.7.1)
is adopted. The reaction force obtained on the punch is plotted in Figure 14.17 against
the punch travel. Figure 14.18 shows the corresponding distributions of radial strain and
thickness along the sheet radius obtained in the simulation. The results are plotted for 10,
20, 30 and 40 mm of punch displacement (dp). The peak in thickness reduction and radial
strain observed at dp = 40 mm corresponds to a strain localisation phenomenon leading to
the rupture of the workpiece. Strain localisation initiates when the peak reaction is reached
at around dp = 34 mm. The ability accurately to predict rupture in industrial processes of
this nature is of crucial importance in the design of tools. It can bring substantial savings in
the overall design process. For this reason, the Finite Element Method is currently widely
employed in industry for the simulation of thin sheet-forming operations.

14.10. Rate forms: hypoelastic-based plasticity models

The inelastic response of finitely deformed solids can also be modelled by means of so-
called hypoelastic-based constitutive theories. In contrast to the above described family of
(hyperelastic-based) finite plasticity models, hypoelastic-based theories do not rely on the
assumption of the existence of a free-energy potential to model the reversible behaviour. The
starting point of hypoelastic-based models is the formulation of the constitutive equations
for stress in terms of objective (frame invariant) stress rates. As already mentioned in
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Figure 14.14. Stretching of a perforated plate. Finite strain solution. Displacement–reaction diagrams.
(a) ε = 100; (b) ε = 10−1; (c) ε = 10−2.
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Figure 14.15. Thin sheet metal forming. Tool/workpiece configuration.
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Figure 14.16. Thin sheet metal forming. (a) Finite element discretization of the sheet, die and punch;
(b) finite element mesh and boundary conditions for the sheet.
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Figure 14.17. Thin sheet metal forming. Reaction forces on punch.
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Figure 14.18. Thin sheet metal forming: (a) radial strain distributions plotted over the initial configura-
tion; (b) thickness distributions.

Section 14.1, early formulations of finite strain plasticity have relied exclusively on the
hypoelastic-based approach to provide ad hoc finite strain extensions to existing infinitesimal
models. In spite of their relative simplicity, hypoelastic-based plasticity models do not
usually account for truly reversible behaviour, even in the absence of plastic flow. In other
words, dissipative behaviour may be predicted even within what is meant to be an ‘elastic’
(reversible) domain. This is certainly an undesirable feature from the theoretical point of
view. In addition, the formulation of incremental constitutive equations which preserve the
objectivity (frame-invariance) of the rate (time-continuum) forms is not trivial and may,
in some circumstances, result in rather cumbersome numerical procedures. Despite such
disadvantages, hypoelastic-based models are used extensively by many researchers and are
currently available (in some cases as the only option) in many commercial finite element
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packages. We, therefore, find it appropriate to devote this section to this class of constitutive
models of plastic material.

14.10.1. OBJECTIVE STRESS RATES

Crucial to the formulation of hypoelastic-based models of plasticity is the definition of
objective stress rates. To introduce this concept, let us first recall from Chapter 3 (refer to
the text surrounding expression (3.146), page 70) that the principle of material objectivity
requires that under a change in observer, the Cauchy stress tensor, σ, transforms according to
the rule

σ(t) −→ Q(t) σ(t) QT(t). (14.120)

A given stress rate, which will be here denoted generically
•
σ (note the bold dot), is said to

be objective if, under a change of observer, it transforms according to the same rule; that is, a

stress rate
•
σ is objective only if it transforms as

•
σ −→ Q

•
σ QT (14.121)

for any change in observer. Note, for instance, that the material time derivative σ̇ of the
Cauchy stress is not an objective stress rate. In this case, the transformation reads

σ̇ −→ Q σ̇ QT + Q̇ σ QT + Q σ Q̇
T
, (14.122)

and satisfies (14.121) only for changes in observer with time-independent rotation (Q̇ = 0).
In order to ensure material objectivity in the formulation of finite strain constitutive laws

directly in terms of stress rates, it is essential that the constitutive equation for the stress
tensor be defined in terms of objective stress rates. Objective stress rates are usually defined
by suitably modifying the material time derivative of the stress tensor to ensure that (14.121)
is satisfied. Their definition is somewhat arbitrary and many different objective rates of
stress have been proposed in the formulation of hypoelastic-based constitutive theories. The
definition of some of the most commonly used objective rates is reviewed in the following. We
remark that proof of objectivity is provided here only for the Jaumann rate of Cauchy stress
described below. The objectivity of the remaining stress rates can be proved in a completely
analogous way. This will be left as an exercise for the interested reader.

The Jaumann rate

The Jaumann rate of Cauchy stress, denoted
∇
σ , is defined as

∇
σ ≡ σ̇ − W σ + σ W , (14.123)

where W is the spin tensor

W ≡ skew[L], L ≡∇xv̇ = Ḟ F −1. (14.124)

This rate is also frequently referred to as the Jaumann–Zaremba rate.
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To show that
∇
σ is indeed objective, let us recall (again, refer to page 70) that under a

change in observer, the deformation gradient transforms as

F −→ Q F .

By introducing the above into the definition of L and then into the definition of W , we obtain
the following transformation for the spin tensor

W −→ Q̇ QT + Q W QT . (14.125)

With the substitution of the above transformation for W , together with (14.120) and (14.122),
into the definition of the Jaumann rate, we find, after some straightforward tensor algebra, that
the Jaumann rate transforms objectively

∇
σ −→ Q σ̇ QT − Q W σ QT + Q σ W QT = Q

∇
σ QT . (14.126)

Generalising the above definition, let T be a generic spatial tensor; that is, a tensor that
transforms according to (14.120) under a change in observer. The Jaumann rate of T is
defined as ∇

T ≡ Ṫ − W T + T W . (14.127)

In particular, the Jaumann rate of Kirchhoff stress

∇
τ ≡ τ̇ − W τ + τ W (14.128)

is often employed in the formulation of hypoelastic-based finite strain plasticity models.

The Truesdell rate

The Truesdell rate of T is defined as
◦
T ≡ Ṫ − L T − T LT + (trL) T. (14.129)

The Oldroyd rate

The Oldroyd rate is associated with the concept of Lie derivative, already exploited in
the description of the hyperelastic-based isotropic plasticity model addressed earlier in this
chapter. The Oldroyd rate is defined as


T ≡ Ṫ − L T − T LT , (14.130)

or, equivalently,

T ≡ F

[
d
dt

(F −1T F −T )
]
F T . (14.131)

Note in the above expression that T is pulled back to the reference configuration, the time
derivative of the reference quantity is taken and, subsequently, the resulting time derivative is
pushed forward to the spatial configuration. The equivalence between (14.130) and (14.131)
can be established by expanding the right-hand side of (14.131) and making use of the
definition of L, together with the identity (Ḟ )−1 = −F −1Ḟ F −1, which can be obtained
with the help of the differential relation (vii), page 36, for the tensor inverse.
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The convected rate

The convected rate is defined by

∆
T ≡ F −T

[
d
dt

(F T T F )
]
F −1 = Ṫ + LT T + T L. (14.132)

The Green–Naghdi rate

The Green–Naghdi rate of the generic spatial tensor T, here denoted
�
T , is obtained

by rotating T back to the reference configuration, taking the time material derivative of
the rotated quantity and then rotating the resulting derivative forward to the deformed
configuration; that is,

�
T ≡ R

[
d
dt

(RT T R)
]
RT = Ṫ − Ω T + T Ω, (14.133)

where the skew-symmetric tensor
Ω ≡ Ṙ RT , (14.134)

is the spin of the Eulerian triad relative to the Lagrangian triad. The use of the corresponding
Green–Naghdi rate of Kirchhoff stress

�
τ = τ̇ − Ω τ + τ Ω, (14.135)

in the formulation of hypoelastic-based finite plasticity models will be discussed later in this
chapter.

14.10.2. HYPOELASTIC-BASED PLASTICITY MODELS

As the starting point in the formulation of hypoelastic-based plasticity models, it is postulated
that the evolution of the stress tensor is governed by a constitutive law of the form

•
Σ = De : (D − Dp), (14.136)

where
•
Σ denotes some objective rate of some stress measure Σ, De is some suitably defined

tangential elasticity operator, D is the usual stretching tensor and Dp is some measure
of rate of plastic deformation (not necessarily related to that defined by (14.26)1 which
arises naturally in the multiplicative theory). The above rate equation is complemented by
a constitutive law for Dp (a plastic flow rule) usually stated as

Dp = γ̇
∂Ψ
∂Σ

,

where Ψ(Σ, α) is a flow potential, with α denoting a set of internal variables whose evolution
is governed by

α̇ = γ̇ H(Σ, α),

where H is a given evolution function and the plastic multiplier, γ̇, defines the load-
ing/unloading criterion through the usual complementarity condition

Φ ≤ 0, γ̇ ≥ 0, γ̇Φ = 0, (14.137)

with Φ(Σ, α) denoting a yield function.
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14.10.3. THE JAUMANN RATE-BASED MODEL

Of particular relevance is the model defined in terms of the Jaumann rate of Kirchhoff stress.
This model has been widely used to extend conventional isotropic infinitesimal plasticity
models to the finite strain range. Its basic rate evolution law for stress is the following

∇
τ = De : (D − Dp), (14.138)

where De is taken simply as the standard infinitesimal elasticity tensor

De ≡ 2G IS + (K − 2
3G)I ⊗ I,

with constant coefficients G and K .

The ‘elastic’ range

In the ‘elastic’ range (where Dp = 0) the stress rate equation reads simply

∇
τ = De : D. (14.139)

Plasticity equations

The model is completed with the definition of a plastic flow law

Dp = γ̇
∂Ψ
∂τ

, (14.140)

together with the general evolution equation for the internal variables

α̇ = γ̇ H(τ, α), (14.141)

and the standard load/unload criterion (14.137). The extension of a given infinitesimal model
to the finite strain range is obtained by adopting in the above equations Ψ, Φ and H with the
same functional format as those of the corresponding infinitesimal model. Analogously to the
rate form of infinitesimal plasticity, the stress rate equation (14.138) is reduced under plastic
flow to the following form

∇
τ = Dep : D, (14.142)

where the elastoplastic tangent operator Dep is obtained from (14.138), (14.140) and (14.141)
together with the consistency condition

Φ̇ = 0.

In fact, the operator Dep above has exactly the same format as the elastoplastic (continuum)
tangent operator derived in Section 6.3.8 (page 153) for the generic infinitesimal plasticity
model. This is demonstrated in the following.
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The elastoplastic (continuum) tangent operator

The derivation of the continuum operator Dep shown here is completely analogous to that
shown in Section 6.3.8. We start by taking the time derivative of the yield function Φ which,
in the present case, gives

Φ̇ =
∂Φ
∂τ

: τ̇ +
∂Φ
∂α

∗ α̇

=
∂Φ
∂τ

: (
∇
τ + W τ − τ W ) +

∂Φ
∂α

∗ α̇

=
∂Φ
∂τ

:
[
De :

(
D − γ̇

∂Ψ
∂τ

)
+ W τ − τ W

]
+ γ̇

∂Φ
∂α

∗ H(τ, α). (14.143)

The above expression can be simplified initially by observing that, in view of the symmetry
of τ and ∂Φ/∂τ and skew-symmetry of W , we have

∂Φ
∂τ

: (W τ − τ W ) =
∂Φ
∂τ

: [(W τ)T − τ W ]

= −2
∂Φ
∂τ

: τ W

= −2 τ
∂Φ
∂τ

: W .

In addition, due to the isotropy of the model, τ and ∂Φ/∂τ commute and their product
remains symmetric, leading to the identity

∂Φ
∂τ

: (W τ − τ W ) = 0, (14.144)

which substituted into (14.143) results in the simpler formula for Φ̇

Φ̇ =
∂Φ
∂τ

: De :
(

D − γ̇
∂Ψ
∂τ

)
+ γ̇

∂Φ
∂α

∗ H(τ, α).

The above expression has identical format to that of the infinitesimal deformation theory.
Finally, by equating the above formula to zero (the consistency condition), we obtain the
general expression for the plastic multiplier

γ̇ =
∂Φ/∂τ : De : D

∂Φ/∂τ : De : ∂Ψ/∂τ− ∂Φ/∂α ∗ H
.

Substitution of this expression into (14.140) and the resulting formula into (14.138) followed
by comparison with (14.142) leads to

Dep = De − (De : ∂Ψ/∂τ) ⊗ (De : ∂Φ/∂τ)
∂Φ/∂τ : De : ∂Ψ/∂τ− ∂Φ/∂α ∗ H

, (14.145)

which has the format of the small strain counterpart (6.67), shown on page 153.
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Remark 14.8. Note that the small strain format of Dep in (14.145) is a direct consequence of
the identity (14.144). It will hold whenever the difference between the material time derivative
of the stress and the corresponding objective rate comprises only terms with products between
the stress and a skew-symmetric tensor. It holds, for instance, for the Green–Naghdi rate-based
model defined by

�
τ = De : (D − Dp),

with
�
τ given in (14.135). For similar models defined in terms of other objective stress rates,

such as the Truesdell or the convected rate, different elastoplastic operators have to be derived.

14.10.4. HYPERELASTIC-BASED MODELS AND EQUIVALENT RATE FORMS

The choice of ‘appropriate’ objective stress rates in the definition of finite plasticity models
analogous to the one described above has, for a considerable time, been the subject of intense
debate (Atluri, 1984; Dienes, 1979; Johnson and Bammann, 1984; Moss, 1984; Nemat-
Nasser, 1982; Sowerby and Chu, 1984). It has been observed, for instance, that spurious
stress oscillations occur under pure large elastic shearing deformations with the Jaumann rate-
based model. This problem can be eliminated by replacing the Jaumann rate with the Green–
Naghdi or Truedell stress rates in the original model. However, no matter what objective rate
is chosen, fundamental drawbacks will be present in models defined on a purely ad hoc basis
simply by choosing one particular objective stress rate and postulating an evolution law of
the type (14.136) with constant isotropic elasticity tensor De. It has been shown by Simo and
Pister (1984) that models postulated as such fail to define an elastic material (even in the
absence of plastic flow); that is, dissipation of energy will occur within closed (supposedly
elastic) cycles. It should be emphasised, however, that such inconsistencies remain negligible
in metal plasticity (where elastic strains are small) but pose serious limitations in the use
of hypoelastic-based theories in situations where elastic deformations become considerable.
Equivalent rate descriptions of hyperelastic models defined in terms of different strain
measures have been thoroughly discussed by Perić (1992). In particular, it has been shown
that the Jaumann rate- and the Green–Naghdi rate-based models above (with constant and
isotropic elasticity tensor) provide different levels of approximation to problems governed by
the logarithmic strain-based Hencky hyperelastic law, justifying the use of hypoelastic-based
theories in metal plasticity.

Remark 14.9. The issue of choice of ‘proper’ rates in hypoelastic formulations has often
been treated in the computational literature as a matter of numerical convenience alone.
Rather than being just a numerical issue, the reader should bear in mind that different stress
rates (with a constant isotropic elasticity tensor) define in fact different material models with
different responses. To emphasise this point, we plot in Figure 14.19 the stress response under
monotonic finite shear deformation for the finite (hypo-) elasticity models defined by the
Jaumann, Green–Naghdi and Truesdell rates as well as for the Hencky (logarithmic strain-
based) hyperelastic model used in the formulation of multiplicative plasticity in Section 14.3.
The results shown are the elastic analytical solutions to the monotonic finite shearing
problem. These solutions are given by Moss (1984) for the Jaumann, Green–Naghdi and
Truesdell rate models and by Perić et al. (1992) for the Hencky model. The response also
differs in the elastoplastic case, becoming apparent in the presence of moderate to large elastic
strains (Moss, 1984; Perić et al., 1992).
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Figure 14.19. Elastic response for different models.

14.10.5. INTEGRATION ALGORITHMS AND INCREMENTAL OBJECTIVITY

An essential step to incorporate a hypoelastic-based plasticity model within a finite element
framework is the definition of an integration algorithm to transform the original time-
continuum constitutive equations into an incremental law. As we shall see in this section,
in contrast to the case of hyperelastic-based theories, it is by no means easy to formulate
integration algorithms for rate-based finite plasticity models that preserve the crucial property
of material objectivity. The objectivity of incremental constitutive laws is usually referred
to as incremental objectivity. If incremental objectivity is not satisfied, then spurious stress
changes may be produced within increments with rigid incremental displacement fields.
Such a feature is clearly undesirable and will, unfortunately, be present if not carefully
considered in the derivation of incremental constitutive laws for hypoelastic-based models.
This is illustrated in the following example.

Example: a non-objective algorithm for the Jaumann rate model

For simplicity let us start by considering the Jaumann rate formulation in the ‘elastic’ regime
only. Our basic objective is to devise a numerical algorithm to integrate the stress rate
equation (14.139). Given the Kirchhoff stress τn at the beginning of the standard interval
[tn, tn+1] and given the incremental displacement field ∆u, we want to find an updated stress
τn+1 consistently with (14.139). In view of definition (14.128) of the Jaumann rate, (14.139)
is equivalent to

τ̇ = De : D + Wτ − τ W . (14.146)

A trivial choice to integrate numerically the above equation consists in making use of a
midpoint formula as follows. Firstly, we approximate the velocity field at the mid-point

tn+ 1
2

= tn + 1
2 ∆t

as

vn+ 1
2

=
∆u

∆t
. (14.147)
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The velocity gradient is then computed as

Ln+ 1
2

= ∇n+ 1
2
vn+ 1

2
, (14.148)

where ∇n+ 1
2

denotes the spatial gradient taken at the midpoint configuration defined by the
displacement field

un+ 1
2

= un + 1
2 ∆u. (14.149)

With the above at hand, the rate of deformation and spin tensors at tn+ 1
2

are computed as

Dn+ 1
2

= sym[Ln+ 1
2
]; W n+ 1

2
= skew[Ln+ 1

2
]. (14.150)

Finally, the Kirchhoff stress tensor can be updated according to the formula

τn+1 = τn + ∆t (De : Dn+ 1
2

+ W n+ 1
2

τn − τn W n+ 1
2
), (14.151)

or, equivalently,

τn+1 = τn + De : sym[∇n+ 1
2
∆u]

+ skew[∇n+ 1
2
∆u] τn − τn skew[∇n+ 1

2
∆u]. (14.152)

Lack of incremental objectivity.

To show that the above incremental constitutive law for τ is not objective, let us assume that
∆u is a finite rigid rotation. Accordingly, the incremental deformation gradient, F∆, is a
rotation (here denoted Q∆):

F∆ ≡ I + ∇n(∆u) = Q∆, (14.153)

or, equivalently,
F∆ = [I + 1

2∇n+ 1
2
(∆u)] F 1

2∆
= Q∆, (14.154)

with
F 1

2∆
≡ I + 1

2∇n(∆u). (14.155)

From the above, we can easily obtain

∇n+ 1
2
(∆u) = 2(Q∆F −1

1
2∆

− I). (14.156)

The principle of material objectivity requires that the following identity be satisfied

τn+1 = Q∆ τn QT
∆ . (14.157)

However, by replacing (14.156) into (14.152) we find that the present algorithm updates τ as

τn+1 = τn + 2(De : sym[Q∆F −1
1
2∆

− I]

+ skew[Q∆F −1
1
2∆

− I] τn − τn skew[Q∆F −1
1
2∆

− I]), (14.158)

which, in general, does not satisfy (14.157). To see this, note that, in particular, if τn = 0
then under an incremental pure rotation (Q∆ 
= I) we should have τn+1 = 0. The algorithm
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instead gives

τn+1 = 2 De : sym[Q∆F −1
1
2∆

− I] 
= 0. (14.159)

It is worth remarking that, in spite of its lack of objectivity, the use of the update for-
mula (14.152) may be justified if displacement increments are sufficiently small. This is
the case, for instance, with explicit transient dynamic finite element schemes, where global
stability criteria impose stringent restrictions on increment sizes. The use of (14.152) within
implicit schemes, where steps can be large, will, however, produce unacceptable results.

The elastoplastic case.

Under plastic flow, the elastoplastic tangent operator Dep replaces the elasticity tensor
in (14.152) and the stress update formula reads

τn+1 = τn + Dep : sym[∇n+ 1
2
∆u] + skew[∇n+ 1

2
∆u] τn − τn skew[∇n+ 1

2
∆u]. (14.160)

Alternatively, a return-mapping-type algorithm can be used as follows. Firstly, we assume
that the increment is elastic and compute the elastic trial stress as

τtrialn+1 = τn + De : sym[∇n+ 1
2
∆u] + skew[∇n+ 1

2
∆u] τn − τn skew[∇n+ 1

2
∆u]. (14.161)

If Φ(τtrialn+1, αn) ≤ 0, then we accept τn+1 := τtrialn+1. Otherwise, we obtain τn+1 by applying
a return-mapping algorithm of the type discussed in Section 14.4.

Incrementally objective algorithms for rate-based models

The issue of incremental objectivity of integration algorithms for hypoelastic-based consti-
tutive models has been thoroughly investigated by many researchers (Flanagan and Taylor,
1987; Hughes and Winget, 1980; Pinsky et al., 1983; Rubinstein and Atluri, 1983; Simo
and Hughes, 1998). There are many possible alternatives in the formulation of incrementally
objective algorithms. The underlying idea, however, is the same and comprises the following
steps:

(i) Firstly, the original rate constitutive equation is mapped into a rigid motion-insensitive
(or rotation-neutralised) local configuration.

(ii) Time discretisation is then performed over the resulting equation which involves only
rigid motion-insensitive quantities.

(iii) Finally, the discretised equation is mapped back to the spatial configuration.

The reader is referred to Chapter 8 of Simo and Hughes (1998) for a detailed description
of the general methodology. Here we shall limit our discussion to a midpoint rule-based
algorithm that is closely related to the popular Hughes–Winget algorithm originally proposed
by Hughes and Winget (1980).
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14.10.6. OBJECTIVE ALGORITHM FOR JAUMANN RATE-BASED MODELS

Readers who wish to skip the details of derivation presented below are referred directly to
Box 14.5 (page 631) where the incrementally objective integration algorithm for the Jaumann
rate-based model is summarised in pseudo-code format. At the outset, we define the rotated
Kirchhoff stress tensor and the rotated stretching tensor

τ̄ ≡ ΛT τ Λ, D̄ ≡ ΛT D Λ, (14.162)

where Λ is the rotation tensor that solves the initial value problem{
Λ̇ = W Λ

Λ|t=0 = I.
(14.163)

From the above definitions, it follows after straightforward tensor algebra that the material
time derivative of the rotated Kirchhoff stress is given by

˙̄τ ≡ ΛT ∇
τ Λ. (14.164)

Again, considering the ‘elastic’ regime, the first step (item (i) above) in the formulation of
the present algorithm is to rotate both sides of the original Jaumann rate equation (14.139)
with the rotation ΛT . This results in the following equivalent rate form defined in the local
rotated configuration

˙̄τ = De : D̄. (14.165)

In rotating the right-hand side of (14.139) we have made use of the fact that De is isotropic.
The above rate form of constitutive equation for the stress is rigid motion-insensitive, in
the sense that it involves only quantities which are not affected by superimposed rigid-body
motions. This is proved in the following.

Rigid motion-insensitivity of the rotated rate form

Let us consider a superimposed rigid-body motion under which the deformation gradient
transforms according to the standard relation

F −→ F ∗ = Q F .

Under the same superimposed motion, it can be easily established that the stretching tensor
transforms as

D −→ D ∗ = Q D QT .

To see this, we firstly note that the spin tensor follows the transformation rule (14.125). This
expression for the spin together with (14.163) yields

Λ̇ Λ−1 −→ Λ̇
∗

(Λ∗)−1 = Q Λ̇ Λ−1 QT + Q̇ QT . (14.166)

The expression for the transformed rotation Λ∗ is obtained simply by integrating the differ-
ential equation on the right-hand side of (14.166). This gives the following transformation
rule for Λ

Λ −→ Λ∗ = Q Λ. (14.167)
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From the above and definition (14.162)2 of the rotated stretching, we then find

D̄ −→ ΛT QT (Q D QT )Q Λ = ΛT D Λ = D̄,

so that the right-hand side of (14.165) is indeed rigid motion-insensitive.
To complete the proof, let us now concentrate on the time derivative of the rotated stress.

By taking the time derivative of (14.162)1 we obtain

˙̄τ = Λ̇
T

τ Λ + ΛT τ̇ Λ + ΛT τ Λ̇
T
.

This, together with (14.167) and the transformation rule for τ

τ −→ Q τ QT ,

yields, after some straightforward algebra,

˙̄τ −→ ΛT Q̇
T

Q τ Λ +Λ̇
T

τ Λ

− ΛT Q̇
T

Q τ Λ + ΛT τ̇ Λ

+ ΛT τ Q̇
T

Q Λ − ΛT τ Q̇
T

Q Λ + ΛT τ Λ̇ = ˙̄τ.

This concludes the proof that all quantities taking part in (14.165) are rigid motion-
insensitive.

Incrementally objective stress integration

We now proceed to discretise the rotation-insensitive rate equation (14.165). This corresponds
to item (ii) listed on page 627. Again, we consider the standard interval [tn, tn+1]. We start by
approximating the midpoint velocity gradient, rate of stretching and spin tensors according
to (14.148) and (14.150). Then, by applying the midpoint rule to (14.165) the following
update formula for the rotated stress τ̄ is obtained

τ̄n+1 = τ̄n + ∆t De : D̄n+ 1
2
, (14.168)

where the midpoint rotated stretching tensor, D̄n+ 1
2

, is computed as

D̄n+ 1
2

= ΛT
n+ 1

2
Dn+ 1

2
Λn+ 1

2
. (14.169)

The midpoint rotation tensor, Λn+ 1
2

, is obtained through the numerical integration of the
initial value problem (14.163), which we will discuss later.

Finally, with the updated rotated Kirchhoff stress computed by (14.168), the Kirchhoff
stress tensor at tn+1 is then obtained simply by rotating τ̄n+1 back to the spatial configuration
(item (iii) listed on page 627)

τn+1 = Λn+1 τ̄n+1 ΛT
n+1, (14.170)

where the rotation Λn+1 is obtained by solving problem (14.163) numerically. For imple-
mentation purposes it is convenient to recast (14.170) in the equivalent form

τn+1 = Λ∆ τn ΛT
∆ + ∆t De : Λδ Dn+ 1

2
ΛT

δ

= Λ∆ τn ΛT
∆ + De : Λδ sym[∇n+ 1

2
∆u] ΛT

δ , (14.171)
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which is obtained by combining (14.168–14.170) together with the obvious identity

τ̄n = ΛT
n τn Λn (14.172)

and using the incremental rotation definitions

Λ∆ ≡ Λn+1 ΛT
n , Λδ ≡ Λn+1 ΛT

n+ 1
2
. (14.173)

Computation of the incremental rotation tensors.

As in the numerical integration of the plastic flow equation of the hyperelastic-based formu-
lation (see expression (14.73), page 591), exponential map integrators (refer to Section B.3,
from page 751) are particularly suitable for the numerical solution of the initial value
problem defined by (14.163). By adopting the midpoint exponential map integrator, Λn+1

is computed as
Λn+1 = exp[∆t W n+ 1

2
] Λn. (14.174)

Note that since the tensor exponential function maps skew-symmetric tensors onto rotations
(refer to item (e) listed in Section B.1.1, page 748), the above formula guarantees that the
updated value of Λ is always a rotation. Similarly to (14.174) the midpoint rotation at tn +
1
2∆t can be computed by

Λn+ 1
2

= exp
[
∆t

2
W n+ 1

2

]
Λn. (14.175)

From (14.173)1 and (14.174), it follows that

Λ∆ = exp[∆t W n+ 1
2
], (14.176)

or, for the purpose of computer implementation,

Λ∆ = exp[skew[∇n+ 1
2
∆u]]. (14.177)

Finally, by combining (14.176), (14.175) and (14.173) and making use of property (B.11) of
the exponential map (see page 748), we find

Λδ =
√

Λ∆ = exp
[
∆t

2
W n+ 1

2

]
, (14.178)

which, for implementation, is better expressed as

Λδ = exp[ 12 skew[∇n+ 1
2
∆u]]. (14.179)

Remark 14.10. In practical computations, the tensor exponential above can be evaluated
according to expressions (B.13) or (B.14), noting that the use of (B.14) should be avoided
near its singularities. An alternative way to compute Λδ and Λ∆ is by using a quaternion
parametrisation as suggested by Crisfield (1997) and Simo and Hughes (1998).
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Box 14.5. Incrementally objective integration algorithm for a general Jaumann
rate-based finite plasticity model.

(i) Given the incremental displacement, ∆u, compute

Gn+ 1
2

:= ∇n+ 1
2
∆u;

Λδ := exp[ 1
2

skew[Gn+ 1
2
]]; Λ∆ := Λ2

δ

(ii) Compute the elastic trial state

τ trial
n+1 := Λ∆ τn ΛT

∆ + De : Λδ sym[Gn+ 1
2
] ΛT

δ

αtrial
n+1 := αn

(iii) Check for plastic admissibility

IF Φ(τ trial
n+1 , αtrial

n+1) ≤ 0

THEN set (·)n+1 := (·)trialn+1 and EXIT

(iv) Use small-strain format return-mapping algorithm to
compute τn+1 and αn+1

The elastoplastic case

Application of the above algorithm to the elastoplastic case is as follows. Firstly, the elastic
update formulae (14.168)–(14.170) are used to compute the elastic trial Kirchhoff stress

τ trialn+1 .

Next, the plastic consistency check is carried out. If the elastic trial stress lies within the
trial elastic domain, then τn+1 = τ trialn+1 . Otherwise, a small-strain format return-mapping
algorithm is used to compute τn+1 and the updated values of the internal variables of
the model. The overall incrementally objective algorithm for the Jaumann rate-based finite
plasticity model is summarised in Box 14.5.

The Hughes–Winget algorithm

The original Hughes–Winget algorithm differs from the above scheme in that the rotation
that appears in the second term on the right-hand side of (14.171) is not present in the
Hughes–Winget update formula and, in addition, a further approximation is introduced in
the computation of Λ∆. The Hughes–Winget formula reads

τn+1 = Λ̃∆ τn Λ̃
T

∆ + ∆t De : Dn+ 1
2
, (14.180)

whereΛ̃∆ is the following approximation to Λ∆

Λ̃∆ = [I − 1
2 ∆t W n+ 1

2
]−1 [I + 1

2 ∆t W n+ 1
2
]. (14.181)
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The above approximation is valid if ∆t W n+ 1
2

is sufficiently small (sufficiently small
incremental rotations). To see this, we appeal to the series representation of the tensor
exponential (expression (B.4), page 747) and assume that second order and higher terms
in ∆t W n+ 1

2
can be neglected. This gives

exp[ 12∆t W n+ 1
2
] ≈ [I + 1

2 ∆t W n+ 1
2
]. (14.182)

In view of property (B.9) of the tensor exponential, we have the alternative approximation of
the same order

exp[ 12∆t W n+ 1
2
] = (exp[− 12∆t W n+ 1

2
])−1 ≈ [I − 1

2 ∆t W n+ 1
2
]−1. (14.183)

The multiplication of these two expressions yields the Hughes–Winget approxima-
tion (14.181) to the exponential map integrator (14.176).

14.10.7. INTEGRATION OF GREEN–NAGHDI RATE-BASED MODELS

An algorithm very similar to that of Box 14.5 can be derived for Green–Naghdi rate-based
plasticity models by following the methodology employed in the Jaumann rate case above.
The basic difference is that for Green–Naghdi rate models the evolution problem (14.163) is
rephrased as {

Λ̇ = Ω Λ

Λ|t=0 = I,
(14.184)

where the skew-symmetric tensor Ω is defined as

Ω ≡ Ṙ RT ,

with R being the rotation tensor resulting from the polar decomposition of the deformation
gradient

F = R U = V R.

Trivially, the exact solution to problem (14.184) is

Λ = R. (14.185)

As a result, the incrementally objective algorithm for this model follows the same steps of
Box 14.5 except that the incremental rotation tensors Λ∆ and Λδ are redefined as

Λ∆ = R∆ = Rn+1 RT
n

Λδ = Rδ = Rn+1 RT
n+ 1

2
.

(14.186)

The rotations Rn, Rn+1 and Rn+ 1
2

are obtained, respectively from the polar decomposition
of F n, F n+1 and the deformation gradient at the midpoint configuration defined by the
displacement field un+ 1

2
= un + 1

2 ∆u

F n+ 1
2

= F n + 1
2 ∇0(∆u)

= 1
2 (F n + F n+1). (14.187)
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Note that R∆ is the actual local rigid rotation associated with the incremental displacement
∆u, which can be equivalently obtained from the polar decomposition of the incremental
deformation gradient

F∆ = I + ∇n(∆u). (14.188)

Rδ, in turn, is the rigid rotation associated with the deformation mapping between the
midpoint configuration and the configuration at the end of the increment. In can be computed
directly from the polar decomposition of

F δ = I + 1
2 ∇n+ 1

2
(∆u). (14.189)

14.11. Finite plasticity with kinematic hardening

This section addresses the treatment of kinematic hardening within the framework of
hyperelastic-based multiplicative finite strain plasticity of Sections 14.3 and 14.4. Readers
who are not familiar with kinematic hardening are advised to review Sections 6.6 and 7.6
(starting, respectively, on pages 177 and 257) before proceeding. We remark that the
introduction of kinematic hardening into the framework of multiplicative plasticity has been
postponed until now simply because, as we shall see, evolution equations for the back-stress
tensor can be conveniently formulated in the present context in terms of objective rates of
back-stress. Objective rates, with the corresponding numerical integration issues, have just
been explored in the previous section.

The first model of kinematic hardening behaviour embedded within a hyperelastic-based
multiplicative description of elastoplasticity appears to have been proposed by Eterovic and
Bathe (1990). The model was originally formulated in terms of a rotated back-stress tensor
measure defined on the intermediate (plastic) configuration. This approach was later adopted
by the authors (de Souza Neto and Perić, 1996; de Souza Neto et al., 1994a) in the finite
strain extension of the fully coupled Lemaitre ductile damage model of Section 12.3, which
incorporates the Armstrong–Frederick kinematic hardening law. One important aspect of this
formulation is the fact that, to within an error of second order in the elastic strains, the
essential stress-updating procedure resulting from the exponential map-based integration of
the plastic flow equation retains the small-strain format of the fully isotropic case discussed
in Section 14.4. This allows a straightforward implementation of the model within the
algorithmic framework of Section 14.4, but limits its applicability to situations where the
elastic strains are small (under arbitrary plastic strains). This restriction is clearly immaterial
in the solution of metal plasticity problems.

14.11.1. A MODEL OF FINITE STRAIN KINEMATIC HARDENING

We introduce here a generic model of finite strain kinematic hardening based on the
formulation originally proposed by Eterovic and Bathe (1990). Before proceeding, however,
we remark that to maintain consistency with Section 14.3, where the generic isotropic
plasticity model was expressed in terms of spatial quantities, what we shall present in the
following is based on an equivalent spatial description of the formulation of Eterovic and
Bathe (originally devised, as briefly mentioned earlier, in terms of quantities defined upon
the intermediate configuration).
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At the outset, in order to describe kinematic hardening, we introduce a deviatoric symmet-
ric back-stress tensor, β, defined on the spatial configuration. Accordingly, a von Mises-type
yield function generalising (6.208) (page 185) to the finite strain regime can be defined as

Φ(τ, β) ≡
√

3 J2(s(τ) − β) − σy , (14.190)

where
s ≡ τ − 1

3 tr[τ] I (14.191)

is now the Kirchhoff stress deviator and σy is the usual isotropic hardening stress defining
the size of the yield surface. Again, mixed hardening can be accounted for by having σy as a
function of, for example, the accumulated plastic strain

σy = σy(ε̄p). (14.192)

A class of von Mises-based finite strain kinematic hardening models can be defined within
the multiplicative plasticity framework by adopting Ψ ≡ Φ in Box 14.2, where Φ denotes the
above yield function, together with the standard Hencky hyperelastic law and an appropriate
(frame-invariant) evolution equation for the back-stress tensor.

Green–Naghdi rate of back-stress tensor

Frame-invariant kinematic hardening laws can be postulated in terms of objective rates of
the spatial back-stress tensor, β, that takes part in definition (14.190). In particular, we shall
describe here a formulation based on the Green–Naghdi rate (refer to expression (14.184)) of
the back-stress tensor with respect to the elastic rotation, defined as

�
β ≡ Re

[
d
dt

(Re T β Re)
]
Re T = β̇ − Ωe β + β Ωe (14.193)

where the skew-symmetric tensor

Ωe ≡ Ṙ
e
Re T , (14.194)

is the elastic spin.

Objectivity of the back-stress evolution law

The Green–Naghdi rate (14.193) of the back-stress tensor with respect to the elastic
rotation (rather than to the total rotation of the original Green–Naghdi rate definition of
expression (14.133)) is objective; that is, under any superimposed rigid-body motion (change
in observer) associated with a time-dependent rotation Q, it transforms according to

�
β −→ Q

�
βQT . (14.195)

To see this, we must first recall (refer to expression (3.145), page 70), that, under the
superimposed rigid motions, the (total) deformation gradient transforms as

F −→ QF . (14.196)
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In the context of multiplicative plasticity kinematics, this transformation is equivalent to

F eF p −→ QF eF p, (14.197)

so that F e and F p transform individually according to the rules

F e −→ QF e; F p −→ F p. (14.198)

Expression (14.198)1 implies that the elastic rotation obtained from the polar decomposition
F e = R eU e transforms as

R e −→ QR e. (14.199)

The proof that (14.195) holds follows analogous steps to those leading to (14.126); that is,
we simply introduce (14.199) and the obvious transformation rule for the spatial tensor β,

β −→ QβQT , (14.200)

together with their corresponding material time derivatives, into the right-hand side
of (14.193).

Finite strain extensions of infinitesimal evolution laws

With the above definition at hand, objective finite strain extensions of the infinitesimal models
discussed in Section 6.6.4 are obtained as particular cases of the equation

�
β = γ̇ β̂(τ, β, ε̄p), (14.201)

where β̂ is a given constitutive function of τ, β and the accumulated plastic strain, ε̄p, having
the same functional format as in the back-stress evolution equation of the corresponding
infinitesimal model. In this context, the finite strain extension of Prager’s linear kinematic
hardening rule (6.212) is defined as

�
β = γ̇

2
3

H
∂Φ
∂τ

, (14.202)

with nonlinear hardening extension

�
β = γ̇

2
3

H(ε̄p)
∂Φ
∂τ

. (14.203)

For the Armstrong–Frederick model (6.223), we have

�
β = γ̇

(
2
3

H
∂Φ
∂τ

− b β

)
. (14.204)

For completeness, we summarise in Box 14.6 a finite strain von Mises-type multiplicative
plasticity model with mixed hardening, based on the Hencky hyperelastic description of the
reversible behaviour and Green–Naghdi rate of back-stress tensor.
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Box 14.6. Multiplicative finite strain extension of a general infinitesimal
von Mises-type mixed hardening plasticity model based on the Hencky hypere-
lastic law and Green–Naghdi rate of back-stress tensor.

(i) Multiplicative split of F
F = F eF p

(ii) Hencky hyperelastic law

τ = D : εe; εe = ln V e

(iii) Yield function

Φ(τ, β, σy) =
√

3 J2(s(τ) − β) − σy

(iv) Plastic flow rule

D̃p = γ̇
∂Φ

∂τ
= γ̇

√
3

2

η
‖η‖ ; η = s − β

W p = 0

(v) Isotropic and kinematic hardening laws

σy = σy(ε̄p); ˙̄εp = γ̇

�
β = γ̇ β̂(τ, β, ε̄p)

(vi) Loading/unloading criterion

Φ ≤ 0, γ̇ ≥ 0, γ̇Φ = 0

Model response

To illustrate the behaviour predicted by models of the present type, we plot in Figures 14.20
and 14.21 the response of the finite strain extension (14.202) of Prager’s linear kine-
matic hardening model, respectively, over a cyclic strain-controlled uniaxial test and under
monotonic shearing deformation (refer to Figure 14.19, page 625, for the definition of the
shearing problem). For comparison, the response predicted by the finite strain linear isotropic
hardening model with identical hardening modulus is also shown. The adopted material
constants are

E = 210; ν = 0.3; σy = 0.45; H = 1.0.

In the uniaxial test, the behaviour predicted by the finite strain Prager linear law is in line with
what is expected from an extension of its infinitesimal counterpart. In the shearing problem,
however, the Green–Naghdi rate-based extension to Prager’s rule produces unrealistic stress
oscillations, which start at strains of around 150%. Such unexpected oscillations of shear
stress in the finite strain formulation of Prager’s kinematic hardening law were first reported
by Nagtegaal and de Jong (1981) for a hypoelastic-based finite plasticity model with
a Jaumann rate extension of the infinitesimal Prager kinematic hardening law. A more
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Figure 14.20. Cyclic strain-controlled uniaxial test. Finite strain extension of Prager’s linear kinematic
hardening model and linear isotropic hardening model.

recent study by Dettmer and Reese (2004) has also reported shear stress oscillations in a
hyperelastic-based plasticity model with a Jaumann rate extension of the infinitesimal linear
kinematic hardening rule. For the model discussed in this section, such oscillations can be
eliminated, for instance, by adopting the Green–Naghdi rate-based extension (14.204) of the
Armstrong–Frederick law (note that this law reduces to Prager’s linear rule if b = 0). This is
shown in Figure 14.21. The curve for the Armstrong–Frederick model was obtained with the
same material parameters as above and the additional non-dimensional saturation hardening
parameter b set to

b = 3.

With this choice of b in the present case, before the oscillations start, the stress–strain curve
reaches a saturation state where the behaviour becomes perfectly plastic in the absence
of load reversal, producing a more realistic behaviour under finite shearing. Dettmer and
Reese (2004) showed that, in the presence of linear kinematic hardening only (Prager’s rule),
stress oscillations can be removed and monotonically increasing shear stress obtained with
increasing shear deformation if suitable alternative finite strain extensions of the infinitesimal
model are adopted (such alternatives are briefly described below in Section 14.11.5).

In summary, the example presented here serves to emphasise that care should be exercised
when modelling kinematic hardening effects within the framework of finite plasticity, partic-
ularly if high strains are expected to occur. The use of the finite strain Prager rule (14.202),
for instance, appears to be justifiable only in the presence of moderately large plastic strains.

14.11.2. INTEGRATION ALGORITHM

Crucial to the numerical integration algorithm for the finite strain model with kinematic
hardening is the derivation of an incrementally objective update formula consistent with
the basic back-stress evolution equation (14.201). The algorithm described in the following
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Figure 14.21. Behaviour under monotonic shearing (see problem definition in Figure 14.19). Finite
strain extension of Prager’s linear kinematic hardening model, Armstrong–Frederick kinematic harden-
ing model and linear isotropic hardening model.

is analogous to that discussed in Section 14.10.7 in connection with the integration of the
hypoelastic-based plasticity model defined in terms of the Green–Naghdi stress rate. Here,
however, we shall adopt a fully implicit integration scheme. In this case, the incremental
version of (14.201) reads

βn+1 = Λ∆ βn ΛT
∆ + ∆γ β̂(τn+1, βn+1, ε̄

p
n+1), (14.205)

where Λ∆ here denotes the incremental elastic rotation

Λ∆ = R e
n+1 (R e

n )T . (14.206)

Overall integration scheme

Similarly to the fully isotropic case, an exponential map-based numerical integration algo-
rithm for finite strain plasticity including kinematic hardening can be devised such that the
essential stress-update procedure maintains the small-strain format. However, as we shall
demonstrate later, the infinitesimal format can only be justified here in the presence of small
elastic strains (with arbitrarily large plastic strains). This is in contrast to the fully isotropic
case where the small-strain format holds regardless of the magnitude of elastic strains. A
summary of the algorithm, which is here applied to the generic model of Box 14.6, is
presented in Box 14.7.

Remark 14.11 (The small-strain format algorithm). The algorithm called in item (iii) of
Box 14.7 has exactly the same format as the return mapping-based scheme of the correspond-
ing infinitesimal model. For instance, consider the nonlinear mixed hardening model defined
by the laws (14.192) and (14.203). The implementation of the infinitesimal counterpart of
this model was fully described in Section 7.6 (from page 257) with the associated elastic
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Box 14.7. Numerical integration algorithm for the general multiplicative finite
strain elastoplasticity model with kinematic hardening.

(i) Given incremental displacement ∆u, update the deformation gradient

F ∆ := I + ∇n[∆u], F n+1 := F ∆ F n

(ii) Compute elastic trial state

F e trial
n+1 := F ∆ F e

n = F n+1(F
p
n)−1

B e trial
n+1 := F e trial

n+1 (F e trial
n+1 )T

εe trial
n+1 := ln[V e trial

n+1 ] = 1
2

ln[B e trial
n+1 ]

Λ∆ := R e trial
n+1 (R e

n)T

βtrial
n+1 := Λ∆ βn ΛT

∆

ε̄p trial
n+1 := ε̄p

n

(iii) USE SMALL STRAIN ALGORITHM to update τ, εe, β and ε̄p

(iv) Update Cauchy stress and F e

σn+1 := det[F n+1]
−1 τn+1

V e
n+1 := exp[εe

n+1]

R e
n+1 := R e trial

n+1

F e
n+1 := V e

n+1 R e
n+1

predictor/return-mapping algorithm summarised in Box 7.5, which corresponds to HYPLAS
subroutine SUVMMX. In the computational implementation of the finite strain model, we would
follow the steps of Box 14.7 with item (iii) being a call to the same subroutine.

Remark 14.12 (Further computer implementation issues). The overall algorithm of
Box 14.7 is an extension of the isotropic-only procedure of Box 14.3. It should be noted
that, under kinematic hardening, both elastic stretch and rotation tensors are needed in
the kinematics related operations carried out before the infinitesimal integration algorithm
is called. Thus, in this case we would store the elastic deformation gradient as a state
variable, rather than just the logarithmic Eulerian elastic strain stored in the isotropic case
(the interested reader should refer to the source code of HYPLAS). In addition, note that one
of the state variables – the back-stress tensor – has to be rotated in item (ii) prior to the
infinitesimal algorithm being applied and a few extra operations have to be performed in item
(iv) to update the elastic deformation gradient. For those interested in implementing the finite
strain kinematic hardening model in HYPLAS, we would suggest its inclusion as a member of
a new class of material models. This would keep this implementation clearly distinct from the
isotropic class of models and, in our view, would contribute to maintenance of code clarity.
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Validity under small elastic strains

To demonstrate that the above algorithm is valid under sufficiently small elastic strains, we
start by referring back to the exponential map-based updating equation (14.87) for V e

n+1,
obtained in the course of derivation of the small-strain format return mapping for the fully
isotropic case. Note that, in obtaining (14.87), no assumptions of material isotropy have
been made; that is, (14.87) is a direct consequence of the general exponential map-based
formula (14.73) for the numerical integration of the plastic flow equation, valid regardless of
material symmetry. Particularisation of (14.87) for the present model gives

V e
n+1 exp[2 ∆γ Nn+1] V e

n+1 = (V e trial
n+1 )2, (14.207)

where the flow vector, Nn+1, is here defined by

Nn+1 ≡
∂Φ
∂τ

∣∣∣∣
n+1

=

√
3
2

ηn+1

‖ηn+1‖
, (14.208)

with η denoting the relative stress tensor

η ≡ s − β. (14.209)

Before proceeding, we should note the crucial step in establishing the equivalence
between (14.87) and the small-strain format update formula (14.89) was the introduction of
the assumption of elastoplastic isotropy, under which, the flow vector, the updated elastic and
the elastic trial left stretch tensor all commute. Here, due to the plastic anisotropy introduced
by kinematic hardening, Nn+1, V e

n+1 and V e trial
n+1 do not commute in general (note that

they do commute if s and β share the same principal axes). Consequently, equivalence
between (14.207) and the infinitesimal format update formula for the logarithmic elastic
strain does not hold in general. Fortunately, however, such an equivalence can be established
approximately as we demonstrate in the following.

In terms of the Eulerian logarithmic strains, εe
n+1 and εe trial

n+1 , expression (14.207) can be
written as

exp[εe
n+1] exp[2 ∆γ Nn+1] exp[εe

n+1] = exp[2 εe trial
n+1 ]. (14.210)

From the series representation (B.4) for the tensor exponential, it follows that

exp[εe
n+1] = I + εe

n+1 + o(εe
n+1), (14.211)

where o(εe) is a term of second order in the elastic logarithmic strain. This together
with (14.210) gives

exp[2 εe trial
n+1 ] = exp[2 ∆γ Nn+1] + εe

n+1 exp[2 ∆γ Nn+1]
+ exp[2 ∆γ Nn+1] εe

n+1 + o(εe
n+1). (14.212)

For convenience, we now define the strain-like tensor

εp
∆ ≡ 1

2 [exp(2∆γ Nn+1) − I ]. (14.213)

This tensor is a Green–Lagrange-type measure (refer to Section 3.1.7, from page 52)
of incremental plastic strain within the interval considered. Indeed, within the present
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exponential map-based discretisation of the plastic flow (14.73), the incremental plastic
deformation gradient, F p

∆, defined by the relation

F p
n+1 = F p

∆ F p
n, (14.214)

is the symmetric (pure stretch) tensor given by

F p
∆ = U p

∆ = V p
∆ = Re T

n+1 exp[∆γ Nn+1 ]Re
n+1. (14.215)

The tensor defined by (14.213) is the Green–Lagrange strain measure associated with the
above incremental plastic stretch, rotated to the spatial configuration (by Re

n+1).
With definition (14.213) at hand, we can rewrite (14.212) equivalently as

exp[2 εe trial
n+1 ] = I + 2 εp

∆ + 2[εe
n+1 + εe

n+1 εp
∆ + εp

∆ εe
n+1] + o(εe

n+1). (14.216)

We then take the logarithm of both sides of the above equation, making use, on its right-hand
side, of the series representation of the tensor logarithm

ln(I + X) =
∞∑

k=0

(−1)k

k + 1
X k+1, (14.217)

which is convergent for sufficiently small X . This gives

2 εe trial
n+1 =

∞∑
k=0

(−1)k

k + 1
{2 εp

∆ + 2[εe
n+1 + εe

n+1 εp
∆ + εp

∆ εe
n+1] + o(εe

n+1)}k+1

=
∞∑

k=0

(−1)k

k + 1
(2 εp

∆)k+1 +
∞∑

k=0

(−1)k

k + 1
2k+1

∞∑
i=0

[(εp
∆)i(εe

n+1 + εe
n+1 εp

∆

+ εp
∆εe

n+1)(ε
p
∆)k−i] + o(εe

n+1). (14.218)

In addition, by noting that, in view of the definition of εp
∆, the first term on the right-hand

side of the above equals 2∆γNn+1, and expanding the second term, we obtain

εe trial
n+1 = εe

n+1 + ∆γ Nn+1 + o(εp
∆) + o(εe

n+1), (14.219)

where o(εp
∆) is a term of second order in the incremental plastic strain.

We now recall that the implicit exponential map integrator leading to (14.207) is first-
order accurate (refer to Section B.3.1); that is, the exponential map-based update formula is
an approximation of first order in the incremental plastic strain. Thus, consistently with this
order of accuracy (14.219) can be approximated as

εe trial
n+1 = εe

n+1 + ∆γ Nn+1 + o(εe
n+1). (14.220)

Finally, under infinitesimal elastic strains (typical of metal plasticity), the second-order term
can be neglected in the above expression leading to the approximate update formula

εe
n+1 = εe trial

n+1 − ∆γ Nn+1 (14.221)

which, remarkably, has the same small-strain format as the fully isotropic formula discussed
in earlier sections of this chapter.
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14.11.3. SPATIAL TANGENT OPERATOR

The consistent spatial tangent modulus in the present case is slightly more complex than its
isotropic counterpart (14.99). The extra complexity arises from the fact that, in the integration
algorithm for the Green–Naghdi rate-based kinematic hardening model, the elastic trial state
of one of the internal variables – the back-stress tensor – is not fixed as its value at the
beginning of the time interval (refer to Box 14.7). Here, the elastic trial back-stress is obtained
by rotating the back-stress tensor, βn, forward to the spatial configuration (refer to item (ii)
of Box 14.7). Thus, the elastic trial back-stress, βtrialn+1, is a function of the (fixed) back-
stress tensor, βn, at the beginning of the interval and the incremental elastic rotation, Λ∆.
The incremental elastic rotation itself is a function of the elastic trial deformation gradient,
F e trial

n+1 , which, in turn, is a function of F p
n and the deformation gradient Fn+1 at the end of

the integration interval. As a consequence, the general symbolic expression (14.97), valid
for the Kirchhoff stress incremental constitutive function of the fully isotropic model, is
redefined as

τ̂ (αn, F n+1) = τ̃ (α∗
n, βtrialn+1(βn, F e trial

n+1 (F p
n, F n+1)), εe trial

n+1 (B e trial
n+1 (F p

n, F n+1))).
(14.222)

In the above, we have introduced the definition

αn ≡ {α∗
n, βn}, (14.223)

where α∗
n is the subset of state variables at tn, excluding the back-stress tensor.

The key difference between the present and the isotropic case comes from the replacement
of (14.97) with (14.222) in the derivation of the derivative of the Kirchhoff stress with
respect to the deformation gradient that takes part in the general formula (14.95) for the
spatial tangent modulus. Clearly, the elastic tangent here coincides with that of the isotropic
model (as the same elastic law is adopted in both cases). In the elastoplastic case, as a result
of (14.222), the derivative (14.98) is here given by

∂τ̂

∂F n+1
= Dep :

∂εe trial
n+1

∂B e trial
n+1

:
∂B e trial

n+1

∂F n+1
+ Dβ :

∂βtrialn+1

∂F e trial
n+1

:
∂F e trial

n+1

∂F n+1
, (14.224)

where Dep is the standard infinitesimal elastoplastic consistent tangent operator associated
with the particular model/algorithm adopted and

Dβ ≡ ∂τ̃

∂βtrialn+1

(14.225)

is a fourth-order tensor which represents the tangent relation between the updated Kirchhoff
stress and the trial back-stress, also consistent with the infinitesimal return mapping. The
tangential relation Dβ is obtained in a manner analogous to the conventional infinitesimal
consistent tangent operator Dep, through appropriate differentiation of the corresponding
return-mapping equations. Note that the conventional tangent measures the rate of change
of τn+1 with changes in the input value of εe trial

n+1 at a frozen value of βtrialn+1 and the other
internal variables, whilst Dβ measures the rate of change of τn+1 with changes in the input
value of βtrialn+1 at a frozen value of εe trial

n+1 and the other internal variables of the model.
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The structure of the elastoplastic spatial tangent

The right-hand side of (14.224) comprises two summands. The first one has identical
functional format as the right-hand side of (14.98) and, therefore, gives rise to a contribution
to the spatial tangent a with identical format as its fully isotropic counterpart (14.99). The
second summand, in turn, gives rise to a new contribution to a, specifically associated with
the pre-rotation of βn prior to the application of the infinitesimal return mapping. This allows
the elastoplastic spatial tangent modulus to be expressed here as

a = aτ + aβ, (14.226)

where aτ has the format of (14.99) and the new term aβ is defined by

aβ ≡ 2
J

U : V, (14.227)

where the fourth-order tensors U and V are defined by the Cartesian components

Uijkl ≡ [Dβ ]ijkm [βtrialn+1]ml (14.228)

and

Vijkl ≡
[
∂(Be trial

n+1 )−
1
2

∂(Be trial
n+1 )

]
imkn

(V e trial
n+1 )mj(Be trial

n+1 )ln + (V e trial
n+1 )−1ik (V e trial

n+1 )jl. (14.229)

Expression (14.227) is obtained through a lengthy but straightforward manipulation with
repeated application of the chain and product rules after the substitution of the second
summand of the right-hand side of (14.224) into the first summand of the right-hand side
of (14.95). Note that the term within square brackets on the right-hand side of (14.229) is
the derivative of the inverse of the square root of a symmetric tensor. The inverse of the
tensor square root is a member of the class of isotropic tensor-valued functions discussed in
Section A.5 (from page 740), where closed formulae for the corresponding derivative are also
given.

Implementation aspects

Those interested in the computational implementation of finite strain kinematic hardening
models of the present type should note that the computation of aτ follows the same steps
as those already included in program HYPLAS for the isotropic plasticity models. The
computation of tensors U and V and subsequent assemblage of aβ need to be added to the
relevant part of the code. In program HYPLAS, this is probably best done in the material
interface subroutine MATICT, having (as suggested in Remark 14.12, page 639) kinematic
hardening models of this type as a new class of material models. In the computation of
U, a new material model-specific quantity – Dβ – is needed. In program HYPLAS, this
would probably be best implemented in a separate subroutine specifically associated with
the particular material model/algorithm type in question (just as with the other state-update
procedures and tangent moduli computation routines of HYPLAS). In the computation of V, as
given by expression (14.229), the derivative of the inverse tensor square root can be computed
in practice by subroutine DISO2 of HYPLAS. Finally, note that for the particular nonlinear
mixed hardening model alluded to in Remark 14.11, the tangent operator Dep is the one coded
in subroutine CTVMMX. This routine can be used in the extension of the mixed hardening model
already implemented in HYPLAS to the finite strain range.
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14.11.4. REMARKS ON PREDICTIVE CAPABILITY

At present, the issue of kinematic hardening modelling remains largely open. The actual
microscopic mechanisms responsible for kinematic hardening are quite complex and their
representation by means of purely phenomenological models, even in the infinitesimal strain
regime, is expected to be accurate only for relatively simple strain paths. The situation is
far more complex under finite plastic flow. In this case, given an accepted infinitesimal
model, many different large-strain extensions can be postulated (mainly on a purely ad hoc
basis), all having the same small-strain limit but with each one presenting a distinct stress
response under finite straining. In the authors’ opinion, a more accurate description of
kinematic hardening effects, especially in the finite strain range, should be attainable by
means of micromechanics-based models, possibly derived from multiscale representations
relying on computational homogenisation. Such an approach to finite plasticity is discussed,
for instance, by Miehe et al. (2002b) in the context of polycrystalline materials (without
specific reference to kinematic hardening modelling).

In spite of the potentially limited predictive ability of phenomenological kinematic
hardening models under complex strain paths, it is important to emphasise that models of this
type can often provide useful estimates of material behaviour when load reversing-related
phenomena are an important feature of the modelled process. They can be of particular
relevance, for instance, in the simulation of multistage metal-forming operations, where
substantial changes in loading direction occur between the different forming stages. Under
such circumstances, isotropic models may fail to capture some essential characteristics of the
process (Miehe et al., 2002a; Schröder et al., 2002).

14.11.5. ALTERNATIVE DESCRIPTIONS

Alternatives (also relying on hyperelastic-based multiplicative formulations) to the Green–
Naghdi rate description of the kinematic hardening evolution law considered in the above are
discussed, for instance, by Simo and Hughes (1998) and Dettmer and Reese (2004), who also
address their relevant computational aspects.

One such alternative is the model introduced in Tsakmakis (1996a,b). For this model, the
finite strain extension to the Armstrong–Frederick evolution law for the back-stress tensor
can be cast in the following form

β̇∗ = 2
3H (F p)−1Dp(F p)−T − γ̇ b β∗, (14.230)

where β∗ is a measure of back-stress defined on the reference configuration and Dp is the
plastic stretching (14.26)1 having, in the present case, the constitutive equation

Dp = γ̇
Md − κd

‖Md − κd‖
. (14.231)

In the above plastic flow rule, Md denotes the deviator of the Mandel stress tensor

M ≡ (F e)T τ (F e)−T , (14.232)

defined on the intermediate configuration, and κd is the deviatoric component of

κ ≡ β +
3
H

β β, (14.233)
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with β denoting the push-forward (to the intermediate configuration) of β∗

β ≡ F p β∗ (F p)T . (14.234)

Another possible representation is derived from a rheological model of kinematic hard-
ening (Lion, 2000). The finite strain generalisation of the Armstrong–Frederick kinematic
hardening law in this case is based on a further multiplicative split of the plastic deformation
gradient into ‘elastic’ and ‘inelastic’ components (associated, respectively, with a rheological
spring and a rate-independent dashpot)

F p = F p
e F p

i , (14.235)

in conjunction with the plastic flow rule

Dp = γ̇
Md − βd
‖Md − βd‖

(14.236)

and the following constitutive equation for the dashpot stretching

Dp
i ≡ sym[Ḟ

p

i (F p
i )

−1] = γ̇
3b

2H
Mi. (14.237)

In the above, βd is the deviator of

β =
H

3
[F p

e(F
p
e)

T − I ] (14.238)

and
Mi ≡ (F p

e)
T β F p

e. (14.239)

The reader is referred to Dettmer and Reese (2004) for further details on the two models
above, including their numerical treatment by an exponential map-based integration algo-
rithm. The computational implementation of these models is considerably more elaborate
than that of the Green–Naghdi rate-based theory. However, under small elastic strains, the
stress updating procedures for both models is reduced, essentially, to the solution of a single
scalar nonlinear nonlinear equation and twelve linear equations in the three-dimensional case.
It is interesting to note that Dettmer and Reese (2004) showed that neither of the two models
exhibit the unrealistic shear stress oscillations reported earlier in this section for the Green–
Naghdi rate-based model (refer to Figure 14.21) when the finite strain extension to Prager’s
(linear) kinematic hardening (b = 0) is adopted.

Yet another possibility, as suggested by Simo and Hughes (1998), is the definition of
the evolution law for the spatial back-stress tensor, β, in terms of its Oldroyd rate (refer
to expressions (14.130) and (14.131) for the general definition of the Oldroyd rate of a spatial
tensor), 

β ≡ β̇ − L β − β LT . (14.240)

These authors proposed a finite strain extension to Prager’s linear kinematic hardening rule
with the following format


β = γ̇ 23 H (tr Be) N̄, (14.241)

where Be = F e(F e)T and N̄ is the unit flow vector

N̄ =
s − β

‖s − β‖ , (14.242)

with s the Kirchhoff stress deviator.





15 FINITE ELEMENTS FOR
LARGE-STRAIN
INCOMPRESSIBILITY

THE present chapter is devoted to special finite element techniques for the analysis of
large deformations of nearly incompressible solids. It is a well-known fact that the

performance of low-order virtual work-based finite elements becomes extremely poor as
the incompressible limit is approached. Problems of practical engineering interest for which
incompressibility plays a crucial role include the analysis of rubbery solids, typically mod-
elled as incompressible hyperelastic materials (refer to Chapter 13), as well as elastoplastic
simulations under plastic dominant deformations and the assumption of isochoric plastic
flow, such as in metal plasticity models. In such situations, spurious volumetric locking, i.e.
overstiff solutions, are frequently obtained as a consequence of the inability of low-order
interpolation polynomials adequately to represent general volume-preserving displacement
fields. The problem can be remedied simply by adopting elements of sufficiently high
order. However, due to their simplicity, low-order elements are often preferred in large-scale
computations. For this reason, several formulations have been proposed to allow the use of
low-order elements near the incompressible limit.

Within the context of the geometrically linear theory, the class of enhanced assumed strain
(EAS) methods described by Simo and Rifai (1990), which incorporates popular procedures
such as the classical incompatible modes formulation proposed by Taylor et al. (1976) and
B-bar methods (Hughes, 1980), is well established and is employed with success in a number
of existing commercial finite element codes.

At this point, it is worth mentioning that such issues have not been raised by the authors
in the infinitesimal strain context of Part Two of this book, the reason for this being that,
under infinitesimal kinematics, the use of underintegrated standard finite elements (such
as the eight-noded quadrilateral with four Gauss point quadrature) can provide simple and
satisfactory solutions near the incompressible limit. However, in the geometrically nonlinear
regime, particularly in the simulation of more realistic industrially relevant problems, more
complex phenomena such as frictional contact with large sliding distances under extreme
strains are often present. In such cases, lower-order elements are usually preferred due to
their robustness and simplicity.

To tackle the problem, different approaches have been proposed. Among others, the class
of mixed variational methods developed by Simo et al. (1985), the mixed u/p (displacement-
pressure) formulation proposed by Sussman and Bathe (1987), the geometrically nonlinear
extension of the B-bar methodology devised by Hughes et al. (1975) and Moran et al. (1990),
the family of enhanced assumed strain elements of Simo and Armero (1992), the F-bar

Computational Methods for Plasticity: Theory and Applications EA de Souza Neto, D Perić and DRJ Owen
c© 2008 John Wiley & Sons, Ltd
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technique proposed by the authors and co-workers (de Souza Neto et al., 1996), the co-
rotational incompatible modes approach of Crisfield and Moita (1996), the geometrically
nonlinear selective reduced integration scheme of Doll et al. (2000), the more recent versions
of the enhanced assumed strain method proposed by Reese and Wriggers (2000) and Wall
et al. (2000) are possible alternatives that allow the use of low-order elements near the
incompressibility limit.

In the context of explicit transient dynamic analysis, methods based on so-called hourglass
control techniques are almost invariably employed. Essentially, this class of methods relies on
the use of reduced numerical integration quadrature within the element. For linear elements
this implies single point integration which, however, can result in spurious zero energy
(hourglass) modes of deformation (Belytschko et al., 2000, 1984; Hughes, 1987). In order to
obtain reliable results, various control methods have been proposed to eliminate hourglassing
by providing the restraint that the element lacks under single point integration, but without
stiffening the element’s adequate response to other modes (Belytschko and Bindeman, 1991,
1993; Belytschko et al., 2000, 1984). Two principal ways of resisting hourglassing are with
viscous damping and by introduction of artificial stiffness, both of which are capable of
eliminating the spurious singular modes but have a negligible effect on the stable global
modes. However, it should be stressed that hourglass control does not fully remove the
kinematic modes and, in particular, coarse meshes and meshes loaded with large nodal forces,
resulting either from boundary conditions or from contact, are susceptible to hourglassing
despite the use of control techniques.

One aspect that should be pointed out here is that, in addition to handling near incom-
pressibility, robust formulations should also be able to cope with the extra requirements that
different problems may present. For instance, in applications such as the prediction of failure
in metal-forming processes, the ability to capture strain localisation phenomena becomes
crucial; in problems involving extremely large strains, frequently encountered in the analysis
of rubbery materials and metal-forming problems, it is not unusual that a solution can be
obtained only if adaptive mesh refinement is employed. Thus, since a single formulation
is normally not sufficiently robust to produce an optimal performance under a very wide
range of conditions, the design of low-order finite elements for large-strain analysis of quasi-
incompressible materials remains an open issue.

Rather than providing a general overview of a large number of different approaches, we
have opted in this chapter to provide the reader with a reasonably detailed description (to
a level of detail sufficient to allow the reader to produce the necessary computer codes) of
only three methods. These methods, which we consider to be of sufficient generality, are,
namely, the F-bar methodology (including its more recent F-bar-Patch variant for simplex
elements), the geometrically nonlinear EAS method and the mixed u/p formulation. These
are described, respectively, in Sections 15.1, 15.2 and 15.3. We remark that the F-bar method
is incorporated into the standard version of program HYPLAS that accompanies this book.

15.1. The F-bar methodology

The basic idea behind the F-bar (de Souza Neto et al., 1996) procedure is simple: an F-
bar element is obtained from the corresponding standard (displacement-based) finite element
simply by adopting a suitably modified deformation gradient in the computation of the
stress tensor. To avoid volumetric locking, the modified deformation gradient is constructed
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such that the incompressibility constraint can be enforced in an approximate average (not
pointwise) sense throughout the element. The method is in fact closely related to the classical
B-bar procedures (Hughes, 1980). However, as we shall see, it cannot be regarded as a
direct geometrically nonlinear extension of the B-bar method. Geometrically nonlinear B-
bar elements (Hughes et al., 1975; Moran et al., 1990) possess a more complex structure,
particularly with respect to the corresponding consistent tangent stiffness matrices. Some
basic features of the F-bar approach are summarised below:

1. The methodology is simple in concept.

2. The computer implementation of F-bar elements is also simple. In fact, F-bar element
routines can be obtained by introducing straightforward modifications into existing
standard element routines. Interested readers are referred to the source code of program
HYPLAS where both standard and F-bar four-noded quadrilaterals are implemented.

3. As for B-bar methods and assumed enhanced strain approaches, F-bar elements can be
used with any material model, elastic or inelastic, regardless of deviatoric/volumetric
coupling of the constitutive equations. This is not true if selective reduced integration
is used.

4. Numerical experience shows that F-bar elements produce good solutions with reason-
ably sized meshes for a wide range of industrially relevant problems. The methodology
avoids volumetric locking and, in addition, is particularly suitable to capture strain
localisation phenomena.

5. In view of the absence of non-physical internal element parameters (as opposed to
enhanced assumed strain and incompatible modes methods in general) F-bar elements
can be easily used in conjunction with adaptive remeshing techniques. This is also true
for geometrically nonlinear B-bar methods and u/p mixed formulations. This property
becomes essential in the realistic simulation of finite strain industrial problems where
excessively large strains occur.

We start below by focusing on the formulation of four-noded quadrilaterals (for plane
strain and axisymmetric analysis) and a three-dimensional eight-noded hexahedron. The
formulation of these relatively simple elements is then followed by an outline of a general
procedure for the formulation of elements for the analysis of near-incompressible solids.

15.1.1. STRESS COMPUTATION: THE F-BAR DEFORMATION GRADIENT

Consider an ordinary displacement-based four-node quadrilateral and an eight-node hexahe-
dron, with local coordinates denoted ξ, as illustrated in Figure 15.1. The numerical integration
of the element internal force vector requires the computation of the Cauchy stress tensor at a
prescribed number of Gauss points (refer to Chapter 4). Let us consider the typical interval
[tn, tn+1] and let σn+1 and F be, respectively, the Cauchy stress tensor and deformation
gradient† for Gauss point i (with coordinate ξi, indicated in Figure 15.1) at tn+1. For finite
strain problems with a generic dissipative underlying material model, the Cauchy stress

†The deformation gradient at tn+1 is usually denoted Fn+1 in this book. Here, for notational convenience, we
shall exceptionally use F to denote the deformation gradient at the end of the typical time (or pseudo-time) interval.
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Figure 15.1. The F-bar four-node quadrilateral and eight-node hexahedron. (Reproduced with permis-
sion from Design of simple low-order finite elements for large-strain analysis of nearly incompressible
solids, EA de Souza Neto, D Perić, M Dutko and DRJ Owen, International Journal of Solids and
Structures, Vol 33, Issue 20–22 c© 1996 Elsevier Science Ltd.)

tensor is obtained from the deformation gradient at the end of the time interval by means
of incremental constitutive functions of the general form‡

σn+1 = σ̂(αn, F ). (15.1)

where αn denotes the set of internal variables of the model at tn. For conventional
(or standard) finite elements, the deformation gradient F is computed directly from the
standard interpolation (bi-linear for the quadrilateral and tri-linear for the hexahedron) of
the displacement field at the generic integration point i.

The isochoric/volumetric split of the deformation gradient

Central to the formulation of the present method is the concept of multiplicative split of
the deformation gradient, F , into an isochoric (volume-preserving) and a volumetric (purely
dilatational) contribution. This concept was introduced in Section 3.1.5 (page 49). It has been
exploited by many authors (Hughes et al. 1975, Simo et al. 1985, Moran et al. 1990, and Simo
and Taylor 1991) in the treatment of the incompressibility constraint in finite deformation
problems. Essentially, F is split according to

F = F iso F v, (15.2)

where
F iso = (det F )−1/3 F and F v = (det F )1/3 I (15.3)

denote, respectively, the isochoric and volumetric components of F .

‡Recall that for hyperelastic materials, no internal variables are present in the definition of σ̂ and the computation
of the stress tensor usually involves only straightforward function evaluations. For dissipative materials, σ̂ is in
general associated with numerical algorithms for integration of the constitutive equations of the underlying material
model. Such algorithms have been thoroughly discussed in the preceding chapters of this book.
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The F-bar deformation gradient

The key idea of the F-bar method is simply to replace the conventional F with a modified
counterpart, which we will denote F̄ (the F-bar deformation gradient), in (15.1) in order to
circumvent the spurious volumetric locking exhibited by standard low-order elements near the
incompressible limit. To construct the F-bar deformation gradient the isochoric/volumetric
split (15.3) is firstly applied to the conventional deformation gradient F at the Gauss point
of interest as well as to the deformation gradient F 0 that results from the conventional
displacement interpolation at the centroid of the element, ξ = ξ0 (Figure 15.1 illustrates the
procedure for the four-noded quadrilateral and eight-noded hexahedron):

F = F iso F v,

F 0 = (F 0)iso (F 0)v.
(15.4)

The F-bar deformation gradient is then defined as the product of the isochoric component of
F with the volumetric component of F 0, i.e. we compute

F̄ = F iso (F 0)v =
(

det F 0
det F

)1/3
F . (15.5)

Having defined the modified deformation gradient, the F-bar four- and eight-noded elements
are obtained simply by replacing F with F̄ in (15.1); that is, for the present elements, the
Cauchy stress at each Gauss point is computed as

σn+1 = σ̂(αn, F̄ ). (15.6)

Remark 15.1. By construction of F̄ , the isochoric/volumetric split of the modified deforma-
tion gradient gives {

F̄ iso = (det F )−1/3 F = F iso

F̄ v = (det F 0)1/3 I = (F 0)v
(15.7)

i.e. the isochoric component of F̄ coincides with the current (integration point) isochoric
deformation gradient (as obtained from the conventional interpolation functions) while its
volumetric part corresponds to the dilatation at the centroid of the element. In view of (15.6),
this implies that, for materials whose deviatoric and volumetric constitutive responses are
decoupled, the present formulation results in constant pressure throughout one element.

15.1.2. THE INTERNAL FORCE VECTOR

With the stress tensor computed according to (15.6), we define the modified internal virtual
work functional for an F-bar element as

Gint(e)(u, η) ≡
∫

ϕ(Ω(e))

σ̂(αn, F̄ ) : ∇xη dv. (15.8)

The corresponding F-bar element internal force vector is then given simply by

f int(e) =
∫

ϕ(Ω(e))

BT σ̂(αn, F̄ ) dv, (15.9)
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where B denotes the standard discrete spatial symmetric gradient operator (the same as
that used to assemble the internal force vector of the corresponding standard element – see
expression (4.92), page 103).

Remark 15.2. As far as the computation of the internal force vector is concerned, the only
difference between F-bar elements and their conventional displacement-based counterparts
is the replacement of F with F̄ in the computation of the Cauchy stress by the incremental
constitutive function σ̂ (the stress-updating procedure). Thus, in addition to the evaluation of
F and σ at each Gauss point – procedures carried out normally for the standard elements
– the F-bar elements require only the evaluation of det F 0, at their centroids, and the
computation of F̄ which, from its definition (15.5), is obtained simply by multiplying F
by a scalar factor. The added computational effort is, therefore, minimal (refer to Box 15.1).
We emphasise that, as for the conventional elements, four and eight-point Gauss quadratures
are adopted for the F-bar four-node quadrilateral and eight-node hexahedron respectively.

Remark 15.3. Geometrically nonlinear extensions of the so-called B-bar methods, such as
the class of elements proposed by Hughes et al. (1975), Moran et al. (1990) and particular
cases of the general methodology described by Simo et al. (1985), are also based on the
replacement of the compatible deformation gradient with an assumed modified counterpart
defined similarly to (15.5). However, in contrast to such procedures, modified gradient
operators (or B-bar matrices) do not take part in the present formulation. Note that the
standard B-matrix appears in (15.9). This is due to the fact that, in the F-bar procedure, the
assumed deformation gradient has been introduced in the stress constitutive function rather
than in the corresponding strain energy function. As we shall see in what follows, this crucial
difference allows a relatively straightforward adaptation of existing finite strain displacement-
based element routines to incorporate F-bar elements.

15.1.3. CONSISTENT LINEARISATION: THE TANGENT STIFFNESS

Let us now turn our attention to another crucial point in the computational implementation
of the above F-bar elements – the computation of their tangent stiffness matrices. This is
addressed in the following proposition.

Proposition 15.1. Let the internal force vector f int be defined as the assembly of the element
vectors (15.9). Then, the corresponding tangent stiffness, KT , is obtained by the assemblage
of the element stiffness matrices

K(e)T =
∫

ϕ(Ω(e))

GT a|F=F̄ G dv︸ ︷︷ ︸
standard element

stiffness at F= F̄

+
∫

ϕ(Ω(e))

GT q (G0 − G) dv︸ ︷︷ ︸
additional
stiffness

,

(15.10)

where G is the standard discrete spatial gradient operator, G0 is the gradient operator at the
element centroid, a|F=F̄ denotes the matrix form of the consistent spatial tangent modulus
evaluated at F = F̄ , and q is the matrix form of the fourth-order tensor defined by

q = 1
3 a : (I ⊗ I) − 2

3 (σ ⊗ I), (15.11)

also computed at F = F̄ .
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Proof. This follows from the linearisation of the element internal force vector (15.9). The
main steps are the following. Firstly, we map (15.9) to the material configuration. Then we
linearise the material form and map the linearised expression back to the spatial configuration.
Let us start by observing the following relation for the first Piola–Kirchhoff stress:

P ≡ (det F ) σ F −T = (det F ) σ̂(F̄ ) F −T =
(

det F 0
det F

)− 2
3

P̂ (F̄ ) (15.12)

where we have defined
P̂ (F̄ ) ≡ (det F̄ ) σ̂(F̄ ) F̄ −T . (15.13)

For notational convenience we have omitted αn from the arguments of σ̂ (and P̂ ). With the
above definition, we write the following material version of the F-bar internal virtual work
functional (15.8):

Gint(e)(u, η) =
∫
Ω(e)

(
det F 0
det F

)− 2
3

P̂ (F̄ ) : ∇pη dv, (15.14)

where dependence of Gint on u comes from the dependence of F̄ on u. The directional
derivative of Gint in a direction d is given by

DGint(e)(u, η) [d] =
∫
Ω(e)

d
dε

∣∣∣∣
ε=0

[(
det(F 0)ε

det F ε

)− 2
3

P̂ (F̄ε)
]
: ∇pη dv, (15.15)

where
F ε ≡ I + ∇p(u + ε d)

(F 0)ε ≡ I + ∇p(u + ε d)|ξ=0

F̄ε ≡
(

det(F 0)ε

det F ε

)1
3

F ε.

(15.16)

After a lengthy but straightforward application of the chain and product rules to (15.15)
together with the use of basic tensor algebra relations, we obtain

DGint(e)(u, η) [d] =
∫

ϕ(Ω(e))

{a(F̄ ):∇xd + [13 a(F̄ ):(I ⊗ I )

− 2
3 σ̂(F̄ ) ⊗ I ] : (∇0d −∇xd )} : ∇xη dv, (15.17)

where ∇0d denotes the spatial gradient of d evaluated at the centroid of the element. Finally,
the replacement of the gradient operators, tangent modulus and other relevant tensors with
the corresponding finite element matrices in (15.17) leads to the tangent stiffness formula
(15.10).

Remark 15.4. (The structure of the F-bar tangent stiffness) The first term on the right-
hand side of (15.10) is identical to the tangent stiffness of conventional displacement
elements evaluated at F =F̄ . The computation of the extra term indicated in (15.10) is
relatively simple. In addition to the spatial tangent modulus, stress and the discrete gradient
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at the Gauss point of interest – already used in the calculation of the stiffness of standard
elements – only the discrete gradient at the element centroid, G0, and the matrix q are
required. The evaluation of G0 is straightforward and, from its definition, the computation
of q also requires little computational effort. Thus, the c.p.u. time needed to compute the
tangent stiffnesses of the proposed elements is just slightly longer than that consumed by
their conventional counterparts. However, note that the additional stiffness term appearing
in (15.10) is generally unsymmetric and, therefore, requires an unsymmetric solver in the
finite element computations. Note that this fact is immaterial whenever the problem to
be solved is characterised by an unsymmetric tangent modulus in the continuum setting,
i.e. before finite element discretisation. This condition is encountered in a wide variety of
practical engineering applications, such as, for instance, the simulation of metal-forming
operations in which frictional contact almost invariably plays an essential role and the use
of an unsymmetric solver is inevitable. More sophisticated constitutive laws, such as the
coupled elastoplastic damage models discussed in Chapter 12, single crystal plasticity laws
(Chapter 16), and non-associative plasticity models in general, also lead to unsymmetric
tangent moduli.

Axisymmetric F-bar elements

To illustrate the simplicity of the extra stiffness term of expression (15.10), the explicit
form of the matrices involved in its computation is shown here for the axisymmetric case.
These are implemented in HYPLAS for the F-bar four-node axisymmetric quadrilateral. As the
evaluation of the discrete gradient is standard, only the terms required for computation of q
are presented below. Adopting the usual finite element convention, in which the matrix format
indices {1, 2, 3, 4, 5} correspond to the fourth-order counterparts {11, 21, 12, 22, 33}, the
matrix form of the term a : (I ⊗ I) that takes part in the definition (15.11) of q is given by

[a:(I⊗I)] =




a11 + a14 + a15 0 0 a11 + a14 + a15 a11+ a14 + a15

a21 + a24 + a25 0 0 a21 + a24 + a25 a21+ a24 + a25

a31 + a34 + a35 0 0 a31 + a34 + a35 a31+ a34 + a35

a41 + a44 + a45 0 0 a41 + a44 + a45 a41+ a44 + a45

a51 + a54 + a55 0 0 a51 + a54 + a55 a51+ a54 + a55




(15.18)

where aij are the components of the spatial tangent modulus matrix a. The matrix form of
the remaining term σ ⊗ I appearing in (15.11) is simply given by

[σ ⊗ I ] =




σ11 0 0 σ11 σ11

σ12 0 0 σ12 σ12

σ12 0 0 σ12 σ12

σ22 0 0 σ22 σ22

σ33 0 0 σ33 σ33




. (15.19)

In the expressions above, the matrix index 5 (or tensorial index 33) represents the circumfer-
ential directions, other indices correspond to the in-plane components.
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15.1.4. PLANE STRAIN IMPLEMENTATION

We now turn our attention to the plane strain implementation of F-bar elements. To
ensure that the modified deformation gradient corresponds to a plane strain deformation,
expression (15.5) is replaced in plane strain F-bar elements with

F̄ =




F̄p
0

0

0 0 1


, (15.20)

where F̄ p is the assumed modified counterpart of the in-plane component, F p, of the
deformation gradient, defined by

F̄p =
(

det F p0
det F p

)1/2
F p. (15.21)

Remark 15.5. Note from (15.20) that the redefined modified deformation gradient represents
indeed a plane strain state. This would not be the case if the general definition (15.5) were
applied under plane strain conditions. Note that, under the present definition, (15.7)2 remains
valid and pressure distributions within elements will be constant for materials with decoupled
volumetric/deviatoric response. Expression (15.7)1, however, is no longer valid, i.e. the
deviatoric component of the modified deformation gradient does not coincide in general with
that of the deviatoric deformation gradient that results from the standard bilinear interpolation
at the Gauss points.

The algorithmic implementation of the plane strain version of the proposed four-node
quadrilateral element follows that described in Boxes 15.1 and 15.2, except that the exponent
1/3 must be replaced by 1/2 in the computation of the modified deformation gradient. Also,
as a consequence of definition (15.20), expression (15.11) for the tensor q, which arises from
the linearisation of the internal force vector, must be replaced by

q = 1
2 a : (I ⊗ I) − 1

2 (σ ⊗ I), (15.22)

in the computation of the element tangent stiffness matrix (Box 15.2). The explicit form
of the matrices [a : (I ⊗ I)] and [σ ⊗ I], in this case, is obtained from expressions (15.18)
and (15.19) simply by deleting all components related to the circumferential direction, that
is, we have

[a : (I ⊗ I)] =




a11 + a14 0 0 a11 + a14

a21 + a24 0 0 a21 + a24

a31 + a34 0 0 a31 + a34

a41 + a44 0 0 a41 + a44


 (15.23)
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and

[σ ⊗ I ] =




σ11 0 0 σ11

σ12 0 0 σ12

σ12 0 0 σ12

σ22 0 0 σ22


. (15.24)

15.1.5. COMPUTATIONAL IMPLEMENTATION ASPECTS

As pointed out in Remarks 15.2 and 15.4, in addition to the computations carried out
normally for the conventional elements, only a few extra operations are required for the
F-bar four-node quadrilateral and eight-node hexahedron in the evaluation of the internal
force vector and the tangent stiffness matrix. In a code which already supports the standard
four-node quadrilateral (or eight-node brick, if three-dimensional analysis is sought) and
allows access to an unsymmetric solver, the necessary modifications are relatively simple.
The routines for calculation of the internal force and tangent stiffness can be reused and
adapted to accommodate the new elements. The computational procedures for internal force
and stiffness evaluation of the F-bar elements are schematically illustrated in Boxes 15.1
and 15.2, where the corresponding conventional element routines have been extended with
the additional operations (framed) required. The procedures of Boxes 15.1 and 15.2 are
implemented, respectively, in subroutines IFFBA2 (Internal Force calculation for F-BAr
element in 2-D) and STFBA2 (STiffness matrix calculation for F-BAr element in 2-D).
The reader will note that these routines have been obtained by introducing relatively small
modifications to the corresponding standard element routines IFSTD2 and STSTD2.

15.1.6. NUMERICAL TESTS

This section presents a set of numerical examples whose purpose is to assess some basic
performance indicators of the four-noded quadrilateral F-bar element and to comment
on its suitability for analysis in various situations of interest. Some of the results are
compared with similar computations carried out with enhanced assumed strain elements
for near incompressible analysis. Further examples of finite element analysis with F-bar
elements (including the eight-noded F-bar brick) under near incompressibility are provided
in Sections 13.6, 14.9 and 16.8.

Cook’s membrane.

This example is frequently used in the literature to assess the convergence properties of finite
elements under a mixture of shear and bending strains (Glaser and Armero, 1997; Korelc
and Wriggers, 1996; Simo and Armero, 1992; Simo and Rifai, 1990). The purpose here is
only to illustrate the convergence properties of the four-noded F-bar element under near-
incompressibility. It is a well-known fact that, under near-incompressibility, conventional
low-order elements require excessively fine discretisations to produce solutions sufficiently
close to the converged one. ‘Adequate’ elements should converge with more sensible coarser
meshes. The problem consists of a tapered and swept panel of unit thickness, illustrated in
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Box 15.1. Internal force vector computation for F-bar element.

HYPLAS procedure: IFFBA2

(i)
• Compute G0 (standard G matrix at ξ = ξ0)

• Evaluate det F 0, with F 0 := I + G0 u

(ii) Set Gauss point coordinates ξi, weights wi and Jacobian determinants ji

(iii) Do i = 1, ngausp (loop over Gauss points)

• compute standard G matrix at ξi

• F := I + G u (conventional deformation gradient)

• F̄ :=

(
det F 0

det F

)1
3

F (modified deformation gradient)

• σ := σ̂(αn, F̄ ) (call stress update routine)

• compute standard B matrix at ξi

• f int
(e) := f int

(e) + wi ji BT σ (add ith Gauss point contribution)

End do

Figure 15.2(a), with one edge clamped and a uniformly distributed vertical load of linear
density f = 6.25 applied to the opposite edge. The corresponding resultant applied load in
the initial configuration is F = 100. Throughout the loading programme, the applied load
remains vertical (it does not follow the direction tangent to the faces of the loaded elements),
but the resultant load will change according to the variation of length of the loaded faces so
as to preserve the prescribed constant load density. Plane strain condition is assumed and a
regularised neo-Hookean material with shear modulus µ = 80.1938 and bulk modulus k =
40.0942× 104 is adopted. Note that near incompressibility is achieved with the high ratio
k/µ, of order 104. Several meshes are considered, so that the convergence of the solution with
mesh refinement can be assessed. A mesh of 4 × 4 elements is depicted in Figure 15.2(a). For
all meshes considered, the total load is applied in five increments. The results are shown in
the graph of Figure 15.2(b) where the final vertical displacement obtained at the upper right
corner of the panel (point A of Figure 15.2(a)) is plotted against the number of elements per
side. Results obtained with the Q1/E4 element of Simo and Armero (1992) are also shown
for comparison. It can be seen that the convergence of the F-bar quadrilateral in this case is
almost identical to the behaviour of the element Q1/E4 with five-point integration rule.§

§The five-point integration rule for quadrilateral domains (whose corresponding weights and integration point
positions are found in subroutine GAUS2D of program HYPLAS) has been introduced (Simo et al., 1993) as an
improvement to the earlier version of the Q1/E4 enhanced assumed strain element.
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Box 15.2. Stiffness matrix computation for F-bar elements.

HYPLAS procedure: STFBA2

(i)
• Compute G0 (standard G matrix at ξ = ξ0)

• Evaluate det F 0, with F 0 := I + G0 u

(ii) Set Gauss point coordinates ξi, weights wi and Jacobian determinants ji

(iii) Do i = 1, ngausp (loop over Gauss points)

• compute standard G matrix at ξi

• F := I + G u

• F̄ :=

(
det F 0

det F

)1/3

F (modified deformation gradient)

• a := â(F̄ ) (tangent modulus computation routine)

• K(e)
T := K(e)

T + wi ji GT a G

•
– compute matrix q defined by (15.11)

– K(e)
T := K(e)

T + wi ji GT q (G0 − G)

End do

Stretching of a double-notched specimen.

This example, originally considered by Nagtegaal et al. (1974) in the geometrically linear
regime, illustrates the need for appropriate treatment of the incompressibility constraint to
allow for accurate prediction of limit loads. It consists of the plane strain simulation of the
stretching of a deep double-notched elastoplastic specimen. The geometry of the problem
is illustrated in Figure 15.3(a). Only one symmetric quarter of the specimen, discretised by
the 5 × 15 element mesh shown in Figure 15.3(a), is used in the simulation. The material is
assumed to be elastic-perfectly plastic with J2 flow rule and yield stress:

σy = 0.45.

The elastic behaviour is defined by the Hencky material model with Young’s modulus E =
206.9 and Poisson ratio ν = 0.29. This corresponds to the shear and bulk moduli

µ = 80.1938, K = 164.21.

Vertical displacement is applied to the top nodes of the mesh up to a total displacement u =
0.3. The simulation is carried out here using the four-node element presented in this section
as well as the Q1/E4 element and the standard displacement-based four-node quadrilateral.
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Figure 15.2. Cook’s membrane: (a) geometry and boundary conditions; (b) convergence of the solution
with mesh refinement. (Reproduced with permission from Design of simple low-order finite elements
for large-strain analysis of nearly incompressible solids, EA de Souza Neto, D Perić, M Dutko and
DRJ Owen, International Journal of Solids and Structures, Vol 33, Issue 20–22 c© 1996 Elsevier
Science Ltd.)
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Figure 15.3. Stretching of a double notched elastoplastic specimen: (a) geometry and finite element
discretisation; (b) reaction–displacement diagram. (Reproduced with permission from Design of simple
low-order finite elements for large-strain analysis of nearly incompressible solids, EA de Souza Neto,
D Perić, M Dutko and DRJ Owen, International Journal of Solids and Structures, Vol 33, Issue 20–22
c© 1996 Elsevier Science Ltd.)

The total edge reactions per unit thickness obtained for each computation is plotted versus the
prescribed displacement in Figure 15.3(b). It can be seen that both the present element and
Q1/E4 are able to predict the existence of a limit load – a phenomenon that is not captured by
the standard four-node quadrilateral. The force–displacement curve predicted by the present
formulation is very close to that obtained with the enhanced element Q1/E4.
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Unconstrained single elastoplastic element test.

The purpose of this test is to give a practical insight into the adequacy of a finite element
to capture strain localisation phenomena. It has been used by Simo and Armero (1992) to
assess the performance of assumed enhanced strain elements. Here, the unconstrained single
element test is carried out for the four-node F-bar quadrilateral. The results are compared
to similar computations with the enhanced element Q1/E4. The problem is schematically
represented in Figure 15.4(a). The element, with the dimensions and kinematic constraints
indicated, is subjected to prescribed horizontal displacement, u, at its top node. Plane strain
condition is assumed. The material model used is the same as in the notched specimen
example except that the assumption of perfect plasticity is replaced by the following isotropic
hardening/softening law:

σy(ε̄p) = (σ∞ − σ0) [1 − exp(−δ ε̄p)] + Hε̄p,

with constants

σ0 = 0.45, σ∞ = 0.715, δ = 16.93, H = −0.012924.

The corresponding force per unit thickness, P , obtained during the tests is plotted in
Figure 15.4(b). It can be seen that both the F-bar element and, as verified by Simo and Armero
(1992), the Q1/E4 element with four-point quadrature are able to capture the global softening
that characterises strain localisation. This indicates a possible suitability of these elements for
localisation problems. Interestingly, if the five-point integration rule suggested by Simo et al.
(1993) is employed, the forces obtained for the Q1/E4 element increase dramatically after
following closely the results for the four-Gauss point rule up to approximately u = 3.0. This
phenomenon might be attributed to a bifurcation of the solution and was noticed by Schönauer
et al. (1995). The results obtained with the standard four-node quadrilateral are also plotted
and show that, for this element, no softening occurs. The deformed configurations, at
u = 10.0, of each of the elements discussed are depicted in Figure 15.5. The final geometry of
the proposed element lies between the deformed geometries of the Q1/E4 with four and five
integration points. We point out the substantial difference that results from the application
of distinct quadratures in the Q1/E4 element. Severe locking is exhibited by the standard
quadrilateral as a consequence of the pointwise enforcement of the plastic incompressibility
constraint.

Suitability for adaptive analysis.

Due to the large element distortions involved, as well as accuracy considerations, many
finite strain problems of industrial interest can only be solved if the finite element mesh
is redefined at some stage of the solution procedure. Whenever a new mesh is chosen, all
relevant variables that define the problem at hand must be appropriately transferred from the
old mesh to the new one so that the solution process can continue. Formulations such as
enhanced assumed strain methods (Glaser and Armero, 1997; Korelc and Wriggers, 1996;
Simo and Armero, 1992; Simo et al., 1993) and incompatible modes elements (Crisfield
et al., 1995) are based on the enrichment of the element strain field with internal deformation
modes defined by a set of local internal element parameters. For such methodologies, the
appropriate transfer of internal parameters between meshes is crucial and seems not to be
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Figure 15.4. Single element test: (a) geometry and load; (b) force-displacement curve. (Reproduced
with permission from Design of simple low-order finite elements for large-strain analysis of nearly
incompressible solids, EA de Souza Neto, D Perić, M Dutko and DRJ Owen, International Journal of
Solids and Structures, Vol 33, Issue 20–22 c© 1996 Elsevier Science Ltd.)
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Figure 15.5. Single element test. Deformed configurations at u = 10.0: (a) present element; (b) Q1/E4
with four-point rule; (c) Q1/E4 with five-point rule; (d) standard four-node quadrilateral. (Reproduced
with permission from Design of simple low-order finite elements for large-strain analysis of nearly
incompressible solids, EA de Souza Neto, D Perić, M Dutko and DRJ Owen, International Journal of
Solids and Structures, Vol 33, Issue 20–22 c© 1996 Elsevier Science Ltd.)

clear at present. In contrast, such an issue does not arise in methodologies such as the F-
bar procedure described above and geometrically nonlinear extensions of the classical B-
bar method (Moran et al., 1990). The absence of element internal parameters makes the
incorporation of such methods into adaptive remeshing environments rather straightforward.
Exactly as for standard displacement-based formulations, such methods require only nodal
displacements and physical variables (e.g. plastic, elastic strains, hardening parameters, etc.)
to be transferred between meshes. The suitability of the four-noded F-bar quadrilateral in
particular for adaptive analysis is illustrated here in the simulation of the upsetting of an
elastoplastic cylindrical billet. The billet, with radius r = 9 mm and height h = 30 mm is
compressed between two flat tools (assumed rigid) subjected to sticking contact condition
on the interface. The initial tool/workpiece configuration is schematically illustrated in
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Figure 15.6. Adaptive analysis: (a) initial tool/workpiece configuration; (b) initial mesh; (c) deformed
mesh at 40% compression; (d) deformed mesh at 70% compression; (e) deformed mesh at 70%
compression without remeshing. (Reproduced with permission from Design of simple low-order finite
elements for large-strain analysis of nearly incompressible solids, EA de Souza Neto, D Perić, M Dutko
and DRJ Owen, International Journal of Solids and Structures, Vol 33, Issue 20–22 c© 1996 Elsevier
Science Ltd.)

Figure 15.6(a). The Hencky elastic model and the von Mises elastoplastic law are used to
model the billet. Linear isotropic hardening is assumed:

σy(ε̄p) = σy0 + Hε̄p,

with hardening modulus H = 0.7 GPa and initial yield stress σy0 = 0.45 GPa. The Young’s
modulus and Poisson ratio are, respectively, E = 200 GPa and ν = 0.3, corresponding to

µ = 76.92 GPa, K = 166.67 GPa.

The initial mesh employed to discretise the symmetric quarter of the cylinder is plotted in
Figure 15.6(b). The criterion for mesh refinement/de-refinement is based on the incremental
plastic work (refer to Perić et al. (1994) for details). Two other meshes, generated during the
adaptive analysis, are shown in Figures 15.6(c) and 15.6(d). The configurations illustrated
correspond to 40% and 70% compression of the billet respectively. Due to the concentration
of the plastic process near the corner of the billet, substantial refinement is detected in that
region of the mesh of Figure 15.6(c). At the later stage of 70% compression, shown in
Figure 15.6(d), the rate of plastic dissipation and, therefore, the elements, are more uniformly
distributed. Note that, at any instant, all elements have a very good aspect ratio. The result of
a similar computation without adaptivity, i.e. maintaining the initial discretisation throughout
the entire process, is shown in Figure 15.6(e) where the excessive distortion of the mesh is
clear.
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15.1.7. OTHER CENTROID SAMPLING-BASED F-BAR ELEMENTS

For the F-bar elements described so far, we have assumed that the volumetric component
of the deformation gradient is sampled only at the centroid of the element. Within this
framework, finite element codes incorporating popular standard elements such as the six-
noded triangle, the eight-noded bilinear quadrilateral and the ten-noded tetrahedron can be
easily extended to include F-bar versions of such elements. The required modifications are
exactly the same as those described above for the four-noded quadrilateral and the eight-
noded brick.

15.1.8. A MORE GENERAL F-BAR METHODOLOGY

More general F-bar elements can be devised by replacing the centroid-only volumetric
sampling with a suitable approximation of the volumetric deformation gradient throughout
the element generated by volumetric sampling in more points. The general procedure is
outlined in the following. Let nvol be the prescribed number of volumetric sampling points
and let

N̄j(ξ), j = 1, 2, . . . , nvol

be the prescribed functions which generate the approximate volumetric deformation gradient
field within the element. With ξ̄i (i = 1, . . . , nvol) denoting the prescribed local coordinates
of the volumetric sampling points, we assume that, analogously to the shape functions for
displacement interpolation, the functions N̄j satisfy

N̄j(ξ̄i) = δij . (15.25)

The approximation to the volumetric deformation gradient field, denoted J̄ , is constructed as

J̄(ξ) =
nvol∑
j=1

J(ξ̄j) N̄j(ξ), (15.26)

where J(ξ̄j) ≡ det F (ξ̄j) is the standard deformation gradient obtained as usual from the
interpolated displacement field of the element, evaluated at the volumetric sampling point
with local coordinate ξ̄j . The modified deformation gradient, F̄ , at each Gauss point with
coordinates ξi is obtained as the composition of the isochoric deformation gradient at ξi with
the approximate volumetric deformation gradient (15.26) at ξi; that is, we compute

F̄ (ξi) =
(

J̄(ξi)
J(ξi)

)1/3
F (ξi)

=
(∑nvol

j=1 J(ξ̄j) N̄j(ξi)
J(ξi)

)1/3
F (ξi). (15.27)

Clearly, (15.27) reduces to the centroid-only formula (15.5) if nvol = 1 with ξ̄1 being the
coordinate of the centroid. Following (15.21), in plane strain, J in the above is replaced
with the determinant of the in-plane deformation gradient Jp = det F p and the exponent
1/3 is replaced with 1/2. Having computed F̄ according to (15.27), the remainder of the
procedure is identical to that of the centroid-only sampling F-bar elements, except for the
tangent stiffness matrix whose explicit expression is given below.
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The tangent stiffness

By means of a linearisation procedure completely analogous to that outlined in Section 15.1.3
we can obtain the formula for the element tangent stiffness for general F-bar elements. For a
generic element based on the approximation (15.26) to J we have

K(e)T =
∫

ϕ(Ω(e))

GT a|F=F̄G dv︸ ︷︷ ︸
standard element
stiffness at F= F̄

+
∫

ϕ(Ω(e))

GT q (Ḡ − G) dv︸ ︷︷ ︸
additional
stiffness

,
(15.28)

where

Ḡ(ξ) ≡ 1
J̄(ξ)

nvol∑
j=1

J(ξ̄j) N̄j(ξ) G(ξ̄j). (15.29)

The element stiffness in this case has the same structure as its counterpart (15.10) for centroid
sampling-only F-bar elements. The only difference lies in the additional stiffness term where
the original gradient operator G0 (evaluated at the centroid) used in (15.10) is replaced here
with the operator Ḡ defined by (15.29).

Logarithm-based volumetric approximation

Alternatively to (15.26) we may adopt, as suggested by Moran et al. (1990), a similar
approximation to the logarithm of J . In this case (15.26) is replaced with

log J̄(ξ) =
nvol∑
j=1

log[J(ξ̄j)] N̄j(ξ), (15.30)

and the modified deformation gradient is computed as

F̄ (ξi) =
(exp[

∑nvol
j=1 log J(ξ̄j) N̄j(ξi)]

J(ξi)

)1/3
F (ξi). (15.31)

Number of nodes and volumetric sampling points

Recall that the basic reason why formulations such as the F-bar method are used is to
avoid the overstiff solutions (locking) produced by low-order conventional displacement-
based finite elements near the incompressibility limit. With conventional elements, locking
can be overcome by using a sufficiently large number of nodes per element or by increasing
sufficiently the number of elements in the mesh. In other words, we can say that an increase
in the number of degrees of freedom reduces the stiffness of the element. This is also true
for F-bar elements; that is, an increase in the number of nodes reduces the stiffness of F-
bar elements. For such elements, however, if the number of volumetric sampling points is
increased, the element stiffens and may become prone to locking behaviour. Note that the
corresponding standard element is recovered if the same number of volumetric sampling
points and Gauss integration points are adopted in F-bar elements. For instance, a four-noded
F-bar quadrilateral with four volumetric sampling points and four Gauss integration points
has identical behaviour as the standard four-noded element with four Gauss points. Successful



FINITE ELEMENTS FOR LARGE-STRAIN INCOMPRESSIBILITY 665

F-bar elements will have fewer volumetric sampling points than Gauss integration points. The
arguments here are similar to those used in mixed u/p formulations described in Section 15.3
(refer to the comments made at the end of Section 15.3.2).

Combined standard/F-bar elements

Further refinement upon the F-bar formulation can be introduced by letting the deformation
gradient be a linear combination of the F̄ field constructed within the element and the field
F obtained as in the standard displacement element. In this case, as suggested by Moran et al.
(1990) in the context of geometrically nonlinear B-bar extensions, we replace the F̄ gradient
of the above formulation with the linear combination

F̂ ≡ α F + (1 − α) F̄ , (15.32)

where α is a prescribed parameter. If α = 0, the F-bar formulation described above is
recovered. The standard displacement-based element is obtained if α = 1. For 0 < α < 1,
the element behaves as a combination of standard and F-bar procedures. For instance, if
the stiffness of a specific F-bar element (α = 0) is too low and makes the element prone to
instabilities, the problem can be corrected suitably by increasing α (stiffening the element).
However, it is the view of the authors that artificial stabilisation parameters such as α in
the combined standard/F-bar approach should be avoided as much as possible. The optimal
value of parameters of this type is usually problem-dependent and its determination requires
a relatively good experience of the finite element analyst.

15.1.9. THE F-BAR-PATCH METHOD FOR SIMPLEX ELEMENTS

The F-bar procedure described above cannot be applied directly, without modification, to
simplex elements (linear triangles in two-dimensional/axisymmetric problems and linear
tetrahedra in three dimensions). Simplex elements produce a uniform deformation gradient
so that, at any point within the element domain,

F = F 0. (15.33)

The use of an F-bar procedure based on the original definition (15.5) of the modified
deformation gradient would not make sense in this case.

However, the use of simplex finite elements is very desirable, particularly in the solution of
three-dimensional problems with complex geometry. The generation of hexahedral element
meshes for complex three-dimensional geometries remains largely an open issue. Many
difficulties exist and this poses serious limitations on the use of such elements in the solution
of many problems of interest.

An effective alternative proposed in de Souza Neto et al. (2005) is to redefine the
F-bar deformation gradient so as to produce the required relaxation of the pointwise
incompressibility constraint in the context of simplex elements. Then, rather than working
separately within individual elements, we will consider a patch of simplex elements. A typical
patch is illustrated in Figure 15.7 (drawn in solid lines). With P denoting the set of elements
forming a predefined patch, for each element e ∈ P, the modified deformation gradient, F̄e,
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e

predefined patch
of simplex elements

typical mesh of
simplex elements

Figure 15.7. The F-bar-Patch Method. Patch of simplex elements. (Reproduced with permission
from F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible
solids. Part I: Formulation and benchmarking, EA de Souza Neto, FM Andrade Pires and DRJ Owen,
International Journal for Numerical Methods in Engineering, Vol 62 c© 2005 John Wiley & Sons, Ltd.)

is defined as:

F̄e =
[

vpatch
Vpatch (detFe)

] 1
3

Fe, (15.34)

where F e is the deformation gradient obtained from the standard linear displacement
interpolation within element e and vpatch and Vpatch are, respectively, the deformed and
reference (undeformed) volume of the patch P :

vpatch =
∑
i∈P

vi, Vpatch =
∑
i∈P

Vi. (15.35)

In the above, vi and Vi denote, respectively, the deformed and reference (undeformed) volume
of the generic element i of patch P.

The above definition implies that the determinant of the modified deformation gradient is
identical for all elements e of patch P and is given by:

J̄e ≡ detF̄e =
vpatch
Vpatch

, (15.36)

that is, detF̄e is the ratio between the deformed and undeformed volume of the predefined
patch P of elements. Thus, the use of (15.34) under the incompressibility constraint requires
that the patch P of elements preserves its volume, even though individual elements of the
patch may suffer volume changes during deformation.

Definition of element patches

The application of the F-bar-Patch method to the solution of a problem discretised by
an arbitrary mesh of simplex elements requires the mesh to be split into a number of
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Figure 15.8. Plane strain localisation: (a) F-bar-Patch solution with patches of two linear triangles;
(b) four-noded quadrilateral F-bar solution, and; (c) force–displacement diagrams. (Reproduced
with permission from F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly
incompressible solids. Part I: Formulation and benchmarking, EA de Souza Neto, FM Andrade Pires
and DRJ Owen, International Journal for Numerical Methods in Engineering, Vol 62 c© 2005 John
Wiley & Sons, Ltd.)

non-overlapping patches of elements. The more elements in each patch, the greater the
constraint relaxation achieved. Then, in defining such patches, it is crucial to have in
mind that excessive constraint relaxation (too many elements in the patch) may lead to
spurious zero-energy mechanisms. On the other hand, insufficient constraint relaxation (too
few elements in the patch) may result in incompressibility locking. Numerical experience
shows that patches of two elements in two-dimensional/axisymmetric problems and eight
elements in three-dimensional analyses produce sufficient constraint relaxation to avoid
incompressibility locking without showing spurious mechanisms. Figure 15.8(a) shows the
detail of the deformed mesh obtained with patches of two triangles in the solution of the plane
strain localisation problem whose four-noded F-bar solution is plotted in Figure 14.12(b)
(page 614). The detail of the localisation zone for the F-bar quadrilateral is shown for
comparison alongside the F-bar-Patch result, in Figure 15.8(b). The deformation pattern
obtained with the F-bar-Patch element is virtually identical to that obtained with the four-
noded F-bar quadrilateral. The force–displacement curves for both elements is shown in
Figure 15.8(c). The curves for both elements virtually coincide. An F-bar-Patch solution
of the three-dimensional necking problem of Section 14.9.2 (from page 607) is shown in
Figure 15.9(a), where patches of eight linear tetrahedra have been used. The deformed mesh
is in close agreement with that produced with the F-bar hexahedron (shown in Figure 14.9).
The force-displacement diagrams of Figure 15.9(b) show that the results obtained with the F-
bar-Patch method using patches of eight tetrahedra virtually coincide with analogous results
obtained in an axisymmetric analysis using patches of two linear triangles. These results are
in very close agreement with those obtained with the F-bar hexahedral and axisymmetric
quadrilateral elements (shown in Figure 14.11).
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Figure 15.9. Necking of a cylindrical bar. F-bar-Patch solution with patches of eight linear tetrahedra:
(a) deformed configuration at u = 7.0 mm; (b) force–displacement diagrams (forces in KN, displace-
ments in mm). (Reproduced with permission from F-bar-based linear triangles and tetrahedra for finite
strain analysis of nearly incompressible solids. Part I: Formulation and benchmarking, EA de Souza
Neto, FM Andrade Pires and DRJ Owen, International Journal for Numerical Methods in Engineering,
Vol 62 c© 2005 John Wiley & Sons, Ltd.)

Element tangent stiffness

In contrast to conventional (and F-bar elements), the internal force vector of an F-bar-Patch
element depends not only on the degrees of freedom of the element itself, but also on the
degrees of freedom of all other elements belonging to its patch. Such a dependency stems
from the use of the modified deformation gradient defined by (15.34) in the computation
of the stress tensor components used to assemble the internal force vector. Note in (15.34)
that volumetric changes in any element of a patch (produced by variations of any nodal
displacements in a patch of elements) affects the F-bar gradient for all elements of the patch
which, in turn, changes the stress state and the internal force vector of all elements of the
patch. As a result, the tangent stiffness in the present case has a non-conventional structure.
Consider an F-bar-Patch element e, belonging to a patch P. The internal force vector of
element e depends on the vector ue of nodal displacements of element e, as well as on the
vectors:

us, s ∈ P; s 
= e,

of nodal displacements of the other elements of the patch. The application of a lengthy but
standard exact linearisation procedure (details are given in (de Souza Neto et al., 2005)) to
the internal force vector of element e gives rise to the following element tangent stiffnesses:

K(e)ee =
∫

ϕ(Ωe)

GT
e a Ge dv +

(
ve

vpatch
− 1
) ∫

ϕ(Ωe)

GT
e q Ge dv (15.37)

K(e)es =
ve

vpatch

∫
ϕ(Ωe)

GT
e q Gs dv, s ∈ P; s 
= e. (15.38)

Both Kee and Kes are generally unsymmetric, regardless of the material model adopted.
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Remark 15.6 (The structure of the tangent stiffness). The stiffness contribution given
in (15.37) gives the tangent relation between the internal force vector components and nodal
displacements of element e. Its format is similar to that of the stiffness matrix (15.10) for
the F-bar elements. Its rows and columns are associated with the degrees of freedom of
element e only. The additional contributions (15.38), on the other hand, are the tangent
relations between the internal force components of element e and nodal displacements of
the other elements s of the patch. Their rows are associated with the degrees of freedom
of element e and their columns are associated with the degrees of freedom of the other
elements s of the patch. The global tangent stiffness required in the solution of the equilibrium
problem is obtained by adding, for each element e of the mesh, the contributions of Kee and
Kes (s ∈ P; s 
= e) to the appropriate global stiffness matrix position.

15.2. Enhanced assumed strain methods

This section describes the class of geometrically nonlinear enhanced assumed strain (EAS)
methods proposed by Simo and Armero (1992), which extends to the finite strain range
the original ideas proposed by Simo and Hughes (1986) and Simo and Rifai (1990) in
the geometrically linear context. This class of methods finds a variational justification on
a re-parametrisation of the geometrically nonlinear version of the three-field Hu–Washizu
variational principle (Washizu, 1968) and can be used to tackle incompressibility locking as
well as bending locking of low-order elements.

15.2.1. ENHANCED THREE-FIELD VARIATIONAL PRINCIPLE

Let u, P and H be, respectively, the displacement, first Piola–Kirchhoff stress and dis-
placement gradient fields. The geometrically nonlinear version of the three-field Hu–Washizu
variational principle is defined for a generic hyperelastic material by means of the functional

Π(u, H, P ) ≡
∫
Ω

[ρ̄ψ(C̃) + P : (∇pu − H )] dv + Πext(u), (15.39)

where ψ is the specific free-energy function characterising the hyperelastic material, Πext(u)
is the potential energy functional of the external loading at the configuration defined by the
displacement field u and

C̃ = C̃(H ) = [I + H ]T [I + H ]

is the (generally incompatible) right Cauchy–Green strain tensor.
The crucial idea underlying the finite strain EAS method is to let the independent

displacement gradient field be constructed as

H = ∇pu + H̃, (15.40)

where H̃ is the enhanced displacement gradient, and then re-parametrise the Hu–Washizu
functional so as to have displacement, first Piola–Kirchhoff stress and enhanced displacement
gradient, H̃, as the independent variables; that is, the three-field enhanced functional is
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defined as

Π̃(u, H̃ , P ) ≡ Π(u, ∇pu + H̃ , P )

=
∫
Ω

[ρ̄ψ(C̃) + P : H̃ ] dv + Πext(u). (15.41)

With the above decomposition of H, we define the (generally) incompatible deformation
gradient

F̃ = F + H̃, (15.42)

where F is the standard compatible deformation gradient

F = I + ∇pu.

In (15.41) we have

C̃ = C̃(H̃ ) = F̃
T
F̃ = [I + ∇pu + H̃ ]T [I + ∇pu + H̃ ]. (15.43)

Stationary condition

The enhanced three-field functional Π̃ is stationary if and only if the following integral
equation holds∫

Ω

{
2ρ̄ F̃

∂ψ

∂C̃
: ∇pη − H̃ : δP −

[
P − 2ρ̄ F̃

∂ψ

∂C̃

]
: δH̃

}
dv − Gext(η) = 0 (15.44)

for all variations η, δH̃ and δP of displacement, enhanced displacement gradient and first
Piola–Kirchhoff stress, respectively. In the above, Gext is the functional of virtual work of
the external forces:

Gext(η) ≡
∫
Ω

b̄ · η dv +
∫

∂Ω

t̄ · η da, (15.45)

where b̄ and t̄ are, respectively, the material description of the body force and boundary
surface traction fields.

Strong form

By means of arguments analogous to those leading to the equivalence between the weak and
strong form of the equilibrium in Section 3.6.1, it can be shown that the above integral form
leads to the strong (pointwise) equations

divp

(
2ρ̄ F̃

∂ψ

∂C̃

)
+ b̄ = 0

H̃ = 0

P = 2ρ̄ F̃
∂ψ

∂C̃




in Ω

P m = t̄ in ∂Ω,

(15.46)
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where m denotes the outward unit normal to the reference boundary ∂Ω. Note that the
above strong form has recovered in (15.46)1,3,4 the momentum balance equation (3.133) (see
page 68) together with the standard hyperelasticity law (13.10) (page 521). Equation (15.46)2
enforces the compatibility of the displacement gradient field, i.e. H = ∇pu, and implies
F̃ = F .

15.2.2. EAS FINITE ELEMENTS

The procedure for derivation of EAS elements for finite strain analysis can be summarised as
follows:

1. Firstly, a finite element discretisation is applied to the three-field integral equa-
tion (15.44). The original infinite-dimensional functional spaces of independent fields
u, P and H̃ and corresponding variations are approximated by finite-dimensional
counterparts spanned by finite element-based interpolation functions.

2. The interpolation of displacement fields, u, and virtual displacements, η, follows
exactly the standard procedure employed for virtual work-based finite elements dis-
cussed in Chapter 4.

3. The interpolation functions for the remaining independent fields, P and H̃ , and their
variations are chosen in such a way that the stress is eliminated from the formulation
and, in addition, the degrees of freedom associated with the enhanced gradient field,
H̃ , can be determined via static condensation at the element level.

4. The resulting finite element formulation has effectively the same format as vir-
tual work-based methods with the displacement degrees of freedom being the only
unknowns in the global solution procedure.

To formulate the finite element procedure in the spatial configuration (as we do throughout
this book in the treatment of large-strain problems) we perform the finite element discretisa-
tion over the equivalent spatial version of the three-field equation (15.44), expressed as∫

ϕ(Ω)

1
J

{
2ρ̄ F̃

∂ψ

∂C̃
F̃ T : ∇̃xη − Ẽ : δτ

−
[
τ − 2ρ̄ F̃

∂ψ

∂C̃
F̃ T

]
: δẼ

}
dv − Gext(η) = 0, (15.47)

where the following definitions are used:

τ = P F̃ T

δτ = δP F̃ T

Ẽ = H̃ F̃ −1

δẼ = δH̃ F̃ −1

∇̃s
x η = sym[∇pη F̃ −1],

(15.48)

and
J ≡ det F (15.49)
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is the determinant of the compatible deformation gradient. Note that in view of the definition
(15.42) of the enhanced deformation gradient, the modified spatial gradient, ∇̃xη, does not
coincide in general with the true spatial gradient ∇xη. However, they do coincide, i.e.

∇̃xη = ∇xη

if the strong (pointwise) compatibility equation (15.46)2 holds. As we shall see below, the
modified spatial gradient gives rise to modified discrete gradient operators in the finite
element formulation.

Interpolation of the enhanced displacement gradient field

At the outset, we assume that the interpolated enhanced displacement gradient is discontin-
uous across element boundaries. Within a typical element e, with local coordinates ξ, let
hH̃(e)(ξ) denote the interpolated displacement gradient tensor field and let hH̃(e)(ξ) (with
upright H) denote the corresponding array of components of hH̃(e)(ξ) arranged in the usual
finite element convention. In two dimensions, for instance, we have

hH̃(e)(ξ) =

[
hH11(ξ) hH12(ξ)
hH21(ξ) hH22(ξ)

]
, hH̃(e)(ξ) =




hH11(ξ)
hH12(ξ)
hH21(ξ)
hH22(ξ)


, (15.50)

where hHij(ξ) are the corresponding interpolated components. The array hH̃ is assumed to
be constructed as

hH̃(e)(ξ) = H(ξ) β(e), (15.51)

where each H is the interpolation matrix for the enhanced displacement gradient and β(e) is
the vector of element internal degrees of freedom. In two dimensions, the matrix H has the
format

H(ξ) =




H111 (ξ) H112 (ξ) · · · H11nenh
(ξ)

H121 (ξ) H122 (ξ) · · · H12nenh
(ξ)

H211 (ξ) H212 (ξ) · · · H21nenh
(ξ)

H221 (ξ) H222 (ξ) · · · H22nenh
(ξ)


, (15.52)

where Hjk
i (ξ) denotes the component jk of the ith prescribed enhanced mode:

Hi(ξ) =

[
H11i (ξ) H12i (ξ)

H21i (ξ) H22i (ξ)

]
, (15.53)

and nenh is the total number of enhanced modes or element internal degrees of freedom
adopted. The vector β(e) is generally given by

β(e) = [ β1 β2 · · · βnenh ]T . (15.54)
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The interpolated tensor field hH̃(e)(ξ) is obviously a linear combination of the nenh modes:

hH̃(e)(ξ) =
nenh∑
i=1

βi Hi(ξ). (15.55)

Variations of the enhanced displacement gradient are interpolated in the same way, i.e.

δ hH̃(e)(ξ) = H δβ(e), δhH̃(e)(ξ) =
nenh∑
i=1

δβi Hi(ξ), (15.56)

where δβ(e) (with components δβi) is the array of variations of the element internal degrees
of freedom.

Stress interpolation and orthogonality

From standard arguments of functional analysis it follows that (15.44) implies the following
L2-orthogonality condition:¶ ∫

Ω

H̃ : δP dv = 0 (15.57)

for all variations δP . The above condition will be identically satisfied in the discretised
version of (15.44) if the space of interpolated first Piola–Kirchhoff stress fields is L2-
orthogonal to the space of interpolated enhanced displacement gradients; that is, let

hP (e)(ξ)

be the generic interpolation function for the nominal stress tensor within an element e. At
the outset, we assume that, as for the interpolated enhanced displacement gradients, the
global interpolated first Piola–Kirchhoff stress field may be discontinuous across element
boundaries. In the discrete setting, the L2-orthogonality is expressed as∫

Ω(e)

hH̃(e) : hP (e) dv = 0

and, in view of the assumed enhanced displacement gradient interpolation (15.51), requires
that ∫

Ω(e)

hP (e)(ξ) : Hi(ξ) dv = 0 (15.58)

for all functions hP (e) and H
(e)
i . With the interpolation functions hP (e) satisfying the above

condition, equation (15.57) is automatically satisfied. In addition, by observing that (15.58)
also implies that the product P : δH̃ in (15.44) vanishes in the discretised version of the
variational principle, we find that the nominal stress field P is completely eliminated from
the original three-field formulation.

¶Readers not familiar with this nomenclature are referred to standard texts on functional analysis (Oden, 1979)
for a definition of L2-orthogonality.
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The reduced finite element equations

In summary, in the discrete setting, the three-field principle has been reduced to a finite
element formulation where only displacements, defined as usual by nodal degrees of freedom,
and enhanced displacement gradients, defined by element internal degrees of freedom,
remain as independent variables. Based on the (computationally more convenient) equivalent
form (15.47), the EAS finite element equations are obtained from the discretisation of the
reduced integral equation∫

ϕ(Ω)

1
J

{
2ρ̄ F̃

∂ψ

∂C̃
F̃ T :∇̃s

x η + 2ρ̄ F̃
∂ψ

∂C̃
F̃ T : sym[δẼ ]

}
dv − Gext(η) = 0. (15.59)

The corresponding finite element equations read


f̃ int(u, β) − f ext = 0

s(e)(u(e), β(e)) = 0 (e = 1, 2, . . . , nel),
(15.60)

where f̃ int is a modified internal force vector obtained by assembling the element vectors

f̃ int(e) (u(e), β(e)) =
∫

ϕ(Ω(e))

1
J

B̃T τ(F̃ ) dv, (15.61)

where f ext is the standard external load vector – the same as in the virtual work-based
formulation – and the nenh-dimensional element vectors s(e) are defined by

s(e)(u(e), β(e)) =
∫

ϕ(Ω(e))

1
J

Q̃T τ(F̃ ) dv. (15.62)

In the above, the matrix B̃ is a modified discrete symmetric gradient operator and Q̃ is the
discrete operator associated with variations of interpolated enhanced displacement gradients.
The structure of B̃ and Q̃ will be discussed below. The function τ gives the finite element
array of Kirchhoff stress tensor components (arranged in the same order as in the arrays
defined in (4.20–4.22)) obtained from the standard hyperelastic law

τ(F̃ ) = 2ρ̄ F̃
∂ψ

∂C̃
F̃ T . (15.63)

Dissipative material models.

For general dissipative materials, τ is replaced by an incremental (algorithmic) constitutive
function, τ̂, whereby for an interval [tn, tn+1] the Kirchhoff stress is computed as

τn+1 = τ̂(αn, F̃n+1),

where αn denotes the set of internal variables of the material model in question at tn. In such
cases, if there exists an incremental potential ψn+1(C ) such that

τn+1 = 2ρ̄ F̃
∂ψn+1

∂C

∣∣∣∣
C=C̃n+1

F̃
T
, (15.64)

then the variational structure of the EAS method is preserved. Otherwise, the variational
structure of the method is lost.
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The operator B̃.

Analogously to the standard symmetric discrete gradient operator (or strain-displacement
matrix) B of the virtual work-based formulation, the matrix B̃ that appears in the definition
of the EAS element internal force vector is defined such that, for a generic element vector
η(e) of nodal virtual displacements generating the interpolated field

hη(e)(ξ) = N(ξ) η(e),

we have
∇̃s

x [hη(e)] = B̃ η(e). (15.65)

It can be easily established that for a generic EAS element with nnode nodal points, the
modified discrete symmetric gradient operator, B̃, is given by

B̃ =



N
(e)
1;1 0 N

(e)
2;1 0 · · · N

(e)
nnode;1

0

0 N
(e)
1;2 0 N

(e)
2;2 · · · 0 N

(e)
nnode;2

N
(e)
1;2 N

(e)
1;1 N

(e)
2;2 N

(e)
2;1 · · · N

(e)
nnode;2

N
(e)
nnode;1


, (15.66)

for plane stress and plane strain problems. Similar expressions are obtained for axisymmetric
and three-dimensional elements. The structure of B̃ is completely analogous to that of the
standard B matrix (refer to expression (4.30), page 89). The difference between B̃ and B lies
in the fact that, as B̃ stems from the modified spatial gradient (15.48)5, the standard spatial
derivatives,

Ni,j ≡
∂Ni

∂xj
,

that appear in the definition of the standard B matrix are replaced in B̃ with the modified
shape function derivatives, defined as

Ni;j ≡
∂Ni

∂pk
F̃−1

kj , (15.67)

where ∂Ni/∂pk are the components of the material derivatives of the shape functions and
attention should be paid to the fact that F̃−1

kj are the components of the inverse of the
incompatible deformation gradient. Note that if the enhanced displacement gradient vanishes,
then Ni,j = Ni;j .

The operator Q̃.

The matrix Q̃ taking part in the definition of s(e) in (15.62) originates from the variation
sym[δẼ ] in the second term within the curly brackets of (15.59). It is defined such that

τ : sym[δ hẼ(e)] = τ : sym[δ hH̃(e) F̃
−1] = τ · Q̃ δβ(e).

Again considering the two-dimensional case (plane strain/plane stress), we can easily find
that, in view of (15.56) and the definition of the Kirchhoff stress array τ, Q̃ must be given by

Q̃ =




h111 h112 · · · h11nenh

h221 h222 · · · h22nenh

h121 + h211 h122 + h212 · · · h12nenh
+ h21nenh


, (15.68)
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where hjk
i is the component jk of the tensor

h
(e)
i (ξ) ≡ H

(e)
i (ξ) F̃ −1. (15.69)

15.2.3. FINITE ELEMENT EQUATIONS: STATIC CONDENSATION

Crucial to the derivation of the final virtual work-like format of the method is the observation
that, due to the assumed interelement discontinuity of the interpolation (15.51) of H̃ (and the
variations δH̃ and δẼ ), equation (15.60)2 holds individually for each element of the mesh.
Within a Newton–Raphson iterative scheme for solution of the nonlinear system (15.60),
this property gives rise to a static condensation procedure whereby the iterative increment
of enhanced parameters is determined at the element level for each iteration and the main
system of linearised equations to be solved at the global level is reduced to a displacement-
like format. The procedure is derived as follows. For a typical Newton iteration (k), the
linearised version of (15.60) reads‖


nelem

A
e=1

[r(k−1)(e) + K(e)uu δu(k)(e) + K(e)uβ δβ
(k)
(e) ] = 0

s(k−1)(e) + K(e)βu δu(k)(e) + K(e)ββ δβ
(k)
(e) = 0 (e = 1, 2, . . . , nel),

(15.70)

where
r(k−1)(e) ≡ f̃ int(e) (u

(k−1)
(e) , β

(k−1)
(e) ) − f ext(e) (15.71)

and (u(k−1), β(k−1)), Kuu and Kuβ are, respectively, the derivatives of the global residual

r with respect to the global vectors u and β. The element tangent stiffnesses K(e)βu and K(e)ββ

are, respectively, the derivatives of the left-hand side of (15.60)2 with respect to the element
vectors δu(e) and δβ(e). All stiffnesses are evaluated at (u(k−1), β(k−1)). Their expressions

are given below. Solution of (15.70)2 for δβ
(k)
(e) gives

δβ
(k)
(e) = −[K(e)ββ ]−1 (s(k−1)(e) + K(e)βu δu(k)(e)). (15.72)

The tangent matrices

Let ã be the matrix form of the modified spatial tangent modulus defined by the components

ãijkl ≡
1
J

Aimkn F̃jm F̃ln, (15.73)

where

Aimkn =
∂Pim

∂F̃kn

, (15.74)

and it should be noted that J is the determinant of the compatible deformation gradient.
A standard linearisation procedure applied to the functional (15.59) produces the linearised

‖Following the notation introduced in Chapter 4 (refer to Section 4.2.4, from page 96), we use the notation δ(·)
in the remainder of this section to denote the iterative increment of (·) within the Newton–Raphson scheme and not
the variation of (·) as we did previously in this chapter.
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version of (15.60) where the element matrices K(e)uu , K(e)uβ , K(e)βu and K(e)ββ are found to be
given by

K(e)uu =
∫

ϕ(Ω(e))

G̃T ã G̃ dv

K(e)uβ =
∫

ϕ(Ω(e))

G̃T ã R̃ dv

K(e)βu =
∫

ϕ(Ω(e))

R̃T ã G̃ dv

K(e)ββ =
∫

ϕ(Ω(e))

R̃T ã R̃ dv,

(15.75)

where G̃ is the modified full discrete gradient operator which, in the two-dimensional case,
is defined by

G̃ =




N
(e)
1;1 0 N

(e)
2;1 0 · · · N

(e)
nnode;1

0

0 N
(e)
1;1 0 N

(e)
2;1 · · · 0 N

(e)
nnode;1

N
(e)
1;2 0 N

(e)
2;2 0 · · · N

(e)
nnode;2

0

0 N
(e)
1;2 0 N

(e)
2;2 · · · 0 N

(e)
nnode;2



, (15.76)

and R̃ is defined as

R̃ =




h111 h112 · · · h11nenh

h121 h122 · · · h12nenh

h211 h212 · · · h21nenh

h221 h222 · · · h22nenh


 . (15.77)

The reduced displacement-like linearised equation

By introducing (15.72) into (15.70)1 we finally obtain the following reduced (virtual work-
like) linearised system whose only unknown is the iterative increment of displacement δu(k):

K̃T δu(k) = −r̃(k−1), (15.78)

where K̃T is the modified tangent stiffness obtained by assembling the element matrices

K̃(e)T ≡ K(e)uu − K(e)uβ [K(e)ββ ]−1K(e)βu , (15.79)

and r̃(k−1) is the global modified residual vector obtained from the element vectors

r̃(k−1)(e) ≡ r(k−1)(e) − K(e)uβ [K(e)ββ ]−1 s(k−1)(e) . (15.80)

The overall Newton–Raphson/static condensation procedure for solution of (15.70) based
on the above expressions is summarised in Box 15.3.
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Remark 15.7. Recall that for hyperelastic models (or dissipative models whose stress is
derived from an incremental potential), a is symmetric. In this case, the modified tangent
stiffness K̃T is also symmetric. Such symmetry is an obvious consequence of the variational
structure of the EAS method and is in contrast with the F-bar approach described earlier in
this chapter. For materials with unsymmetric spatial tangent modulus (such as non-associative
plasticity models in general) the EAS approach does not possess a variational structure (refer
to the text surrounding equation (15.64)) and the tangent stiffness K̃T is unsymmetric.

15.2.4. IMPLEMENTATION ASPECTS

As can be observed from Box 15.3 the computational implementation of an EAS element
involves far more operations than those of the conventional virtual work-based element of the
same order. The extra computational effort concentrates around the evaluation of the matrices
Kuβ and Kββ (and inversion of Kββ), computation of the iterative internal parameters and
the element vectors s(e). The additional matrices increase in size with the number of internal
degrees of freedom and their computation cost may become large particularly for three-
dimensional elements (see Simo et al. 1993). Also, note that the extra matrices are initially
computed during the assembly of the modified tangent stiffness K̃T in the solution of the
condensed linearised system. The same matrices are reused later in the computation of the
internal forces and residuals. To avoid the costly recomputation of those matrices at this stage,
they can be stored in memory immediately after their initial computation and retrieved later.
This approach, however, causes a considerable increase in memory storage and may become
critical for three-dimensional elements. To circumvent this problem, Simo et al. (1993) have
proposed an alternative static condensation procedure whereby the relevant matrices can be
recomputed at a smaller additional cost.

15.2.5. THE STABILITY OF EAS ELEMENTS

The stability of geometrically nonlinear EAS elements has been for some time the subject of
research by many authors. In spite of the substantial reduction of incompressibility locking,
the ability to capture strain localisation phenomena and the high coarse mesh accuracy
achieved by many EAS formulations, analytical and numerical studies (Crisfield et al.,
1995; de Souza Neto et al., 1996; Glaser and Armero, 1997; Korelc and Wriggers, 1996;
Wriggers and Reese, 1996) have shown that severe instabilities in the form of spurious
hourglass deformation modes may occur in some EAS elements under large strains. This
is particularly true for early formulations such as the original Q1/E4 (plane strain), the Q1/E5
(axisymmetric) and Q1/E9 (three-dimensional) elements proposed by Simo and Armero
(1992). The stability of such elements is briefly discussed below.∗∗

∗∗A mathematical analysis of the stability and convergence properties of the EAS method, restricted to the
infinitesimal strain theory, is provided by Reddy and Simo (1995). For the large strain formulation, we refer to a
recent contribution by Auricchio et al. (2005).



FINITE ELEMENTS FOR LARGE-STRAIN INCOMPRESSIBILITY 679

Box 15.3. EAS elements. Newton–Raphson/static condensation loop.

(i) Compute the element matrices K
(e)
uu , K(e)

ββ , K(e)
uβ and K

(e)
βu . Then compute the modified

tangent stiffness
K̃

(e)
T := K(e)

uu − K
(e)
uβ [K

(e)
ββ ]−1 K

(e)
βu

(ii) Solve the condensed linearised equation for δu(k)

K̃T δu(k) = r̃(k−1)

(iii) Apply Newton–Raphson correction to the nodal displacement vector

u(k) := u(k−1) + δu(k)

(iv) Compute the vector of iterative internal parameters δβ
(k)

(e)

δβ
(k)

(e)
= −[K

(e)
ββ ]−1 (s

(k−1)

(e)
+ K

(e)
βu δu

(k)

(e)
)

(v) Apply Newton–Raphson correction to internal element parameters

β
(k)
(e) := β

(k−1)
(e) + δβ

(k)
(e)

(vi) Update deformation gradient (for each Gauss point of each element)

F̃
(k)

:= I + ∇pu(k) +

nenh∑
i=1

β
(k)
i Hi

(vii) Compute Kirchhoff stresses (for each Gauss point of each element)

τ(k) := τ̂(F̃
(k)

)

(viii) Compute the modified element internal force and s vector

(f̃ int
(e) )

(k) :=

ngausp∑
i=1

(B̃(k))T wi ji τ(k)
i

s
(k)
(e) :=

ngausp∑
i=1

wi ji (Q̃
(k)
i )T τ(k)

i

(ix) Compute the modified residual

r̃
(k)

(e) := (f̃ int
(e) )

(k) − fext
(e) − K

(e)
uβ [K

(e)
ββ ]−1 s

(k)

(e)

(x) Check convergence. If ‖r̃(k)‖ ≤ εtol then accept (·)(k) as the solution to (15.70) and
EXIT. Else, set k := k + 1 and GOTO (i)
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The Q1/E4 and Q1/E9 elements

The so-called Q1/E4 element is a four-noded EAS quadrilateral with four enhanced modes
obtained by setting

E1 =

[
ξ 0

0 0

]
, E2 =

[
0 0

ξ 0

]
, E3 =

[
0 η

0 0

]
, E4 =

[
0 0

0 η

]
(15.81)

and defining the following interpolation functions for the enhanced displacement gradient
field:

Hi(ξ) ≡ j0
j(ξ)

J−T
0 Ei(ξ), (15.82)

where J0 denotes the Jacobian of the isoparametric mapping of the element in the reference
configuration evaluated at the centroid (ξ = 0),

j0 = det J0, (15.83)

and
j(ξ) = det[J(ξ)], (15.84)

where J(ξ) is the Jacobian at the generic point with local coordinates ξ.
The direct extension of the above element to three-dimensions yields the so-called Q1/E9

eight-noded brick which contains a total number of nine enhanced modes. The Q1/E9 element
is obtained as above by setting

E1 =




ξ 0 0

0 0 0

0 0 0


, E2 =




0 0 0

ξ 0 0

0 0 0


, E3 =




0 0 0

0 0 0

ξ 0 0


,

E4 =



0 η 0

0 0 0

0 0 0


, E5 =



0 0 0

0 η 0

0 0 0


 , E6 =



0 0 0

0 0 0

0 η 0


,

E7 =




0 0 ζ

0 0 0

0 0 0


, E8 =



0 0 0

0 0 ζ

0 0 0


, E9 =



0 0 0

0 0 0

0 0 ζ


.

(15.85)

The stability issue

As compared to the standard virtual work-based four-noded quadrilateral and eight-noded
hexahedron, the above elements, as well as the axisymmetric version named Q1/E5, have
superior performance in situations such as bending dominated problems, being able to
provide accurate solutions with relatively coarse meshes. Their tendency to lock under nearly
incompressible conditions is also substantially reduced and, in addition, they are able to
capture strain localisation phenomena. Unfortunately, however, their instability in finitely
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Please Wait..

Pl

(b)

(a)

Figure 15.10. Spurious hourglassing in some EAS elements: (a) Q1/E9 three-dimensional element;
(b) Q1/E5 axisymmetric element. ((a) Reproduced with permission from Remarks on the stability of
enhanced assumed strain elements in finite elasticity and elastoplasticity, EA de Souza Neto, D Perić,
GC Huang and DRJ Owen, Communications in Numerical Methods in Engineering, Vol 11 c© 1995
John Wiley & Sons, Ltd. (b) Reproduced with permission from Design of simple low-order finite
elements for large-strain analysis of nearly incompressible solids, EA de Souza Neto, D Perić, M Dutko
and DRJ Owen, International Journal of Solids and Structures, Vol 33, Issue 20–22 c© 1996 Elsevier
Science Ltd.)

strained configurations can be a source of major problems. This problem seems to have
been first systematically investigated in the analytical study of Wriggers and Reese (1996)
who found that severe hourglass instabilities can occur under moderate-to-large compressive
strains for hyperelastic material models. Numerical studies carried out by the authors and
co-workers de Souza Neto et al. (1996) found in addition that, for elastoplastic models,
hourglass instabilities can be activated not only in compressive regimes but also (although
less severe) under finite stretching. The unstable behaviour is illustrated in Figure 15.10.
Figure 15.10(a) shows the results of the analysis of the compression of a cylindrical block
made of compressible rubber (modelled as a regularised Ogden material). The initially
cylindrical block is clamped at both ends and the analysis considers only the symmetric octant
of the actual geometry. The Q1/E9 eight-noded brick (with 3 × 3 × 3 Gauss quadrature) was
used and the configuration shown corresponds to 70% compression. Figure 15.10(b) depicts
a deformed configuration obtained with the axisymmetric EAS element Q1/E5 in the analysis
of the elastomeric bead compression problem described in Section 13.6.7 (page 556). The
configuration shown was obtained for a prescribed top plate displacement u = 0.235. In both
examples, severe spurious hourglassing invalidates the numerical results.
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Other two-dimensional enhanced elements

To overcome such instabilities, a number of alternative formulations of low-order EAS
elements have been proposed. To avoid the spurious hourglass modes of the original Q1/E4
quadrilateral, Korelc and Wriggers (1996), for instance, proposed an element, named CG4,
obtained by replacing the primary modes (15.81) with their transpose:

E1 =

[
ξ 0

0 0

]
, E2 =

[
0 ξ

0 0

]
, E3 =

[
0 0

η 0

]
, E4 =

[
0 0

0 η

]
, (15.86)

in conjunction with the following alternative definition for the enhanced displacement
gradient interpolation functions:

Hi(ξ) ≡ j0
j(ξ)

J−T
0 Ei(ξ) J−1

0 . (15.87)

Glaser and Armero (1997) proposed the elements named Q1/ET4 and Q1/ES4 obtained by
replacing the primary modes Ei of (15.81) respectively with their transpose (as for the GC4
element above) and their symmetrised counterparts

E1 =

[
ξ 0

0 0

]
, E2 =

[
0 ξ

ξ 0

]
, E3 =

[
0 η

η 0

]
, E4 =

[
0 0

0 η

]
. (15.88)

These authors also replace (15.82) with

Hi(ξ) ≡ j0
j(ξ)

F 0 J−T
0 Ei(ξ) J−1

0 (15.89)

and

Hi(ξ) ≡ j0
j(ξ)

F 0 J0 Ei(ξ) J−1
0 , (15.90)

where F 0 denotes the (compatible) deformation gradient at the element centroid. The inclu-
sion of F 0 (absent in the formulation of the CG4 element and the original Q1/E4 and Q1/E9
elements) guarantees the frame invariance of the interpolated enhanced displacement gradient
in (15.89) and (15.90); that is, under an arbitrary superimposed rigid-body deformation with
rotation Q, we have the transformations

hH̃ −→ Q hH̃

F̃ ≡ F + hH̃ −→ Q F + Q hH̃ = Q F̃ .

(15.91)

The interpolation form (15.90) was introduced by Simo et al. (1993) to ensure objectivity of
improved versions of the original eight-noded EAS hexahedron.

The comparative study carried out by Glaser and Armero (1997) shows that the elements
Q1/ET4, Q1/ES4 and CG4 overcome the hourglass instability under compressive strains.
However, the problem persists in highly stretched configurations. These authors avoid this
instability by introducing an artificial hourglass control term in the formulation of the
elements Q1/ET4 and Q1/ES4.
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15.3. Mixed u/p formulations

Another attractive alternative in the treatment of nearly incompressible models is the class
of finite element formulations for geometrically nonlinear problems originally introduced by
Sussman and Bathe (1987). This class of methods extends to the geometrically nonlinear
range of the classical mixed u/p methods for infinitesimal problems (Bathe, 1996). Such
methods are based on a form of the Hu–Washizu variational principle where the independent
variables are the displacement and hydrostatic pressure fields. One important feature of this
mixed method is that the adoption of pressure interpolation functions discontinuous across
element boundaries allows the use of a static condensation procedure (analogous to that
described above for EAS elements) that reduces the formulation to a displacement-like format,
where only nodal displacements remain as global variables. However, in contrast to EAS and
F-bar elements, the use of u/p formulations is limited to a class of material models whose
constitutive equations satisfy a certain restriction, as will be briefly discussed in the following.

15.3.1. THE TWO-FIELD VARIATIONAL PRINCIPLE

The starting point of the geometrically nonlinear u/p method is the variational principle
derived for a hyperelastic material with free-energy potential ψ, from the two-field functional

Π(u, p) ≡
∫
Ω

[ψ(F ) + π(p̄, p)] dv + Πext(u), (15.92)

where u and p are, respectively, the displacement and the independent Cauchy hydrostatic
pressure fields and p̄ is the (dependent) Cauchy pressure obtained from the pointwise
deformation gradient through the hyperelastic constitutive law

p̄ = p̄(F ) ≡ 1
3 σ̄(F ): I, (15.93)

where σ̄ is the hyperelastic constitutive function for the Cauchy stress tensor

σ̄(F ) ≡ ρ̄

det F

∂ψ

∂F
F T . (15.94)

Note that ψ depends on u owing to the dependence of the pointwise value of the deformation
gradient, F , on the field u. The dependence of π on u follows from the dependence of p̄ on
F . Πext is the potential energy functional of the external load. The potential π is assumed to
have the general form

π(u, p) ≡ (p̄ − p)2

2 P (p̄)
, (15.95)

where P is the functional defined by

P (p̄) ≡ 1
3 det F

∂p̄

∂F
F T : I. (15.96)

The functional P is assumed to satisfy the condition

P (P (p̄)) = 0, (15.97)
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which is equivalent to
∂P (p̄)
∂F

F T : I = 0. (15.98)

Expression (15.98) represents a constraint on the possible constitutive models that can be used
in conjunction with the u/P formulation. In other words, only constitutive models whose
constitutive function p̄ for the hydrostatic pressure satisfy (15.98) are amenable to treatment
via the present u/p formulation. The need for the above constraint is discussed below.

Stationary condition

Mixed u/p finite element formulations are derived simply by applying standard finite element
discretisations to the integral equations expressing the stationary condition of Π. It can be
easily established that the stationary condition of the functional defined by (15.92) is given by



∫
Ω

{
P̄ − p̄ − p

P (p̄)
∂p̄

∂F
+

(p̄ − p)2

2 [P (p̄)]2
∂P (p̄)
∂F

}
: ∇pη dv − Gext(η) = 0

∫
Ω

p̄ − p

P (p̄)
δp dv = 0

(15.99)

for all variations η and δp̄ of displacement and independent pressure fields. In the above,

P̄ = P̄ (F ) ≡ 1
det F

σ̄(F ) F T (15.100)

is the first Piola–Kirchhoff stress obtained from the constitutive law.
For the discussion that follows, and also to outline the computer implementation based on

the spatial configuration, it is convenient to recast (15.99) in its spatial form


∫
ϕ(Ω)

σ(F , p̄) : ∇xη dv − Gext(η) = 0

∫
ϕ(Ω)

p̄ − p

J P (p̄)
δp dv = 0,

(15.101)

where we have used the standard definition J ≡ det F and

σ(F , p̄) ≡ σ̄(F ) − p̄(F ) − p

det F P (p̄)
∂p̄

∂F
F T +

[p̄(F ) − p]2

2 det F [P (p̄)]2
∂P (p̄)
∂F

F T . (15.102)

Now let us focus on the meaning of (15.101). Equation (15.101)1 is analogous to the
standard virtual work equation. It expresses the weak form of equilibrium for the above-
defined modified Cauchy stress field σ. By introducing definition (15.96) together with the
assumed constitutive constraint (15.98) we find, after straightforward manipulations, that

1
3 σ(F , p) : I = p; (15.103)

that is, the hydrostatic component of the modified stress defined by (15.102) coincides
with the interpolated pressure and is not obtained from the deformation map through the
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constitutive equations of the model. The need for the constraint (15.98) stems from the fact
that if it is not satisfied by the constitutive model in question, then (15.103) does not hold
in general. We finish our discussion on the meaning of the stationary conditions of the u/p
formulation, by considering equation (15.101)2. This equation implies that the independent
pressure field satisfies the constitutive equation of the material only in an averaged (weak or
integral) sense. Its corresponding strong (pointwise) form is simply

p = p̄. (15.104)

Remark 15.8. To see how (15.98) limits the possible constitutive models for which the
above interpretation of the stationary conditions remains valid, let us consider the class of
hyperelastic models whose free-energy function can be split into a sum of a purely isochoric
and a purely volumetric contribution; that is, we consider materials with free-energy function
of the type

ψ(F ) ≡ ψiso(F iso) + ψv(J). (15.105)

The Hencky model as well as the regularised versions of the neo-Hookean, Mooney–Rivlin
and Ogden models discussed in Chapter 13 fall into this category. For such models, it can be
shown that (15.98) is equivalent to the restriction

∂2ψv
∂J2

= 0, (15.106)

or, equivalently,
∂p̄

∂J
= 0. (15.107)

Free-energy functions based on the logarithmic bulk term, such as those defined by (13.43)
(13.44), (13.52) and (13.56), do not satisfy the above constraint in general. However, modified
versions of such models, obtained by replacing the volumetric contribution to ψ with the
alternative function referred to in Remark 13.1 (page 526), do satisfy (15.105) and can be
used in conjunction with u/p formulations.

15.3.2. FINITE ELEMENT EQUATIONS

In the discretisation of (15.101) standard finite element shape functions are used to approx-
imate the displacement and virtual displacement fields. Within each u/p finite element,
pressure fields are interpolated according to

hp(ξ) =
npres∑
i=1

pi N̂i(ξ), (15.108)

where pi and N̂i (i = 1, 2, . . . , npres) are, respectively, the element pressure degrees of
freedom and the prescribed pressure interpolation functions and npres is the prescribed total
number of pressure degrees of freedom of the element. The interpolated pressure within the
element can be equivalently expressed as

hp(ξ) = pT
(e) N̂(ξ), (15.109)
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Table 15.1. Pressure interpolation functions for u/p quadrilaterals.

npres N̂1 N̂2 N̂3 N̂4 N̂5 N̂6 N̂7 N̂8 N̂9

1 1

3 1 ξ η

4 1 ξ η ξη

6 1 ξ η ξη ξ2 η2

8 1 ξ η ξη ξ2 η2 ξ2η ξη2

9 1 ξ η ξη ξ2 η2 ξ2η ξη2 ξ2η2

where we have introduced the finite element array definitions

N(ξ) ≡ [N̂1(ξ) N̂2(ξ) · · · N̂npres(ξ)]T

p(e) ≡ [p1 p2 · · · pnpres ]
T .

(15.110)

Variations of pressure are interpolated in the same way. The interpolation functions are
assumed discontinuous across element boundaries. Typical pressure interpolation functions
for two-dimensional quadrilateral u/p elements are shown in Table 15.1

The above interpolations result in the following discrete version of (15.101):


r(u, p) ≡ f int(u, p) − f ext = 0

s(e)(u(e), p(e)) = 0 (e = 1, 2, . . . , nel),
(15.111)

where fext is the global standard external load vector and f int is the assembly of element
internal force vectors

f int(e) (u(e), p(e) ≡
∫

ϕ(Ω(e))

BT σ(F , p(e)) dv, (15.112)

where the array σ contains the components of the modified stress defined by (15.102).
The arrays p and p(e) are, respectively, the global and element vectors of pressure degrees
of freedom and B is the standard discrete symmetric gradient operator (the same as in
virtual work-based elements). The element residual vector s(e) – associated with the weak
enforcement of the pressure constitutive relation – is given by

s(e)(u(e), p(e)) ≡
∫

ϕ(Ω(e))

p̄ − p

J P (p̄)
N̂ dv. (15.113)

Dissipative material models

For dissipative materials in general, the constitutive-related component σ̄ of the Cauchy stress
taking part in the assemblage of the internal force vector is computed by an incremental
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(algorithmic) constitutive function, σ̂, such that

σ̄n+1 = σ̂(αn, F̃n+1).

If the algorithmic constitutive function does not possess a potential structure (refer to the text
surrounding expression (15.64) on page 674) the variational basis of the u/p formulation is
lost.

Pressure interpolation order

The choice of a right balance between the number of displacement and pressure degrees of
freedom is crucial for the success of u/p finite elements. Analogously to F-bar elements,
an increase in the number of displacement degrees of freedom reduces the stiffness of u/p
elements and an increase in the number of pressure degrees of freedom stiffens the element. In
fact, u/p elements with equal number of displacement nodes and pressure degrees of freedom
behave in the same way as their purely displacement-based counterparts. Thus, successful
u/p elements must have fewer pressure degrees of freedom than displacement nodes. In the
infinitesimal theory, the tendency of u/p formulations to lock is formally established by the
so-called Babuška–Brezzi, LBB†† or inf-sup condition (Bathe, 1996; Brezzi and Fortin, 1991;
Hughes, 1987), which guarantees that an assembly of elements over a domain Ω will not lock
if there exists a constant β > 0 such that

inf
hp ∈ hP

sup
hu ∈ hU

∫
Ω

hp div[hu] dv

‖hp‖ ‖hu‖ ≥ β, (15.114)

where hU and hP are, respectively, the spaces of interpolated displacements and interpolated
pressures generated by the finite element discretisation. In practice, we are looking for
elements that have the least possible number of displacement degrees of freedom combined
with the greatest number of pressure degrees of freedom that do not lock. In two dimensions,
the nine-noded quadrilateral with three pressure degrees of freedom is known to satisfy the
LBB condition. This element, named 9/3 is recommended by Sussman and Bathe (1987) for
finite strain analysis. For three-dimensional analysis, these authors suggest the use of the
so-called 27/4 elements – 27-noded element with four pressure degrees of freedom.

15.3.3. SOLUTION: STATIC CONDENSATION

As, in view of the interelement discontinuity of the interpolated pressure, (15.111)2 holds
for each element separately, it is possible to derive a static condensation procedure for
the Newton–Raphson solution of (15.111). Within each iteration of the resulting Newton–
Raphson/static condensation scheme, iterative increments of nodal displacements are the
only unknowns at the global level. Iterative increments of the pressure degrees of freedom
are determined at the element level. The procedure is completely analogous to that devised in
Section 15.2.3 (page 676) and summarised in Box 15.3 (page 679) for EAS elements. Thus,
in what follows, we skip the derivation of the static condensation procedure and summarise
only the resulting formulae relevant to the computer implementation of the method.

††Short for Ladyzhenskaya–Babuška–Brezzi.
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Summary of the iteration loop

The Newton–Raphson/static condensation loop for mixed u/p elements starts with the
computation of the element tangent matrices

K(e)uu ≡
∂r(e)
∂u(e)

=
∫

ϕ(Ω(e))

GT (a + b) G dv

K(e)up ≡
∂r(e)
∂p(e)

=
∫

ϕ(Ω(e))

GT q N̂T dv

K(e)pu ≡ ∂s(e)
∂u(e)

=
∫

ϕ(Ω(e))

N̂ qT G dv = [K(e)up ]T

K(e)pp ≡
∂s(e)
∂p(e)

=
∫

ϕ(Ω(e))

−1
J P (p̄)

N̂ N̂T dv,

(15.115)

where r(e) is the element residual vector associated with the global vector r. The matrix
a is the matrix form of the spatial tangent modulus (the same as that computed for the
corresponding standard displacement-based element) and b is the matrix form of the fourth-
order tensor defined as

b ≡ −1
P (p̄)

M ⊗ M +
p̄ − p

P (p̄)
(M ⊗ N + N ⊗ M )

− (p̄ − p)2

[P (p̄)]3
N ⊗ N − p̄ − p

P (p̄)
d +

(p̄ − p)2

2 [P (p̄)]2
e, (15.116)

where

M ≡ 1
J

∂p̄

∂F
F T , N ≡ 1

J

∂P (p̄)
∂F

F T (15.117)

and d and e are the fourth-order tensors defined by the components

d ≡ 1
J

[
∂2p̄

∂F ∂F

]
imkn

Fjm Fln, e ≡ 1
J

[
∂2P (p̄)
∂F ∂F

]
imkn

Fjm Fln. (15.118)

The array q is the vector form of the second-order tensor

Q ≡ 1
J

(
1

P (p̄)
∂p̄

∂F
− p̄ − p

[P (p̄)]2
∂P (p̄)
∂F

)
F T . (15.119)

Following the standard finite element convention, q is given explicitly by

q ≡ [Q11 Q12 Q21 Q22]T

q ≡ [Q11 Q12 Q21 Q22 Q33]T

q ≡ [Q11 Q12 Q13 Q21 Q22 Q23 Q31 Q32 Q33]T ,

(15.120)

respectively in the two-dimensional, axisymmetric and three-dimensional cases.
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With K(e)uu , K(e)up , K(e)pu and K(e)pp at hand, we compute the modified element tangent
stiffnesses

K̂(e)T ≡ K(e)uu − K(e)up [K(e)pp ]−1K(e)pu , (15.121)

and solve during a typical iteration (k) the condensed global system‡‡

K̂T δu(k) = r̂(k−1) (15.122)

for the iterative displacement δu(k), where K̂T is the assembly of the element matrices K̂(e)T

and r̂(k−1) is the modified residual obtained from the element vectors

r̂(k−1)(e) ≡ r(k−1)(e) − K(e)up [K(e)pp ]−1 s(k−1)(e) . (15.123)

With δu(k) we apply the Newton–Raphson correction to the vector u of nodal displacements:

u(k) = u(k−1) + δu(k), (15.124)

and to the element vectors p(e) of pressure degrees of freedom:

δp(k)(e) = −[K(e)pp ]−1 (s(k−1)(e) + K(e)pu δu(k)(e) )

p(k)(e) = p(k−1)(e) + δp(k)(e) .
(15.125)

Having computed the new displacement and pressure degrees of freedom, we compute,
for each element, the modified Cauchy stress according to (15.102) and then assemble the
internal force vector defined by (15.112) and the element vector defined by (15.113). The
iterative process is stopped when the norm of the global vector r and the element vectors s(e)
fall below a prescribed convergence tolerance.

Remark 15.9. As for EAS elements (refer to Remark 15.7, page 678) the variational basis
of the u/p formulation ensures that the stiffness matrix K̂T is symmetric for materials that
possess a potential structure (materials with symmetric a). For materials with unsymmetric
tangent modulus, the method loses its variational justification and K̂T is unsymmetric.

15.3.4. IMPLEMENTATION ASPECTS

The comments made in Section 15.2.4 (page 678) regarding the extra memory requirements
associated with the use of the static condensation procedure for EAS elements apply equally
to u/p mixed formulations. One important aspect of the u/p method that needs to be observed
is the fact that extra material model-related quantities, such as

∂p̄

∂F
, P (p̄),

∂P (p̄)
∂F

, etc.

need to be computed during the evaluation of the residual vector and stiffness matrix within
the Newton–Raphson loop. Thus, the implementation of u/p methods requires, in addition
to the standard procedures for stress-updating and tangent modulus computation (refer to
Chapter 4), the provision of new material-related routines for computation of the extra terms.

‡‡In the remainder of this section the symbol δ(·) will be used to denote the iterative increment of (·) and not the
variation of (·).





16 ANISOTROPIC FINITE
PLASTICITY: SINGLE CRYSTALS

THE formulation and the numerical treatment of isotropic finite elastoplasticity, with
a possible simpler form of plastic anisotropy modelled by kinematic hardening, have

been thoroughly discussed in Chapter 14. Despite the widespread use of techniques such
as those discussed in that chapter in the industrial simulation of finite deformations of
polycrystalline metals, we should bear in mind that the underlying hypothesis of elastoplastic
isotropy is only an approximation of the actual phenomena. In practice, when subjected
to finite inelastic straining, polycrystalline metals rarely remain truly isotropic but, under
a wide range of conditions, the isotropy hypothesis provides a very good approximation. For
some materials, however, the hypothesis of isotropy cannot be introduced without substantial
loss of accuracy of the resulting constitutive model. This is particularly true for single
crystal alloys. Mechanical components made from single crystals show a strongly anisotropic
response and any attempt to simulate their behaviour under the assumption of isotropy will
almost certainly result in unacceptably erroneous predictions. In such cases, the formulation
of an appropriate anisotropic plasticity model is required together with a suitable numerical
scheme.

This chapter introduces a framework for the formulation and numerical simulation
of anisotropic finite strain single crystal (rate-independent and rate-dependent) plasticity
models. On the modelling side, the micro-mechanically-based constitutive theory introduced
here is relatively well established. Based on the slip theory of crystals (Asaro, 1983; Asaro
and Needleman, 1985; Havner, 1992; Peirce et al., 1982, 1983; Rice, 1971), the constitu-
tive model extends the hyperelastic-based multiplicative plasticity framework described in
Chapter 14. On the computational side, the elastic predictor/return-mapping methodology
adopted in Chapter 14, with its elastic predictor/return-mapping format, is naturally extended
to cope with the inherent anisotropy of the single crystal model. As we shall see, the resulting
integration algorithm is far more complex than its isotropic counterpart. In particular, the
simple structure where the finite strain related operations are confined to the kinematical
level is lost. It should be emphasised, however, that in spite of the complexity of the
integration algorithm, quadratic rates of convergence at both local (return-mapping) and
global (equilibrium) levels are preserved. Of course, this is a mere consequence of the fully
consistent linearisation of the integration algorithm that is described here in detail. The
framework presented here is particularised and applied to a planar double-slip model whose
computational implementation is fully incorporated into HYPLAS.

Computational Methods for Plasticity: Theory and Applications EA de Souza Neto, D Perić and DRJ Owen
c© 2008 John Wiley & Sons, Ltd
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Figure 16.1. The fcc cell structure. Schematic illustration.

16.1. Physical aspects

A summary of the physical concepts that underly the plastic deformation of crystals is
presented in this section. The material reviewed here is rather basic and is provided only
to familiarise the reader with some important concepts that will be needed throughout this
chapter. The interested reader is referred to Dieter (1986) for a more comprehensive account
of the subject.

The atomic structure of a metallic crystal is generally characterised by the arrangement of
atoms in regular, repeated three-dimensional geometric patterns. A common type of atomic
arrangement found in many metal crystals is the so-called face-centred cubic (fcc) structure.
The fcc structure is schematically illustrated in Figure 16.1. The atoms are arranged in cubic
cells with one atom at each vertex (the black circles) and one atom at the centre of each face
(the white circles). The fcc crystal consists of the repeated assembly of basic fcc cells.

16.1.1. PLASTIC DEFORMATION BY SLIP: SLIP-SYSTEMS

The plastic deformation of crystals is mainly the result of sliding between crystal blocks along
well-defined crystallographic planes. A simple analogy can be made between such planes and
playing cards which slide relative to each other in a pack of cards. As atomic bonds strengthen
with the decrease in atomic distance, crystallographic sliding (which requires atomic bonds to
be cyclically broken and re-established) tends to occur between preferential planes of greatest
atomic density. These planes are called slip planes. This principle is schematically illustrated
in Figure 16.2(a). The bonds between atoms lying within slip planes are the strongest, whilst
bonds between atoms of neighbouring slip planes are weaker. By the same token, the direction
of sliding follows one of the closest-packed directions within the slip plane. The closest-
packed directions are called slip directions. A pair comprising a slip plane and a slip direction
defines a slip-system. In an fcc crystal, for instance, the closest-packed slip planes are the
four possible planes of the type illustrated in Figure 16.2(b). Each slip plane contains three
slip directions (indicated by the arrows in Figure 16.2(b)). The total number of slip systems
in this case is twelve and crystallographic sliding may happen in any such system. Other
crystallographic arrangements found in metal crystals are the body-centred cubic (bcc) and
the hexagonal close-packed (hcp) structures. These are illustrated in Figure 16.3.
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Figure 16.2. Slip planes and slip directions: (a) the concept; (b) slip planes and slip directions in an fcc
crystal.

bcc hcp

Figure 16.3. The bcc and hcp cell structures. Schematic illustration.

16.2. Plastic slip and the Schmid resolved shear stress

A simple micromechanically-based continuum model of inelastic behaviour of single crystals
can be devised by assuming that plastic slip on a particular slip system takes place when the
component parallel to the slip direction of the stress vector acting upon the corresponding slip
plane reaches a critical value. The continuum description of this principle can be formulated
as follows. Let m and s be, respectively, the unit normal vector to the slip plane in question
and the unit vector in the slip direction. The pair {s, m} defines the slip system. With σ
denoting the stress tensor, we define the so-called Schmid resolved shear stress as

τ ≡ (σ m) · s = σ : (s ⊗ m). (16.1)

The resolved stress τ is the shear force transferred across the slip plane in the direction of
s. Thus, plastic slip occurs in system {s, m} when τ reaches a critical level. This critical
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value is analogous to the uniaxial yield stress of the von Mises theory of Chapter 6 (refer
to Subsection 6.4.2, page 162) and, in general, will be made dependent on temperature as
well as on the history of sliding. The dependence of the critical resolved Schmid stress on
the history of sliding is the crystal analogue of the phenomenon of hardening discussed in
Section 6.6 (from page 177) in the context of purely phenomenological plasticity.

16.3. Single crystal simulation: a brief review

Over the last fifteen years or so, considerable research has been focused on constitutive and
numerical aspects of single crystal modelling. Due to certain intrinsic characteristics, such as
strong anisotropy, latent hardening, etc., the issue of modelling and numerical simulation of
this class of materials remains open. This is particularly true within the context of finite
deformations where an extra degree of complexity is added by the nonlinearity of the
underlying kinematics. Some substantial early work on the subject has been undertaken by
Peirce et al. (1982, 1983), Peirce (1983), Asaro and Needleman (1985) and Needleman et al.
(1985) who have formulated constitutive models for single crystals within the context of both
rate-independent and rate-dependent plasticity theories. More recently, the implementation
of a rate-dependent model within an explicit finite element scheme has been addressed by
Rashid and Nemat-Nasser (1995). Still within the context of rate-dependent formulations,
the implicit approach has been reviewed by Cuitiño and Ortiz (1992b). In line with a more
modern treatment of nonlinear computational solid mechanics, these last authors discuss
issues such as the consistent linearisation of the associated numerical algorithms. Restricted
to the infinitesimal theory, the rigorous derivation of a general return-mapping scheme
for rate-independent single crystal models has been presented by Borja and Wren (1993).
In their paper, Borja and Wren have addressed in detail the important issue of possible
non-unique combinations of active slip systems in the rate-independent theory. Based on
their analysis, these authors have proposed an algorithm for selection of active systems
within the stress-update procedure. Their selection algorithm was later adopted by Miehe
(1996a,b) in the finite strain context. Miehe (1996a) brought the concept of exponential map
integrators into the realm of single crystal simulation. The use of the exponential map in the
integration of the plastic flow equation has been described in the framework for isotropic finite
plasticity of Chapter 14. Recall that, among other advantages, the exponential map integrator
naturally preserves crucial properties such as the incompressibility of the plastic flow usually
associated with pressure-independent metal plasticity models. As we shall see, this property
becomes crucially important in the treatment of finite crystal plasticity and the exponential
integrator will therefore be adopted in the framework presented in this chapter.

16.4. A general continuum model of single crystals

This section describes in detail a general finite strain continuum elastoplastic model of single
crystals. The model is formulated within the framework of hyperelastic-based multiplicative
plasticity.

In Chapter 14 (see Remark 14.1, page 579), the physical mechanisms of plastic defor-
mation of metal crystals have been pointed out as the main reason for postulating the
multiplicative split of the deformation gradient into elastic and plastic components:

F = F e F p. (16.2)
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Figure 16.4. The multiplicative decomposition of the deformation gradient. Schematic illustration.

The plastic deformation gradient represents a continuum measure of the microscopic sliding
along crystallographic planes. The elastic deformation gradient, on the other hand, provides
a continuum measure of crystal lattice distortion, which can be recovered upon complete
unloading of the material, as well as the rigid rotation. Consider a crystal containing a single
slip system {s, m} (see schematic illustration of Figure 16.4). A plastic slip of magnitude γ
along the system {s, m} corresponds to the plastic deformation gradient

F p = I + γ s ⊗ m. (16.3)

It is worth remarking here that whilst rigid rotations contained in F e are generally large,
the actual elastic distortion of the lattice observed in metal crystals is usually small
(infinitesimal).

16.4.1. THE PLASTIC FLOW EQUATION

Let us recall now the plastic rate of deformation defined in Chapter 14 (see page 580)

Lp ≡ Ḟ
p

(F p)−1. (16.4)

Single slip

For a crystal yielding along a single slip-system {s, m} the evolution of the plastic
deformation gradient is defined by the equation

Lp = γ̇ s ⊗ m. (16.5)

To show that this equation leads to (16.3), note that it can be rephrased as

Ḟ
p

= [γ̇ s ⊗ m] F p. (16.6)
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Without loss of generality, γ̇ can be assumed constant within any interval where the process
is monotonic. Then, the bracketed term on the right-hand side of (16.6) becomes constant
and the following exact solution (see Section B.1, page 747) is obtained if F p|γ=0 = I (the
virgin state) is taken as the initial condition:

F p = exp[γ s ⊗ m]. (16.7)

By using the series representation (B.4) (page 747) of the tensor exponential function and
taking into account that the orthogonality between s and m implies

(s ⊗ m)(s ⊗ m) = 0, (16.8)

we conclude that (16.7) yields (16.3).

Multislip

In the presence of nact active slip systems (systems undergoing slip), the above plastic flow
equation is generalised as

Lp =
nact∑
α=1

γ̇α sα ⊗ mα, (16.9)

where {sα, mα} are the unit vectors that define slip system α and the multiplier γ̇α is the
plastic shear rate in system α.

16.4.2. THE RESOLVED SCHMID SHEAR STRESS

Plastic slip may occur on a slip system only if the resolved shear stress on that system reaches
a critical level. Here, this principle will be expressed in terms of the Kirchhoff stress tensor, τ.
Accordingly, definition (16.1) is generalised and the resolved shear stress on a system α is
defined as

τα ≡ ReT τ Re : sα ⊗ mα. (16.10)

Note that, as vectors sα and mα are defined on the intermediate configuration, the Kirchhoff
stress tensor (which is defined on the deformed configuration) has been appropriately rotated
back (with Re) to the intermediate configuration before being resolved along slip system α.

16.4.3. MULTISURFACE FORMULATION OF THE FLOW RULE

Yield criterion

To formulate a yield criterion for single crystals within the framework of multisurface
plasticity, it is convenient to split each physical slip system of the crystal into two mirrored
systems

{sα, mα} and {sβ, mβ} ≡ {−sα, mα}. (16.11)

Now we have a total number of 2 × nsyst systems.
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Yield functions: the yield surface

In order to define the onset of plastic slip, we introduce 2 × nsyst yield functions of the form

Φα(τα, τα
y ) ≡ τα − τα

y , α = 1, . . . , 2nsyst, (16.12)

where τα
y is the critical resolved shear stress for system α. In the presence of hardening, the

value of τα
y depends on the history of the deformation process. It is important to note that the

functions Φα are anisotropic functions of τ. For a given τα
y a hypersurface in the space of

Kirchhoff stresses is defined by

Φα(τα(τ), τα
y ) = 0, (16.13)

for each system α. Plastic slip in system α may occur only if the stress state is on the
above defined surface. The 2 × nsyst surfaces of this type form the envelope of the elastic
domain where the mechanical response of the crystal is fully reversible. The elastic domain
is defined by

E ≡ {τ | Φα(τα(τ), τα
y ) < 0, α = 1, . . . , 2nsyst}. (16.14)

The set of plastically admissible stresses is the closure of E, defined as

Ē ≡ {τ | Φα(τα(τ), τα
y ) ≤ 0, α = 1, . . . , 2nsyst}. (16.15)

The boundary of the elastic domain is the yield surface, where plastic slip may occur. The
yield surface is defined by

Y ≡ {τ ∈ Ē | Φα(τα(τ), τα
y ) = 0 for at least one α, Φβ(τβ(τ), τβ

y ) ≤ 0 ∀ β 
= α}.
(16.16)

Unlike isotropic criteria such as the von Mises, Tresca and Mohr–Coulomb (refer to
Chapter 6) the visualisation of the above anisotropic yield surface is extremely difficult
and will not be attempted here. A graphical representation of yield surfaces for fcc and bcc
crystals is presented by Kocks (1970).

The multisurface plastic flow rule

Following the standard multisurface plasticity format (see page 156) the evolution law for the
plastic deformation gradient is then formulated as

Lp =
2nsyst∑
α=1

γ̇α sα ⊗ mα, (16.17)

or, equivalently,

Ḟ
p

=
[2nsyst∑

α=1

γ̇α sα ⊗ mα

]
F p, (16.18)

where the plastic multipliers γ̇α satisfy the complementarity condition

Φα ≤ 0, γ̇α ≥ 0, Φα γ̇α = 0, (16.19)

for α = 1, . . . , 2nsyst. Summation on the repeated index is not implied in (16.19)3.
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16.4.4. ISOTROPIC TAYLOR HARDENING

A hardening law must be defined in order to describe the evolution of the resolved yield
stresses, τα

y , in each system. The physical phenomena behind hardening of crystals are quite
complex and their appropriate representation within the continuum setting remains an open
issue. A popular approach consists in postulating the following evolution equation for the
resolved yield stresses (Asaro and Needleman, 1985):

τ̇α
y =

2nsyst∑
β=1

hαβ γ̇β, α = 1, . . . , 2nsyst,

where hαβ defines a matrix of hardening coefficients, whose components may depend on the
history of deformation.

In what follows, we shall adopt a much simpler law, known as Taylor hardening, in which
the resolved yield stress is the same for all systems. With τy denoting the common critical
value, the yield function for the generic system α is redefined as

Φα(τα, τy) = τα − τy. (16.20)

In addition, the resolved critical stress is assumed to be a function of a single internal
variable, γ:

τy = τy(γ). (16.21)

The hardening variable is the accumulated slip which, analogously to the accumulated (or
effective) plastic strain of the isotropic theory (see expression (6.167), page 179), is defined as

γ ≡
∫ t

0

2nsyst∑
α=1

γ̇α dt. (16.22)

Its evolution is then given by

γ̇ ≡
2nsyst∑
α=1

γ̇α. (16.23)

16.4.5. THE HYPERELASTIC LAW

Finally, a hyperelastic law is incorporated to model the reversible behaviour. The elastic
contribution to the specific free energy

ψe(F e) (16.24)

is introduced, and the standard constitutive law for the Kirchhoff stress tensor follows as

τ = τ(F e) = ρ̄
∂ψe

∂F e F eT . (16.25)

This completes the definition of the continuum constitutive model of single crystals. The
model is summarised in Box 16.1.
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Box 16.1. General finite strain anisotropic single crystal plasticity model.

(i) Multiplicative decomposition of the deformation gradient

F = F eF p

(ii) Hyperelastic law

τ = ρ̄
∂ψe

∂F e F eT

(iii) Resolved shear stresses

τα = ReT τ Re : (sα ⊗ mα)

(iv) Yield functions
Φα = τα − τy(γ)

(v) Evolution equations for F p and Taylor hardening internal variable γ

Ḟ
p

=

[2nsyst∑
α=1

γ̇α sα ⊗ mα

]
F p

γ̇ =

2nsyst∑
α=1

γ̇α

(vi) Loading/unloading criterion

Φα ≤ 0, γ̇α ≥ 0, γ̇αΦα = 0

for α = 1, . . . , 2nsyst

16.5. A general integration algorithm

The elastic predictor/return-mapping algorithm for integration of the general constitutive
equations of Box 16.1 is a natural extension of the scheme thoroughly described in Chapter 14
in the isotropic context. As we shall see, the anisotropic extension is considerably more
complex than its isotropic counterpart. In particular, it does not preserve the simple and
convenient structure where the essential stress integration has the small strain format and the
finite strain nonlinearity is confined to the kinematic level. Here, the geometric nonlinearity
cannot be decoupled from the stress-updating procedure.

The elastic trial step

Let us once more consider the typical (pseudo-) time interval [tn, tn+1]. With the known
values of F e

n, F p
n and γn at hand, and given an incremental deformation gradient

F∆ ≡ I + ∇xn [∆u], (16.26)
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we firstly compute the elastic trial deformation gradient

F e trial
n+1 = F∆ F e

n, (16.27)

and the corresponding elastic trial Kirchhoff stress

τ trialn+1 = ρ̄
∂ψe

∂F e

∣∣∣∣trial
n+1

F e trialT . (16.28)

The elastic trial resolved Schmid stresses are then computed as

τα trial
n+1 = (Re trial

n+1 )
T

τ trialn+1 Re trial
n+1 : (sα ⊗ mα), (16.29)

for α = 1, . . . , 2nsyst. The elastic trial rotation, Re trial
n+1 , is obtained from the polar decom-

position of the elastic trial deformation gradient. The elastic trial Taylor hardening variable
is set to

γtrialn+1 = γn. (16.30)

Consistency check

The next step is to check whether the elastic trial state violates plastic admissibility. If the
trial state lies in the elastic domain or on the yield surface, i.e. if

Φα trial ≡ τα trial
n+1 − τy(γtrialn+1) ≤ 0, (16.31)

for α = 1, . . . , 2nsyst, then we simply set

(·)n+1 := (·)trialn+1 (16.32)

and the state update is complete. Otherwise, the multisurface return mapping described below
is applied.

The multivector return mapping

In deriving the multisurface return mapping for the present general model, we shall assume
that the slip systems undergoing plastic slip over the current increment are known in advance.
The search for active systems – a crucial component of the overall scheme – is discussed
below in Section 16.5.1. Let us then assume that A is the set of nact active slip systems
within [tn, tn+1]. As in the isotropic case (cf. expression (14.73), page 591), the implicit
exponential integrator is used to discretise the plastic flow equation. In the present case, the
discretised plastic flow equation is given by

F p
n+1 = exp

[∑
α∈A

∆γα sα ⊗ mα

]
F p

n. (16.33)

The corresponding elastic deformation gradient update formula reads

F e
n+1 = F e trial

n+1 exp
[
−
∑
α∈A

∆γα sα ⊗ mα

]
. (16.34)
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The standard backward Euler discretisation of the Taylor hardening variable evolution
equation gives

γn+1 = γn +
∑
α∈A

∆γα. (16.35)

The corresponding discrete consistency condition reads

Φα
n+1 ≡ τ(F e

n+1) − τy(γn+1) = 0, ∀ α ∈ A. (16.36)

Remark 16.1. By construction, the incremental flow vector,∑
α∈A

∆γα s ⊗ m,

is traceless. As a result of the use of the exponential integrator, the corresponding incremental
plastic deformation gradient,

F p
∆ ≡ exp

[∑
α∈A

∆γα sα ⊗ mα

]
, (16.37)

is isochoric (the basic properties of the tensor exponential are listed in Section B.1.1,
page 748), i.e.

det[F p
∆] = 1. (16.38)

Thus, the above update formula for F p preserves exactly the plastic incompressibility of the
continuum model. This property is pointed out by Steinmann and Stein (1996) as a vital
source of accuracy of the numerical integration scheme.

Remark 16.2. Recall that in the isotropic context (see derivation in Section 14.4.2, page 591)
the tensor exponential function does not need to be explicitly evaluated in the return-
mapping procedure. In that case, when the logarithmic strain-based model is adopted, the
tensor exponential function is conveniently cancelled out of the relevant update formulae. In
contrast, in the present anisotropic case, the tensor exponential function cannot be eliminated
from the return-mapping equations and will have to be evaluated (expressions (16.33)
and (16.34)) in the computational procedure.

Remark 16.3. Note that the incremental flow vector is generally unsymmetric. Thus, the
evaluation of the exponential of an unsymmetric tensor is required. The evaluation will be
carried out here by means of the procedure described in Section B.1 (page 747) which makes
use of the series representation of the tensor exponential function.

The return-mapping system of equations

In the above update formulae, F e
n+1 and γn+1 are functions of the multipliers ∆γα only. As

the resolved stresses τα
n+1 are functions of Re and the Kirchhoff stress tensor which, in turn,

are functions of F e, the above discrete consistency condition is equivalent to the following
system of nact nonlinear algebraic equations for the plastic multipliers

Φ̃α(∆γ) ≡ τα(F e
n+1(∆γ)) − τy(γn+1(∆γ)) = 0, ∀ α ∈ A, (16.39)
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where we have defined
∆γ ≡ {∆γα | α ∈ A}. (16.40)

Note that if the given set A of active slip systems is correct, then the resulting updated
variables, F e

n+1 and γn+1, must satisfy

Φβ ≡ τβ(F e
n+1) − τy(γn+1) ≤ 0, β = 1, . . . , 2nsyst. (16.41)

Also, the active plastic multipliers must all be non-negative:

∆γα ≥ 0, ∀ α ∈ A. (16.42)

The above requirement is the discrete counterpart of the complementarity condition (16.19).

The Newton–Raphson scheme

As for the other models discussed in this book, the standard Newton–Raphson scheme can
be adopted for solution of the above algebraic system. Here, in the kth Newton iteration we
update

∆γα
(k) := ∆γα

(k−1) + δγα, (16.43)

where the iterative corrections δγα are obtained by solving the linearised counterpart
of (16.39) ∑

β∈A

Jαβ δγβ = −Φ̃α. (16.44)

The components

Jαβ ≡ dφ̃α

d∆γβ
=

dτα

dF e :
dF e

d∆γβ
− H, (16.45)

where the subscripts n + 1 have been omitted for notational convenience, define the Jacobian
matrix J of the return-mapping system. The tensor dτα/dF e on the right-hand side of
the above expression depends on the particular hyperelastic model adopted. The derivative
dF e/d∆γβ is defined by the Cartesian components[

dF e

d∆γβ

]
ij

= −F e trial
im Emjkl [sβ ⊗ mβ]kl, (16.46)

where Emjkl denote the components of the derivative of the tensor exponential function
evaluated at the (generally unsymmetric) argument

−
∑
α∈A

∆γα sα ⊗ mα.

The exact computation of the derivative of the exponential of a generally unsymmetric tensor
is discussed in detail in Section B.2 of Appendix B and is implemented in HYPLAS subroutine
DEXPMP. The term H is the Taylor hardening modulus, defined as

H ≡ dτy

dγ
. (16.47)

In deriving the above Jacobian, we have made use of the fact that

dγ

d∆γβ
= 1, (16.48)

which follows by differentiation of (16.35).
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16.5.1. THE SEARCH FOR AN ACTIVE SET OF SLIP SYSTEMS

In the above return mapping, it has been assumed that the set A of active slip systems,
i.e. systems with ∆γα 
= 0 within the interval [tn, tn+1] is known in advance. However, it
is not possible in general to know which systems will be active in the interval of interest.
Recall that this was also the case in the integration of isotropic multisurface models (such
as Tresca and Mohr–Coulomb) discussed in Chapter 8 (refer to Sections 8.1 and 8.2). There,
robust algorithms have been developed to search for the active set of yield surfaces and to
ensure that, under any circumstance, the final converged state rigorously satisfies the discrete
consistency condition. The search algorithms discussed in Chapter 8 have been devised
largely based on the geometric representation (in principal stress space) of the underlying
criteria. Unfortunately, the proper geometric visualisation of single crystal yield surfaces
is very difficult and the derivation of a geometrically-based search algorithm is virtually
impossible. The issue is here made more complex due to the fact that the active set that
satisfies the discrete plastic consistency may not be unique. Also, for a given active set A,
many combinations of plastic multipliers (i.e. solution vectors ∆γ) may exist which produce
the same incremental plastic deformation gradient. Non-uniqueness is possible whenever the
set of all slip-system tensors,

{sα ⊗ mα | α = 1, . . . , nsyst}

is linearly dependent in the space of traceless tensors to which the incremental flow vector
belongs. Note that in two dimensions, for instance, the space of traceless tensors is spanned
by three linearly independent base tensors. In three dimensions eight linearly independent
tensors generate the traceless tensors space. Thus, if the total number of active slip systems
is greater than three in two dimensions (greater than eight in three dimensions), then the set
A is necessarily linearly dependent and multiple solutions ∆γ exist for the return-mapping
equations. In this case, the Jacobian of the return-mapping system of equations becomes
singular.

To overcome the problems associated with non-uniqueness, many authors have resorted
to the viscoplastic (rate-dependent) regularisation of the original elastoplastic (rate-
independent) model (Asaro and Needleman, 1985; Needleman et al., 1985; Peirce, 1983;
Peirce et al., 1982, 1983). Non-uniqueness is not an issue in the viscoplastic context and the
rate-independent limit can be recovered by setting suitably low values for the rate-sensitivity
constant. However, the resulting set of equations to be integrated becomes extremely stiff as
the rate-independent limit is approached and the formulation of robust algorithms under such
conditions is not an easy task.

A completely different approach has been proposed by Borja and Wren (1993). Restricted
to the infinitesimal theory, they have developed a fairly robust algorithm for selection of active
systems. However, in spite of its relative robustness, the active set determination algorithm
of Borja and Wren (1993) is reported to fail under certain circumstances. This algorithm is
described next.

The active set determination algorithm

The basic idea underlying the active set determination algorithm is to start the application
of the above described return-mapping scheme with some trial active set A (0), and then, to
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generate a sequence of sets {A (1), A (2), . . .} as the Newton iterations for solution of (16.39)
are applied. It is expected that, at the end, the algorithm will converge to a state (and an active
set) where the discrete complementarity condition expressed by (16.41, 16.42) is satisfied.

We may then proceed as follows. During a generic Newton iteration k, just after the new
guesses ∆γα

(k) have been obtained according to (16.43), we reset the incremental multipliers,
which are currently negative, to zero:

∆γα
(k) := max[ 0, ∆γα

(k) ]. (16.49)

With the above reset plastic multipliers, we compute the corresponding yield function values,
Φα
(k), and define the following sets:

A
(k)
Φ ≡ {α ∈ {1, 2, . . . , 2nsyst} | Φα

(k) > 0}

A
(k)
∆γ ≡ {α ∈ {1, 2, . . . , 2nsyst} | ∆γα

(k) > 0}.
(16.50)

Having defined the above sets, a set A (k+1) is assembled as

A (k+1) := A
(k)
Φ ∪ A

(k)
∆γ . (16.51)

The above set is then used as the new trial active set in the following Newton iteration k + 1.
A solution to (16.39) that satisfies the discrete complementarity will have been obtained if,
after an iteration k, we have

A
(k+1)
Φ = ∅.

To start up the algorithm, Borja and Wren (1993) suggest the following trial active set

A (0) := An, (16.52)

where An is the converged active set obtained for the Gauss point in question at the end of
the previous global load increment. Miehe (1996a,b), on the other hand, adopts

A (0) := A trial ≡ {α ∈ {1, . . . , 2nsyst} | Φα trial > 0}. (16.53)

Dealing with a linearly dependent active set

If a set A (k) contains linearly dependent slip-system tensors, the standard Newton iteration
cannot be performed, for the Jacobian matrix J in (16.44) is singular. To overcome this
problem, Borja and Wren (1993) suggested the triangular factorisation of J in the solution
of (16.44) followed by the elimination of the redundant equations (corresponding to zero
diagonal terms) in the backsubstitution phase. In this way, one of the possible solutions to
the return-mapping system will be picked up. It should be noted that, with isotropic Taylor
hardening, even when multiple solutions exist for the plastic multipliers, the final stress tensor
is unique. This may not be true, however, for more general crystal hardening laws where
plastic slip in one system affects hardening on distinct latent systems in different ways. In
such cases, the basic evolution problem may be ill-posed.
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Figure 16.5. Planar double-slip single crystal model.

16.6. An algorithm for a planar double-slip model

To illustrate the concepts conveyed in Section 16.5, we describe in this section the particu-
larisation of the above discussed general integration algorithm for a planar double-slip single
crystal model. The choice of this model is motivated by the simplicity of its implementation.
In particular, the slip-system tensors of the model are linearly independent and the return-
mapping equations have unique solution. Thus, the need for special treatment of redundant
equations addressed above is completely by-passed. Here, the active slip systems can be
determined by a trial-and-error procedure conceptually similar to those employed in the
implementation of the Tresca and Mohr–Coulomb models described in Chapter 8. The
procedure described in this section has been fully incorporated into program HYPLAS.

16.6.1. A PLANAR DOUBLE-SLIP MODEL

The planar double-slip single crystal model is suitable to describe the plane deformation
of fcc crystals under certain crystal orientations and load conditions. In spite of the twelve
slip systems that characterise fcc crystals, their behaviour under such conditions can be
modelled by means of only two ‘effective’ slip systems (nsyst = 2) whose slip and normal
direction vectors lie on the plane of loading (see schematic illustration of Figure 16.5). Plastic
deformation in this case may occur only in that plane. In Figure 16.5, θ denotes the initial
orientation of slip system 1 with respect to the x-axis of the plane and β is the relative
orientation of slip system 2 with respect to system 1. In the multisurface plasticity description
of the model, we define the mirrored systems

{s3, m3} ≡ {−s1, m1}, {s4, m4} ≡ {−s2, m2}. (16.54)

The hyperelastic model: compressible neo-Hookean material

As elastic distortions of metal crystal lattices are typically infinitesimal, the choice of a
particular hyperelastic law to describe the reversible behaviour is likely to have little or
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no impact on the results of numerical simulations. Thus, the definition of the elastic law
in the present context will be regarded as a matter of numerical convenience rather than
a physically-based choice. In the isotropic context of Chapter 14, the logarithmic strain-
based Hencky model was found to be particularly convenient. Here a compressible neo-
Hookean model will be adopted instead. Originally proposed by Miehe (1996a,b), the use
of the compressible neo-Hookean material in the single crystal plasticity context was shown
to lead to a relatively simple format of return-mapping equations.

The compressible neo-Hookean model was described in detail in Chapter 13. In the present
elastoplastic context, the regularised neo-Hookean potential (13.44) (page 526) is redefined
in terms of the elastic left Cauchy–Green tensor as

ρ̄ ψe(Be
iso) ≡ 1

2 G (tr[Be
iso] − 3) + 1

2 K (ln Je)2, (16.55)

where G and K denote, respectively the shear and bulk moduli and

Je ≡ det[F e]. (16.56)

Be
iso is the isochoric (volume-preserving) component of the elastic left Cauchy–Green strain

tensor, Be,
Be
iso ≡ F e

iso(F
e
iso)

T = (Je)−
2
3 Be, (16.57)

with F e
iso denoting the isochoric component of F e,

F e
iso ≡ (Je)−

1
3 F e. (16.58)

The constitutive law for the Kirchhoff stress is obtained directly from the above free-energy
potential as

τ = 2 ρ̄
∂ψ

∂Be Be = G dev[Be
iso] + K (ln Je) I. (16.59)

The Schmid-resolved stresses

One crucial aspect to be emphasised is the fact that as a result of the use of the compressible
neo-Hookean material, the resolved Schmid stresses admit a strikingly simple representation.
Because slip-system tensors are deviatoric by construction, their internal products by the
hydrostatic Kirchhoff stress components vanish and (16.59) together with (16.10) give

τα = G ReT dev[Be
iso] Re : sα ⊗ mα

= G ReT Be
iso Re : sα ⊗ mα

= G Ce
iso : sα ⊗ mα (16.60)

where Ce
iso ≡ (F e

iso)T F e
iso = ReT Be

iso Re is the isochoric right elastic Cauchy–Green
strain tensor. Then, after a straightforward manipulation, we end up with the simpler final
formula

τα = G s̄α · m̄α, (16.61)

where s̄α (m̄α) is the isochoric elastic push-forward of sα (mα),

s̄α ≡ F e
iso sα

m̄α ≡ F e
iso mα.

(16.62)
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16.6.2. THE INTEGRATION ALGORITHM

The essential algorithm described here is a specialisation of the general integration procedure
of Section 16.5 for the present model. Again within the interval [tn, tn+1], we start by
computing the elastic trial state. Firstly, we evaluate the elastic trial deformation gradient
using the usual expression (16.27) and compute the corresponding isochoric component
F e trial
iso . We then evaluate the elastic trial Schmid-resolved shear stresses, which for the

present model have the simple format

τα trial
n+1 = G s̄α trial · m̄α trial, (16.63)

where
s̄α trial = F e trial

iso sα, m̄α trial = F e trial
iso mα. (16.64)

Next, we proceed to the standard consistency check of page 700. If the process is elastic, the
stresses are updated according to the compressible neo-Hookean relation (16.59). Otherwise
we apply the return-mapping algorithm whose equations are described in the following.

The multivector return-mapping equations

In view of the representation (16.61) for the resolved Schmid shear stress, the return-mapping
equation for ∆γ in the present model reads

Φ̃α(∆γ) ≡ G s̄α(∆γ) · m̄α(∆γ) − τy(γn+1(∆γ)) = 0, α ∈ A, (16.65)

where we have defined

s̄α(∆γ) ≡ F e
iso(∆γ) sα, m̄α(∆γ) ≡ F e

iso(∆γ) mα, (16.66)

and F e
iso is the function of ∆γ defined through the exponential map-based update formula

F e
iso(∆γ) ≡ F e trial

iso exp
[
−
∑
α∈A

∆γα sα ⊗ mα

]
. (16.67)

The determination of the above active set A will be discussed later. For the time being, we
assume A to be known a priori.

Due to the isochoric/volumetric split of the hyperelastic response of the present model,
the return mapping, which effectively involves only the isochoric component of the elastic
deformation gradient, affects only the deviatoric component of the Kirchhoff stress tensor.
The updated hydrostatic Kirchhoff stress is the one at the elastic trial state. Note that this
is not necessarily true in the general case described in Section 16.5 where the underlying
hyperelastic model may have coupling between isochoric and volumetric responses. Here,
after solution of (16.65), we update

τn+1 := G dev[F e
iso(F

e
iso)

T ] + K (ln Je
n+1) I, (16.68)

where
Je

n+1 = Jn+1 ≡ det[F n+1]. (16.69)
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The Newton–Raphson iterations

By linearising (16.65) we obtain the following expression for the Jacobian matrix components
to be used in the Newton iterations for solution of the return-mapping equation:

Jαβ = G (s̄α⊗ mα + m̄α⊗ sα) : [F e trial
iso · E : (sα⊗ mα)] − H, (16.70)

where H is the Taylor hardening modulus and E denotes the derivative of the exponential
map at −

∑
α∈A ∆γα sα ⊗ mα.

Search for active systems

As in the present case the crystal is defined by two physical slip systems (four systems in the
multisurface description), only two possibilities exist for plastic slip:

1. the set A contains only one system; or,

2. the set A contains two systems.

Due to the reduced number of possible combinations of active systems, the active set A
can be determined here simply by solving the return-mapping equations for each possible
combination of active systems and then selecting the one whose results satisfy the discrete
consistency condition. Note that because the two physical slip systems are linearly indepen-
dent, the active set that produces plastic consistency is unique and no special treatment of
redundant equations is required.

In the actual algorithm we proceed as follows. Firstly, we solve the system with the
tentative active set

A (1) := A trial, (16.71)

where A trial is the set defined in (16.53). If the solution satisfies consistency, then it is the
one we are looking for: we stop the process and exit the state-update procedure. Otherwise,
we define a new tentative set A (2) and solve the return-mapping equations again. We check
for consistency of the solution and redefine the tentative active set if necessary. The process
is repeated until the plastically consistent active set is found.

As one system cannot be active at the same time as its mirrored counterpart, the possible
active sets are (see definition (16.54) of mirrored systems for the present model)

{1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {3, 4}, {1, 4}.

In practice, however, we do not need to try all the above combinations of active systems.
The combinations we try will depend on the set A trial. The tentative active sets shown in
Table 16.1 are sufficient.

Remark 16.4. For large numbers of slip systems, the number of possible combinations of
active systems increases dramatically and the present active set search procedure becomes
computationally prohibitive.

The overall elastic predictor/return-mapping integration algorithm for the planar double-
slip single crystal model is summarised in Boxes 16.2 and 16.3 in standard pseudo-code
format. The procedure is implemented in HYPLAS subroutine SUPDSC (State Update for the
Planar Double-slip Single Crystal model).
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Table 16.1. Planar double-slip model. Tentative active sets.

A (1) ≡ A trial 1 2 3 4 1, 2 2, 3 3, 4 1, 4

A (2) 1, 4 1, 2 2, 3 3, 4 1 2 3 1
A (3) 1, 2 2, 3 3, 4 1, 4 2 3 4 4
A (4) – – – – 1, 4 1, 2 2, 3 1, 2
A (5) – – – – 2, 3 3, 4 1, 4 3, 4

Box 16.2. Elastic predictor/return-mapping algorithm for the planar double-slip
single crystal model.

HYPLAS procedure: SUPDSC

(i) Given the deformation gradient F ∆ := I + ∇n[∆u], evaluate the elastic trial state

F e trial
n+1 := F ∆ F e

n

γtrial
n+1 := γn

(ii) Isochoric/volumetric decomposition

J := det[F n+1], F e trial
iso := J− 1

3 F e trial
n+1

(iii) Elastic trial resolved Schmid stresses

s̄α trial := F e trial
iso sα, m̄α trial := F e trial

iso mα

τα trial
n+1 := G s̄α trial · m̄α trial

for α = 1, . . . , 2nsyst

(iv) Consistency check

IF Φα trial ≡ τα trial
n+1 − τy(γ trial

n+1 ) ≤ εtol THEN

set (·)n+1 := (·)trialn+1 and GOTO (v)

ELSE GOTO BOX 16.3 – return map (update F e
iso and γn+1)

(v) Update F e
n+1 and the Cauchy stress tensor

F e
n+1 := J

1
3 F e

iso

Be
iso := F e

iso (F e
iso)

T

τn+1 := G dev[Be
iso] + K (ln Jn+1) I

σn+1 := J−1 τn+1

Remark 16.5. The algorithm of Boxes 16.2 and 16.3 is equally applicable to three-
dimensional cases as well as to other two-dimensional models, provided that the slip systems



710 COMPUTATIONAL METHODS FOR PLASTICITY: THEORY AND APPLICATIONS

Box 16.3. Return-mapping algorithm for the planar double-slip single crystal
model.

HYPLAS procedure: SUPDSC

(i) Set tentative active sets according to Table 16.1 and initialise tentative set counter:
itent := 1

(ii) Initial guess for plastic multiplier(s)

∆γα := 0, α ∈ A (itent)

(iii) Initialise Newton iteration counter: iiter := 1

(iv) Compute Jacobian matrix J according to expression (16.70)

(v) Apply Newton–Raphson correction to multiplier(s)

∆γα := ∆γα −
∑

β∈A (itent)

[J−1]αβ Φ̃β , α ∈ A (itent)

(vi) Update F e
iso (expression (16.67)) and γn+1 (expression (16.35)) and compute yield

function values, Φ̃α, for all systems α = 1, . . . , 2nsyst (expression (16.65))

(vii) Check convergence

IF |Φα| ≤ εtol, ∀ α ∈ A (itent) THEN

system has converged – GOTO (viii)

ELSE set iiter := iiter + 1 and GOTO (iv)

(viii) Check validity of converged solution

IF ∆γα < 0 for any α ∈ A (itent)

OR |Φα| > εtol for any α ∈ {1, . . . , 2nsyst} THEN

invalid solution – set itent := itent + 1 and GOTO (ii)

ELSE converged solution is valid – EXIT

are linearly independent. The only modification required is the redefinition of the possi-
ble combinations of active systems described in Table 16.1. However, as pointed out in
Remark 16.4, the use of the present trial-and-error search procedure with a larger number
of slip systems may become impractical.

16.6.3. EXAMPLE: THE MODEL PROBLEM

A simple numerical example is described in this section in order to illustrate the constitutive
response of the planar double-slip model as well as to test the accuracy of the above
described integration algorithm. The model problem consists of the deformation-controlled
uniform shearing of a block whose material is modelled as a planar double-slip single crystal
(Figure 16.6). This problem was used by Miehe (1996a,b) to test integration algorithms for
the present planar model. Starting from a virgin state, the block is deformed monotonically
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Figure 16.6. The model problem. Simple monotonic shear.

Table 16.2. The model problem. Material parameters.

Shear modulus: G = 49.98 kN/mm2

Bulk modulus: K = 21.10 kN/mm2

Hardening curve: τy(γ) = 0.06 + 0.048(1 − exp(−γ/0.929)) + 0.001γ kN/mm2

Initial lattice orientation: θ = 60o, β = 60o

until the final state with a shear deformation parameter η = 3 is reached. During the process,
the state variables (stress, elastic deformation gradient and hardening variable) are obtained
by means of the exponential map-based integration algorithm. In order to assess the finite step
accuracy of the algorithm under the present circumstances, the problem is solved with the
final shear parameter η = 3 attained in 10, 30 and 300 equally sized increments. The material
constants are the same as those adopted by Miehe (1996a,b) and are listed in Table 16.2.

The values of the Taylor hardening variable, γ, obtained along the process are plotted in
Figure 16.7. The rotation of the crystal lattice is also shown. The crystal lattice rotation is
the (in-plane) rotation angle (here assumed counterclockwise-positive) corresponding to the
elastic rotation tensor, Re. The elastic rotation tensor is obtained from the polar decompo-
sition of the elastic deformation gradient, F e. The lattice rotation tends asymptotically to
−60o – orientation where slip-system 1 is aligned with the x-axis. Note that in all cases (10,
30 and 300 increments) virtually identical results are obtained, which emphasises the high
accuracy of the exponential map-based integration algorithm. This is also observed in the
graphs of Figure 16.8 where the in-plane Kirchhoff stress components are plotted. The high
accuracy of the exponential map-based algorithm is due partly to its natural plastic volume
conservation property. As shown by Miehe (1996b), the stress components τxx and τyy are
particularly sensitive to this property in the present problem. When using an integration
algorithm where the plastic flow rule is discretised by a standard backward Euler scheme
together with a posteriori plastic volume corrections, Miehe (1996b) showed that a large
number of increments are required to produce reasonable accuracy for stress components τxx

and τyy .
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Figure 16.7. The model problem. Results for hardening internal variable and lattice rotation.
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Table 16.3. Return-mapping residuals. Table of convergence.

Iteration number Increment 2 Increment 5 Increment 8

1 6.38339109 E + 00 4.84948965 E + 00 6.21917562 E + 00
2 3.19909200 E − 01 1.84531024 E − 01 3.09099084 E − 01
3 5.17419932 E − 05 4.73003185 E − 06 4.90717916 E − 05
4 2.04754400 E − 11 1.95572560 E − 13 1.89060095 E − 11

As the exactly linearised Newton–Raphson algorithm is adopted in the present imple-
mentation, quadratic rates of convergence are attained in the iterative solution of the return-
mapping equations. To illustrate this important aspect, the evolution of the relative residual
norm of the return-mapping equations,

r ≡
nact∑
α=1

|Φ̃α/τy|,

is shown in Table 16.3 for typical iterations. The results of Table 16.3 were obtained in the
10 increment case.

16.7. The consistent spatial tangent modulus

In this section, we focus our attention on the derivation of the spatial tangent modulus
consistent with the implicit integration scheme for the rate-independent planar double-
slip single crystal model described in Section 16.6. The tangent moduli for the planar
model has been fully incorporated into program HYPLAS. The corresponding subroutine
is named CSTPDS (Consistent Spatial Tangent modulus for the Planar Double-slip Single
crystal model). We anticipate that, due to the inherent complexities of the model and the
corresponding integration algorithm, the derivation of the spatial tangent moduli is a tedious
exercise of consistent linearisation. For the sake of clarity, some of the longest tensor algebra
manipulations involved have been omitted in the derivation shown in this section. The reader
who is not interested in the details of derivation is referred directly to the final relevant
expressions (16.72) and (16.85).

Remark 16.6. Before proceeding, it is worth remarking that the tangent moduli derived in
this section are valid for any (two- or three-dimensional) single crystal models based on
the neo-Hookean hyperelastic description and the present exponential-map based integration
algorithm. Only the active set search procedure has to be changed to accommodate other
models of this class and this procedure does not affect in any way the tangent moduli.

16.7.1. THE ELASTIC MODULUS: COMPRESSIBLE NEO-HOOKEAN MODEL

The spatial elasticity tensor for the compressible neo-Hookean model has been derived in
Chapter 13 (see final expressions (13.96, 13.97), page 535). In the present elastoplastic
context, the corresponding elastic spatial tangent modulus, ae, is given by the completely
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analogous expression
ae

ijkl = ce
ijkl + δikσjl, (16.72)

where ce has the compact representation

ce =
2G

3J
tr[Be

iso] Id − 2p IS +
K

J
I ⊗ I − 2

3
[σd ⊗ I + I ⊗ σd], (16.73)

with σd being the Cauchy stress deviator and p denoting the Cauchy hydrostatic pressure,
p ≡ tr[σ]/3.

16.7.2. THE ELASTOPLASTIC CONSISTENT TANGENT MODULUS

Let us now turn our attention to the elastoplastic tangent modulus consistent with the return-
mapping scheme of Box 16.3. The derivation of the elastoplastic tangent modulus for the
present model/algorithm is conceptually identical to the simpler (isotropic) cases addressed
in previous chapters. Here, the return-mapping algorithm of Box 16.3 defines an implicit
incremental constitutive function for the isochoric elastic deformation gradient of the form

F e
iso = F e

iso(F
e trial
iso ), (16.74)

where the isochoric elastic trial deformation gradient is a function of the total deformation
gradient F n+1. In view of the hyperelastic law, the incremental constitutive function for the
Kirchhoff stress, τ̂, consistent with the return-mapping algorithm, is defined as

τn+1 = τ̂(F n+1)

≡ τd(F e
iso(F

e trial
iso (F n+1))) + K ln(det[F n+1]) I (16.75)

where
τd(F e

iso) ≡ G dev[F e
isoF

e
iso

T ]. (16.76)

Our task now is to derive the elastoplastic spatial tangent modulus, aep, defined as

aep
ijkl =

1
Jn+1

[
∂τ̂

∂F n+1

]
ijkm

(F n+1)lm − σil δjk. (16.77)

We then start by concentrating on the derivation of an explicit formula for the derivative

∂τ̂

∂F n+1
,

which is the only term in (16.77) that depends on the algorithmic constitutive function. By
straightforward differentiation of (16.75) we obtain

∂τ̂

∂F
=

∂τd
∂Be

iso

:
∂Be

iso

∂F e
iso

: P :
∂F iso
∂F

+
K

J
I ⊗ ∂

∂F
det[F ],

where the subscript n + 1 has been omitted for notational convenience and the fourth-order
tensor

P ≡ ∂F e
iso

∂F iso
, (16.78)
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is the only contribution to the derivative of τ̂ that depends on the particular return-mapping
algorithm adopted. After some straightforward derivations considering the elastic law and the
definitions of Be

iso and F iso we obtain the components[
∂τ̂

∂F

]
ijkl

=
G

J
1
3

d : b : P : f + K I ⊗ F T , (16.79)

where
bijkl ≡ [δik (F e

iso)jl + δjk (F e
iso)il]

fijkl ≡ δik δjl − 1
3 (F e

iso)ij(F e
iso)lk.

The crucial point now is the derivation of an explicit expression for the term P which depends
on the return-mapping scheme. This is addressed in the following.

The algorithm-consistent derivative P

From the update formula (16.67) we obtain the differential relation

dF e
iso = dF e trial

iso (F p
∆)−1 + F e trial

iso d(F p
∆)−1, (16.80)

where

(F p
∆)−1 = exp

[
−
∑
α∈A

∆γα sα ⊗ mα

]

and
d(F p

∆)−1 = −E :
∑
α∈A

d∆γα sα ⊗ mα.

Recall that E denotes the derivative of the exponential map evaluated at the argument
−
∑

α∈A ∆γα sα ⊗ mα. The differentials of the plastic multiplier, d∆γα, which take part
in the above expression are obtained by the standard procedure that consists in differentiating
the discrete consistency condition (16.65), having F e

iso also as a variable, to obtain

dΦα = G [m̄α ⊗ sα + s̄α ⊗ mα] : dF e
iso − H

∑
β∈A

d∆γβ, ∀ α ∈ A,

and then enforcing the condition

dΦα = 0, ∀ α ∈ A.

These last two expressions together with (16.80) yield, after some tensor algebra, the
following differential relation

d∆γα = Sα : dF iso, α ∈ A, (16.81)

where the second-order tensors Sα are defined by the components

[Sα]ij ≡ G
∑
β∈A

[J−1]
αβ

[m̄α ⊗ sα + s̄α ⊗ mα]ik[F p−1]jk.
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With the substitution of (16.81) into (16.80), we obtain, again after some manipulations, the
following differential relation

dF e
iso = P : dF iso, (16.82)

where the tangent operator P is defined by the components

Pijkl ≡ δik F p
lj + (F e trial

iso )im Emjpq Qpqkl, (16.83)

and Qpqkl are the components of the fourth-order tensor

Q ≡−
∑
α∈A

sα ⊗ mα ⊗ Sα. (16.84)

The final expression for aep

Finally, with the substitution of (16.83) into (16.79) followed by the introduction of the
resulting expression into (16.77) we arrive, after some tedious but straightforward tensor
algebra, at a relatively simple expression for the consistent spatial tangent modulus given by

aep = ae + ap, (16.85)

where the elastic contribution ae is that defined by (16.72) and ap is the plastic contribution
to the tangent modulus defined as

ap ≡−2G2

J
Id : e : v, (16.86)

with the fourth-order tensors e and v given by the components

eijkl ≡ (F e
iso)il (F e trial

iso )jk

vijkl ≡ [E : U]ijkm (F e
iso)lm − 1

3 [E : U : F e
iso]ij δkl.

(16.87)

In the above, the fourth-order tensor U is defined as

U ≡
∑
α∈A

∑
β∈A

[J−1]
αβ

sα ⊗ mα ⊗ [s̄β ⊗ mβ + m̄β ⊗ sβ ]. (16.88)

An approximate formula for the elastoplastic tangent modulus tensor has been employed
by Miehe (1996a) which can be obtained by setting E := IS and F e trial

iso := F e
iso in the

above exact expression. At the beginning of the first global equilibrium iteration of any
load increment – when all plastic multipliers have been reset to zero – we have E = IS and
F e trial
iso = F e

iso and the approximate operator coincides with the exact one.

16.8. Numerical examples

To illustrate the application of the numerical framework described in the previous sections
of this chapter, two numerical examples involving the planar double-slip single crystal
implementation are shown here. The examples comprise a classical problem of symmetric
strain localisation on a rectangular strip as well as an unsymmetric localisation problem. Both
examples have been run with the standard version of program HYPLAS that accompanies this
book. The full Newton–Raphson scheme, which relies on the above described spatial tangent
moduli, has been adopted in the global equilibrium iterations.
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16.8.1. SYMMETRIC STRAIN LOCALISATION ON A RECTANGULAR STRIP

In the present example we simulate the phenomenon of strain localisation on a single-
crystal rectangular strip subjected to finite axial stretching. This problem has been thoroughly
analysed by Miehe (1996a,b). Similar problems have been considered by Peirce et al.
(1982), Needleman et al. (1985), Rashid and Nemat-Nasser (1995) and Steinmann and Stein
(1996) in the rate-dependent context. The geometry, boundary conditions and finite element
meshes adopted are illustrated in Figure 16.9. The material parameters are the same as in
the model problem of Section 16.6. They are listed in Table 16.2 (page 713). Note that
in the present case, where θ = β = 60o, the orientation of the crystal lattice is perfectly
symmetric with respect to the vertical axis. Due to this symmetry, only one quarter of the strip
with appropriate boundary conditions imposed on the symmetry edges is used in the finite
element discretisation. In view of the plastic incompressibility of single crystals, the use of an
appropriate finite element is absolutely essential in order to avoid volumetric locking. Here we
adopt the four-noded F -bar quadrilateral described in Chapter 15. As shown in Chapter 15,
this element is particularly suitable to treat finite isochoric deformations as well as to capture
strain localisation phenomena. Two different meshes are used to discretise the symmetric
quarter: a 10 × 30 and a 20 × 60 element mesh. In order to trigger strain localisation, for
both meshes the element nearest the centre of the strip is made weaker than the others. For
the weakened element, all material properties, except the hardening curve, are the same as
those of Table 16.2. In the hardening curve for the weakened element the resolved yield
stress, τy , for any value of γ is 90% of that given by the hardening curve of Table 16.2.

A final vertical displacement u = 5 mm is imposed in 13 and 23 increments, respectively,
for the 10 × 30 and the 20 × 60 element mesh. The reactions on the constrained edge
obtained in the numerical simulation are plotted in Figure 16.10 against the prescribed vertical
deflection. The force–deflection curve obtained with a larger number of smaller displacement
increments is also plotted (the solid line) in Figure 16.10. It gives a better picture of the
complete equilibrium path. In spite of the size of the incremental displacements used in
the calculations with 13 and 23 increments (in both cases the first two increments are:
∆u1 = 2.0 mm and ∆u2 = 1.5 mm), the corresponding reactions are virtually identical to the
reactions shown on the solid line. This is an obvious consequence of the high accuracy of the
exponential map-based numerical integration scheme. The deformed meshes at u = 3.5 mm,
u = 4.5 mm and u = 5.0 mm are depicted in Figures 16.11 and 16.12. For better visualisation,
the deformed discretised symmetric quarter is mirrored into the other three quadrants. The
localised shear bands are clearly visible in both meshes at later stages of deformation.

For both meshes, the convergence tolerance for the relative residual norm in the equi-
librium iterations has been set to 10−7%. Such a tolerance, which is far smaller than that
required for engineering purposes, has been selected only to emphasise the quadratic rates of
asymptotic convergence achieved as a result of the exact linearisation of the relevant equa-
tions. Table 16.4 shows the evolution of the relative residual norm during Newton–Raphson
iterations for typical increments with the 20 × 60 element mesh. The relatively higher number
of iterations needed for convergence in increment 6 (ending at u6 = 3.875 mm) is due to the
fact that the shear band is being formed at that stage. Under such conditions, large rotations
of the crystal lattice occur within the increment in elements along the shear band. This may
cause the set of active systems at the corresponding Gauss points to change a few times
during the global iterations before the converged equilibrium configuration is found. Similar
phenomena can be observed with other multisurface plasticity models such as the Tresca
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Figure 16.9. Rectangular strip. Geometry and finite element mesh.
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Figure 16.10. Rectangular strip. Reaction–deflection diagram.
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u = 3.5 mm u = 4.5 mm u = 5.0 mm

Figure 16.11. Rectangular strip. Deformed configurations for 10 × 30 mesh.

u = 3.5 mm u = 4.5 mm u = 5.0 mm

Figure 16.12. Rectangular strip. Deformed configurations for 20 × 60 mesh.
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Table 16.4. Rectangular strip. Convergence table.

Relative residual norm (%) – 20 × 60 mesh

Iteration number Increment 6 Increment 13 Increment 20

1 0.201249 E + 01 0.210379 E + 02 0.187277 E + 02
2 0.543621 E + 01 0.138596 E + 01 0.889781 E + 01
3 0.129385 E + 01 0.171953 E − 00 0.291015 E − 01
4 0.106128 E + 00 0.142736 E − 01 0.171479 E − 05
5 0.592669 E − 01 0.645938 E − 04 0.444649 E − 10
6 0.603329 E − 01 0.212211 E − 09
7 0.693394 E − 02
8 0.367075 E − 03
9 0.916724 E − 09

and Mohr–Coulomb models whose implementation is discussed in Chapter 8. This is also
frequently observed in contact problems near sharp contacting corners. It is important to
note, however, that quadratic convergence rates are restored as the converged solution is
approached. A possible alternative to improving convergence under such conditions could
be the use of line-searches (Crisfield, 1991) in conjunction with the global Newton iterations.

16.8.2. UNSYMMETRIC LOCALISATION

We now solve a problem where strain localisation on the rectangular strip occurs in an
unsymmetric mode. The geometry of the problem is the same as in the previous example
(Figure 16.9, page 718). With the exception of the lattice orientation angle θ, the material
parameters are also the same as in the previous example (Table 16.2, page 713). Here the
crystal lattice orientation angle θ is chosen as

θ = 75o.

The angle between the slip systems remains β = 60o. The slip systems are then no longer
symmetrically oriented with respect to the vertical axis and the whole strip (rather than the
symmetric quarter adopted in the previous example) has to be discretised. A mesh of 20 ×
60 four-noded F -bar elements is used to discretise the strip (Figure 16.13). The vertical
displacement is prescribed for all nodes at the top and bottom edges. Here, we consider two
situations:

(a) clamped condition – constrained horizontal displacement of the top and bottom edges;

(b) free edges – only the mid-side nodes A and B are fixed in the horizontal direction.

The strip is stretched up to u = 9 mm. A total of 77 and 56 increments are used, respectively,
for the clamped and free edge conditions. The reaction–deflection diagrams obtained are
shown in Figure 16.14. A peak reaction of approximately 3.8 kN is observed for both
cases. The corresponding configurations are u = 3.25 mm for the clamped condition and
u = 4.25 mm for the free edge. These configurations are reached, respectively, in ten and
eight displacement increments. The sharp decrease in reactions observed in the graphs
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Figure 16.13. Unsymmetric localisation. Finite element model.

corresponds to the formation of shear bands which, in contrast to the previous example,
are unsymmetrically oriented with respect to the axis of stretching. The unsymmetric shear
bands are depicted in Figures 16.15 and 16.16, which show the deformed configurations at
u = 4.0 mm, u = 6.5 mm and u = 9.0 mm. Unlike in the previous example, no material
imperfection (weakened element) is required here to trigger localisation. The non-uniform
state of stress generated due to the unsymmetric lattice orientation is sufficient. In fact, if
the four elements that share the central node are weakened (with the same properties as the
weakened elements of the previous example), the results obtained are virtually identical to
those shown here.

16.9. Viscoplastic single crystals

One of the important physical properties of single crystal alloys is their distinctive resistance
to creep failure at high service temperatures when the crystallographic microstructure is
favourably oriented with respect to the direction of loading. This makes such materials
particularly suitable for applications such as, for instance, jet aero-engine turbine blades
which may operate at temperatures as high as 700–1000 ◦C for long periods of time.
Under such high temperatures the time-dependence of the plastic flow becomes an important
property that cannot be disregarded if numerical simulations are to produce realistic results.
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Figure 16.14. Unsymmetric localisation. Reaction–deflection diagram.

u = 4.0 mm
u = 6.5 mm

u = 9.0 mm

Figure 16.15. Unsymmetric localisation. Deformed configurations (free edges).
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u = 4.0 mm
u = 6.5 mm

u = 9.0 mm

Figure 16.16. Unsymmetric localisation. Deformed configurations (clamped).

16.9.1. RATE-DEPENDENT FORMULATION

A rate-dependent theory to model creep in single crystals can be obtained by introducing,
for instance, the following power law-type constitutive equation for the rates γ̇α of inelastic
deformation in each slip system:

γ̇α = γ̇0

( 〈τα〉
g

)1/M

, α = 1, . . . , 2nsyst, (16.89)

where, to maintain consistency with the material presented in the previous sections of this
chapter, we have adopted the mirrored slip-system convention (16.11). In the above, 〈·〉
denotes the Macauley bracket (refer to definition (12.89), page 505). The constants γ̇0 and M
are, respectively, the reference shear rate and the rate-sensitivity parameter. In the absence
of hardening, the reference shear stress, g, is also a constant. All material parameters are
generally temperature-dependent. Note that the reference shear rate is the slip rate in system
α when τα = g.

The model defined by the above equation does not possess yield surfaces and inelastic
flow occurs for all slip systems with τα > 0. Also note that, in terms of the nsyst physical
slip systems (without the mirrored system convention), equation (16.89) can be equivalently
expressed as

γ̇α = γ̇0

( |τα|
g

)1/M

sign(τα), α = 1, . . . , nsyst. (16.90)

Clearly, this law is a generalisation of Norton’s uniaxial creep equation (11.44) to single
crystal plasticity.
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Alternative slip-rate laws

Slip-rate laws alternative to the above definition can be adopted. The suitability of any law
for a particular single-crystal material should be determined by experimental evidence. In
defining alternative slip-rate equations, we could adopt, for instance, models which include
the use of yield surfaces (in analogy with the elastoplastic model discussed in previous
sections of this chapter). In such a case, one possibility could be, for instance, a multisurface
single-crystal generalisation of equation (11.6):

γ̇α =




1
µ

[( |τα|
τy

)1/ε

− 1
]

if Φα(τα, τy) ≥ 0

0 if Φα(τα, τy) < 0,

(16.91)

or a generalisation of Perzyna’s model:

γ̇α =




1
µ

[ |τα|
τy

− 1
]1/ε

if Φα(τα, τy) ≥ 0

0 if Φα(τα, τy) < 0,

(16.92)

where the material constants are analogous to those of the corresponding original models and
the yield functions Φα are defined according to (16.20).

16.9.2. THE EXPONENTIAL MAP-BASED INTEGRATION ALGORITHM

In view of the hyperelastic constitutive law, which defines τ as a function of F e, and the
viscoplastic slip rate equation (any of the above) that defines the slip rate γ̇α as a function of
τ, we may write

τα = τα(F e) and γ̇α = γ̇α(F e). (16.93)

Then, following a standard backward Euler discretisation of any of the above slip-rate laws,
we have

∆γα = ∆t γ̇α(F e
n+1). (16.94)

By substituting this last expression into the update formula (16.34) the integration of the
constitutive equations of the general viscoplastic single crystal model† within the interval
[tn, tn+1] is reduced to the solution of the following residual equation for F e

n+1:

S(F e) ≡ F e − F e trial exp
[
−∆t

nsyst∑
α=1

γ̇α(F e) sα ⊗ mα

]
= 0, (16.95)

where the subscript n + 1 has been omitted for notational convenience.

†Here, we assume that the models are perfectly viscoplastic. If hardening is considered, then an additional
hardening equation(s) needs to be added to the system.
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Figure 16.17. Rate-dependent model. Problem definition.

Table 16.5. Rate-dependent model problem. Material parameters.

Shear modulus: G = 80 769 MPa

Bulk modulus: K = 175 000 MPa

Reference shear stress: g = 180 MPa

Reference shear strain rate: γ̇0 = 0.002 h−1

Rate sensitivity parameter: M = 0.1961

The local Newton–Raphson algorithm

The exact Jacobian used in the Newton–Raphson scheme for the solution of residual
equation (16.95) is obtained simply by differentiating S with respect to the equation variable
F e

n+1. Again omitting the n + 1 subscript, we have in Cartesian components

Jijkl ≡
[

dS

dF e

]
ijkl

= δikδjl + ∆t F e trial
im Emjpq

[nsyst∑
α=1

sα
0 ⊗ mα

0 ⊗
dγ̇α

dF e

]
pqkl

, (16.96)

where only the derivative dγ̇α/dF e depends on the particular slip-rate model adopted.
Clearly, the use of the above exact Jacobian results in quadratic rates of asymptotic
convergence in the iterative solution of the nonlinear algebraic residual system.

16.9.3. THE SPATIAL TANGENT MODULUS: NEO-HOOKEAN-BASED MODEL

Here we shall assume, as in the rate-independent case discussed earlier, the hyperelastic law to
be given by the regularised neo-Hookean model (16.59). Again, the derivation of the tangent
modulus associated with the above integration algorithm is relatively lengthy. Only the final
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Figure 16.18. Rate-dependent model problem. Time versus elongation.

expression is shown here. In the present case, the spatial tangent modulus is given by

aijkl =
[

G

J4/3
F : A : H +

K

J
I ⊗ I

]
ijkl

− σilδjk, (16.97)

where
Fijkl ≡ δik(F e

iso)jl + δjk(F e
iso)il − 1

3δij(F e
iso)kl (16.98)

and
Hijkl ≡ δikFlj − 1

3Fijδkl. (16.99)

The tensor A is the only algorithm-related term taking part in the assemblage of a. It is
defined as

A ≡ ∂F e
iso

∂F iso
. (16.100)

The final expression for A reads
A = J−1 : C, (16.101)

where C is defined by the components

Cijkl ≡−δik (F p −1
n+1 )

lj
. (16.102)

The above expression for A is obtained by linearising (16.95), also taking into account the
relationship between F e and F and the respective isochoric components.

16.9.4. RATE-DEPENDENT CRYSTAL: MODEL PROBLEM

Here, we consider a simple model problem where a single finite element is subjected to
uniform creep stretching under the action of a constant load. A planar double-slip-rate-
dependent single crystal model with slip-rate equation (16.89) is adopted. The problem is
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defined in Figure 16.17. The dimensions of the element are L0 = W0 = 1 mm. Its thickness
is also 1 mm. The material properties of the rate-dependent model are listed in Table 16.3.
Initially, a total load F = 500 N is applied instantaneously (with ∆t = 0), subjecting the
element to a uniform axial stress of 500 MPa. The element is subsequently allowed to creep
for 20 hours under constant load (stresses will increase due to cross-section reduction).
The creeping phase is carried out in 10 and 100 equal-size time increments ∆t = 2h and
∆t = 0.2h, respectively. For both cases, the elongation of the element, L/L0 where L is
the deformed length, obtained in the simulation is plotted against time in Figure 16.18. The
results show that, in the present algorithmic set-up, large time steps are possible without
significant loss of accuracy. In addition, we remark that, as in the rate-independent problems
reported in Section 16.8, the rates of convergence to equilibrium obtained with the rate-
dependent model are also quadratic.





Appendices





A ISOTROPIC FUNCTIONS OF A
SYMMETRIC TENSOR

T his appendix presents some important definitions, properties and expressions involving
isotropic scalar- and symmetric tensor-valued functions of one symmetric tensor. Such

functions and their properties are exploited in various parts of this book in connection with
the definition of elastic and elastoplastic constitutive models as well as with their computer
implementation. Much of the material presented here is quite standard, so the proof to most
relations is omitted.

We remark that some of the formulae presented here for the tensor-valued functions have
been coded in program HYPLAS and are used in practice for the evaluation of functions as
well as function derivatives. The corresponding subroutines of HYPLAS are the following:

• DGISO2 – Derivative of a General ISOtropic symmetric tensor-valued function of a
symmetric tensor in 2-D (plane strain and axisymmetric conditions).

• DISO2 – Derivative of a particular class of ISOtropic symmetric tensor-valued function
of a symmetric tensor in 2-D/plane strain/axisymmetric conditions.

• ISO2 – evaluation of a particular class of ISOtropic symmetric tensor-valued functions
of a symmetric tensor in 2-D/plane strain/axisymmetric conditions.

• SPDEC2 – closed form SPectral DEComposition of symmetric tensors in 2-D.

In line with the general layout adopted throughout this book, the corresponding formulae
have been conveniently grouped in Boxes A.1–A.6 in the standard pseudo-code format.
Readers who are interested only in the computational implementation of the above-mentioned
formulae are referred directly to those boxes.

A.1. Isotropic scalar-valued functions

Let us start with the definition of the isotropic scalar-valued function of a symmetric tensor.
In what follows, S will denote the space of symmetric tensors in an n-dimensional space. A
function

φ(X) : L ⊂ S → R (A.1)

is said to be isotropic if
φ(X) = φ(QXQT ) (A.2)

for all rotations Q.
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c© 2008 John Wiley & Sons, Ltd
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A.1.1. REPRESENTATION

In three-dimensional space, a scalar function of a symmetric tensor is isotropic if and only if
it admits the representation

φ(X) = φ̄(I1(X), I2(X), I3(X)), ∀ X ∈ L, (A.3)

where Ii(X) (i = 1, 2, 3) are the principal invariants of X (refer to definition (2.72),
page 27). Note that the principal invariants themselves are isotropic functions.

Another useful representation of isotropic scalar functions of a symmetric tensor is in
terms of principal values (eigenvalues) of the argument. A scalar function of a symmetric
tensor (in three-dimensional space) is isotropic if and only if it has the representation

φ(X) = φ̂(x1, x2, x3), ∀ X ∈ L, (A.4)

where xi (i = 1, 2, 3) are the eigenvalues of X and φ̂ : R 3→ R has the symmetries

φ̂(x1, x2, x3) = φ̂(x2, x1, x3) = φ̂(x1, x3, x2). (A.5)

A.1.2. THE DERIVATIVE OF AN ISOTROPIC SCALAR FUNCTION

The derivative of an isotropic function φ of the above type is the symmetric second-order
tensor

∂φ

∂X
.

This tensor is coaxial with X , i.e. any eigenvector of X is an eigenvector of ∂φ/∂X, so that
these two tensors commute

∂φ

∂X
X = X

∂φ

∂X
. (A.6)

With {ei} denoting an orthonormal basis of eigenvectors of X , the spectral representation of
∂φ/∂X reads

∂φ

∂X
=
∑

i

∂φ̂

∂xi
ei ⊗ ei; (A.7)

that is, the principal values (∂φ/∂X)i of ∂φ/∂X are given by

(
∂φ

∂X

)
i

=
∂φ̂

∂xi
. (A.8)

This relation is proved by Ogden (1984).
It is important to note that the derivative ∂φ/∂X , as well as the product (A.6), are

themselves isotropic symmetric tensor-valued functions of a symmetric tensor. That this
statement is true becomes clear in the next section, which discusses isotropic tensor functions
of a tensor.
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A.2. Isotropic tensor-valued functions

A symmetric tensor-valued function of a symmetric tensor

Y (X) : L ⊂ S → S (A.9)

is said to be isotropic if
Q Y (X) QT = Y (QXQT ) (A.10)

for all rotations Q.
The following important property holds for any isotropic function defined as above. If Y

is isotropic, then Y (X) and X are coaxial and Y (X) and X commute

Y (X) X = X Y (X). (A.11)

A.2.1. REPRESENTATION

Let us now focus on the representation of isotropic tensor-valued functions of a tensor
in three-dimensional space. A tensor function is isotropic if and only if it admits the
representation

Y (X) = α0 I + α1 X + α2 X 2, (A.12)

where

α0 = α0(I1(X), I2(X), I3(X));

α1 = α1(I1(X), I2(X), I3(X));

α2 = α2(I1(X), I2(X), I3(X)),

(A.13)

are scalar-valued functions of the principal invariants of X . Note that the functions α0, α1
and α2 are themselves isotropic scalar functions of a symmetric tensor.

Further, if the domain of Y is a set of invertible symmetric tensors, then Y is isotropic if
and only if it has the representation

Y (X) = β0 I + β1 X + β−1 X−1, (A.14)

where the scalars βΓ (Γ = 0, 1, −1) are functions of the principal invariants (2.72) of X .
Assertions (A.12) and (A.14) are well-known representation theorems for isotropic tensor

functions. Their formal proof can be found, for instance, in Gurtin (1981) and Ogden (1984).

Principal values representation

An alternative to (A.12) and (A.14), which is of particular relevance in the context of the
present book, is the principal values representation of isotropic tensor functions. We remark
that this representation is extensively exploited in the computational implementation of
hyperelastic and elastoplastic solids in the program HYPLAS. The remainder of this appendix
focuses exclusively on the principal values representation of isotropic tensor functions and
many of the formulae presented are used in the computation of function values as well as
function derivatives in HYPLAS.
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The principal values representation is established in the following. A symmetric tensor-
valued function of a symmetric tensor is isotropic if and only if there exists a scalar function
y : R n → R such that

Y (X) =
p∑

i=1

yi Ei, (A.15)

where p is the number of distinct eigenvalues of Y (and X) and Ei denotes the eigenprojec-
tions of X (and Y ) (refer to Section 2.2.8, from page 25). In two-dimensional space (n = 2),
the eigenvalues yi of Y are obtained from the eigenvalues xi of X as

y1 = y(x1, x2)
y2 = y(x2, x1).

(A.16)

In three-dimensional space (n = 3), the eigenvalues yi are given by

y1 = y(x1, x2, x3)
y2 = y(x2, x3, x1)
y3 = y(x3, x1, x2),

(A.17)

and the function y has the symmetry property

y(a, b, c) = y(a, c, b) (A.18)

for arbitrary a, b and c.

A.2.2. THE DERIVATIVE OF AN ISOTROPIC TENSOR FUNCTION

Assume that the isotropic tensor function Y is differentiable and let the fourth-order tensor
D be its derivative

D(X) ≡ dY (X)
dX

. (A.19)

In an n-dimensional space, if X has n distinct eigenvalues (p = n), a straightforward
application of the product rule to the definition (A.15) leads to the following expression

D(X) =
n∑

i=1

{
Ei ⊗

dyi

dX
+ yi

dEi

dX

}
, (A.20)

or, after applying the chain rule,

D(X) =
n∑

i=1

{
yi

dEi

dX
+

n∑
j=1

∂yi

∂xj
Ei ⊗

dxj

dX

}
. (A.21)

Remark A.1. If there are no repeated eigenvalues, closed formulae for D(X) in the
two- and three-dimensional cases can be obtained simply by taking the derivatives of
explicit expressions for xi and Ei. However, in the presence of repeated eigenvalues, the
eigenprojections (see expression (2.65)) as well as the eigenvalues are not differentiable –
in spite of the differentiability of Y . The final explicit formulae for the derivative D(X) at
arguments with repeated eigenvalues are obtained as limits of the above explicit expression.
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Box A.1. Computation of general isotropic tensor functions of a tensor in two
dimensions.

(i) Given X , compute its eigenvalues, xα, and eigenprojections, Eα (α = 1, 2) – GOTO
Box A.2

(ii) Compute the eigenvalues of Y as:

y1 := y(x1, x2)
y2 := y(x2, x1)

(iii) Assemble Y :

Y (X) :=

p∑
α=1

yα Eα

where p is the number of distinct eigenvalues

A.3. The two-dimensional case

In the two-dimensional space, the characteristic equation (2.69) (page 27) yields the following
quadratic equation for the eigenvalues xα of X:

x2α − I1 xα + I2 = 0, α = 1, 2, (A.22)

where

I1 = tr[X] = X11 + X22

I2 = det[X] = X11X22 − X12X21.
(A.23)

The solution of the quadratic equation (A.22) provides the exact formula for the eigenvalues
of X:

x1 =
I1 +

√
I21 − 4I2
2

; x2 =
I1 −

√
I21 − 4I2
2

. (A.24)

If x1 
= x2, (2.65)1 results in the following closed formula for computation of the
eigenprojections of X in two dimensions:

Eα =
1

2 xα − I1
[X + (xα − I1)I ]. (A.25)

On the other hand, if x1 = x2, then (2.65)2 applies.
With the above closed expressions for eigenvalues and eigenprojections at hand, the

computation of general isotropic tensor functions in two dimensions is carried out according
to the pseudo-code summarised in Boxes A.1 and A.2. The algorithm of Box A.2 carries out
only the spectral decomposition required in the function evaluation. This procedure has been
implemented in subroutine SPDEC2 (SPECtral DEComposition of tensors in 2-D) of program
HYPLAS.
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Box A.2. Computation of eigenvalues and eigenprojections in two dimensions.

HYPLAS procedure: SPDEC2

(i) Given X , compute its principal invariants

I1 = tr[X] = X11 + X22

I2 = det[X ] = X11X22 − X12X21

(ii) Compute the eigenvalues of X

x1 =
I1 +

√
I2
1 − 4I2

2

x2 =
I1 −

√
I2
1 − 4I2

2

(iii) Compute eigenprojections of X

– If xi �= x2, then for α = 1, 2,

Eα =
1

2 xα − I1
[X + (xα − I1)I ]

– Else, if x1 = x2 (p = 1), then
E1 = I

A.3.1. TENSOR FUNCTION DERIVATIVE

In the two-dimensional case, we want to find closed-form expressions for the derivative

D(X) =
2∑

α=1

{
yα

dEα

dX
+

2∑
β=1

∂yα

∂xβ
Eα ⊗ dxβ

dX

}
. (A.26)

If the eigenvalues of X are distinct, we have (Carlson and Hoger, 1986)

dxi

dX
= Ei. (A.27)

A straightforward differentiation of (A.24) and (A.25), followed by the substitution of the
result together with (A.27) into (A.26), gives

D(X) =
y1 − y2
x1 − x2

[IS − E1 ⊗ E1 − E2 ⊗ E2] +
2∑

α=1

2∑
β=1

∂yα

∂xβ
Eα ⊗ Eβ , (A.28)

where IS is the fourth-order tensor defined by (2.110) (page 31). As pointed out in
Remark A.2, if the eigenvalues are repeated, (A.25) is singular and cannot be differentiated.
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Box A.3. Computation of the derivative of a general isotropic tensor function in
two dimensions.

HYPLAS procedure: DGISO2

(i) Given X , compute its eigenvalues, xα, and eigenprojections, Eα (α = 1, 2) – GOTO
Box A.2

(ii) Compute the eigenvalues yα of Y and their derivatives ∂yα/∂xβ for α = 1, 2 and
β = 1, 2

(iii) Assemble the derivative

D(X) :=




y1 − y2

x1 − x2
[IS − E1 ⊗ E1 − E2 ⊗ E2]

+
2∑

α=1

2∑
β=1

∂yα

∂xβ
Eα ⊗ Eβ if x1 �= x2

(
∂y1

∂x1
− ∂y1

∂x2

)
IS +

∂y1

∂x2
I ⊗ I if x1 = x2

Also, the right-hand side of the above formula for D becomes indeterminate. In this case, D

is the limit

lim
x1→x2

D(X), (A.29)

which is obtained by repeated applications of l’Hôspital’s rule to (A.28). This tedious but
straightforward derivation of the limit is omitted here. The final expression for the derivative
at arguments with x1 = x2, which exists for sufficiently smooth functions y, is

D(X) =
(

∂y1
∂x1

− ∂y1
∂x2

)
IS +

∂y1
∂x2

I ⊗ I. (A.30)

The algorithm for computation of the derivative of Y (X) based on the above closed formulae
is described in Box A.3. The procedure is implemented in subroutine DGISO2 (Derivative of
a General ISOtropic tensor function of one tensor in 2-D) of program HYPLAS.

Remark A.2. In practical computations, the signs = and 
=, that decide which formula is to
be used in the Boxes A.2 and A.3, are replaced by a check that takes the numerical precision
of the machine used into account. For generic eigenvalues xi and xj we proceed as follows:

If

∣∣∣∣xi − xj

xi

∣∣∣∣< εtol, then assume xi = xj .

Otherwise, assume xi 
= xj , where εtol is a small tolerance whose value depends on the
machine precision.
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A.3.2. PLANE STRAIN AND AXISYMMETRIC PROBLEMS

In plane strain and axisymmetric solid mechanics problems, isotropic tensor functions of a
tensor are frequently defined as

Y (X) =
p∑

α=1

yα Eα + y3 E3, (A.31)

where p ≤ 2 is the number of in-plane distinct eigenvalues, E3 is the out-of-plane eigen-
projection and y3 is the eigenvalue associated with the out-of-plane direction. In this case,
the eigenvalues {y1, y2, y3} satisfy the general three-dimensional definition (A.17) and the
out-of-plane eigenprojection is fixed. Accordingly, the derivative of Y when the in-plane
eigenvalues are distinct, is given by:

D(X) =
2∑

α=1

{
yα

dEα

dX
+

2∑
β=1

∂yα

∂xβ
Eα ⊗ dxβ

dX

}

+
2∑

α=1

∂yα

∂x3
Eα ⊗ dx3

dX
+

3∑
j=1

∂y3
∂xj

E3 ⊗
dxj

dX
. (A.32)

The first summation on the right-hand side of the above equation is identical to the
corresponding two-dimensional expression and is computed by the closed formula listed in
Box A.3 for x1 
= x2. After straightforward manipulations, the contribution of the remaining
terms is found to be

D3(X) ≡
2∑

α=1

{
∂yα

∂x3
Eα ⊗ E3 +

∂y3
∂xα

E3 ⊗ Eα

}
+

∂y3
∂x3

E3 ⊗ E3. (A.33)

The assemblage of the complete derivative is attained by adding D3(X) to the corresponding
equation of Box A.3. This operation is included in subroutine DGISO2.

With repeated in-plane eigenvalues, x1 = x2, the above formula is replaced with

D3(X) =
∂y1
∂x3

Ip ⊗ E3 +
∂y3
∂x1

E3 ⊗ Ip +
∂y3
∂x3

E3 ⊗ E3, (A.34)

where Ip is the second-order plane orthogonal projection tensor. It is important to note that
in Box A.3, IS and I are tensors on the plane. When applying the formulae of Box A.3 in
plane strain/axisymmetric situations, IS and I must be replaced, respectively, with the plane
projection operators Ip and Ip. The tensor Ip has the following matrix representation:

Ip =


1 0 0
0 1 0
0 0 0


 (A.35)

in an orthonormal system where the out-of-plane direction is associated with the third line
and column. Analogously, the Cartesian components of Ip are given by

[Ip]ijkl =

{
1
2 (δikδjl + δilδjk) i, j, k, l ∈ {1, 2}
0 otherwise.

(A.36)
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A.4. The three-dimensional case

A.4.1. FUNCTION COMPUTATION

In the three-dimensional space, the characteristic equation (2.73) (page 27) yields the cubic
equation

x3i − I1 x2i + I2 xi − I3 = 0, (A.37)

for the eigenvalues of X , where

I1 = tr[X]

I2 = 1
2{(trX)2 − tr[X2]}

I3 = det[X].

(A.38)

As the X is real by assumption, its eigenvalues xi are real and the solution of (A.37) can be
computed exactly by the following expressions:

x1 = −2
√

Q cos
[
θ

3

]
+

I1
3

;

x2 = −2
√

Q cos
[
θ + 2π

3

]
+

I1
3

;

x3 = −2
√

Q cos
[
θ − 2π

3

]
+

I1
3

,

(A.39)

where Q and θ are defined as

Q =
I21 − 3I2

9
(A.40)

and

θ = cos−1
[

R√
Q3

]
, (A.41)

with

R =
−2I31 + 9I1I2 − 27I3

54
. (A.42)

If xi is not repeated, the following closed formula for the eigenprojection Ei in three
dimensions is obtained from (2.65):

Ei =
xi

2 x3i − I1 x2i + I3

[
X2 − (I1 − xi) X +

I3
xi

I

]
. (A.43)

If xj is repeated (with multiplicity 2) and xi 
= xj , then Ei can be computed by the expression
above and Ej is given simply by

Ej = I − Ei, (A.44)

and, if x1 = x2 = x3, then (2.65)2 applies.
Given X , the tensor function Y (X) is computed as described in Boxes A.4 and A.5,

where the above closed formulae for eigenvalues and eigenprojections are used.
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A.4.2. COMPUTATION OF THE FUNCTION DERIVATIVE

In three dimensions the derivation of the closed-form expressions for the derivative is far more
laborious than the derivation of the two-dimensional counterpart. The path for derivation,
however, is the same. Firstly, we write the symbolic expression for D(X):

D(X) =
3∑

i=1

{
yi

dEi

dX
+

3∑
j=1

∂yi

∂xj
Ei ⊗

dxj

dX

}
. (A.45)

If there are three distinct eigenvalues, the explicit formula for D is obtained simply by taking
the derivatives of the closed expressions for xi and Ei, given in Box A.5. Again, if there
are two or three identical eigenvalues, the expression for Ei becomes indefinite and the
final formula for the derivative is obtained by applying a limiting procedure to the general
formula valid for three distinct eigenvalues. Note that the limiting procedure in the three-
dimensional case is quite lengthy but, as in the two-dimensional case, involves only the
repetitive application of l’Hôspital’s rule. The final expressions are gathered in Box A.6.

In Box A.6, dX2/dX denotes the derivative of the square of a tensor with Cartesian
components given by[

dX2

dX

]
ijkl

=
1
2

(δikXlj + δilXkj + δjlXik + δkjXil) (A.46)

and the scalars s1, s2, . . . , s6 have been defined as

s1 =
ya − yc

(xa − xc)2
+

1
xa − xc

(
∂yc

∂xb
− ∂yc

∂xc

)

s2 = 2xc
ya − yc

(xa − xc)2
+

xa + xc

xa − xc

(
∂yc

∂xb
− ∂yc

∂xc

)

s3 = 2
ya − yc

(xa − xc)3
+

1
(xa − xc)2

(
∂ya

∂xc
+

∂yc

∂xa
− ∂ya

∂xa
− ∂yc

∂xc

)

s4 = 2xc
ya − yc

(xa − xc)3
+

1
xa − xc

(
∂ya

∂xc
− ∂yc

∂xb

)
+

xc

(xa − xc)2

(
∂ya

∂xc
+

∂yc

∂xa
− ∂ya

∂xa
− ∂yc

∂xc

)

s5 = 2xc
ya − yc

(xa − xc)3
+

1
xa − xc

(
∂yc

∂xa
− ∂yc

∂xb

)
+

xc

(xa − xc)2

(
∂ya

∂xc
+

∂yc

∂xa
− ∂ya

∂xa
− ∂yc

∂xc

)

s6 = 2x2c
ya − yc

(xa − xc)3
+

xaxc

(xa − xc)2

(
∂ya

∂xc
+

∂yc

∂xa

)

− x2c
(xa − xc)2

(
∂ya

∂xa
+

∂yc

∂xc

)
− xa + xc

xa − xc

∂yc

∂xb
. (A.47)

Here and in the closed expression for two distinct eigenvalues, (a, b, c) are cyclic permuta-
tions of (1,2,3).

A.5. A particular class of isotropic tensor functions

Let us now consider the subset of the general class of functions discussed above for which y
is a function of a single argument. Given y : R → R, a class of isotropic tensor function of a
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Box A.4. Computation of general isotropic tensor functions of a tensor in three
dimensions.

(i) Given X , compute its eigenvalues, xi, and eigenprojections, Ei (i = 1, 2, 3) – GOTO
Box A.5

(ii) Compute the eigenvalues of Y as

y1 := y(x1, x2, x3)

y2 := y(x2, x3, x1)

y3 := y(x3, x1, x2)

(iii) Assemble Y

Y (X) :=

p∑
i=1

yi Ei

where p is the number of distinct eigenvalues

symmetric tensor can be constructed as

Y (X) ≡
p∑

i=1

y(xi) Ei. (A.48)

Closed-form expressions for the derivative of functions of this class, employing the
eigenprojection-based representation, were derived by Carlson and Hoger (1986). Complete
algorithms using compact expressions for computation of functions of the above class (and
their derivatives) at invertible arguments have been proposed by Miehe (1993).

Remark A.3. Functions expressed as such define an important class of isotropic tensor-
valued functions of a tensor and are, clearly, particular cases of the general form (A.15).
The families of strain measures defined by (3.56) (page 53) and (3.60), for instance, are
members of this class. Other important functions, such as the tensor square root and the
tensor exponential, can also be expressed in the format (A.48) by setting y(xi) ≡

√
xi and

y(xi) ≡ exp(xi), respectively.

As (A.48) is a particular case of (A.15), the computation of Y (X ) and its derivative
can be carried out in a manner entirely analogous to the procedure described in the previous
section. Only the main expressions are summarised below. They are promptly obtained from
their general counterparts simply by eliminating the dependence of the eigenvalues yi of Y

on xj for i 
= j.
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Box A.5. Computation of eigenvalues and eigenprojections in three dimensions.

(i) Given X , compute its principal invariants

I1 = tr[X]

I2 = 1
2
{(tr X)2 − tr[X2]}

I3 = det[X]

(ii) Compute the eigenvalues of X

R =
−2 I3

1 + 9 I1 I2 − 27 I3

54

θ = cos−1

[
R√
Q3

]

Q =
I2
1 − 3 I2

9

x1 = −2
√

Q cos

[
θ

3

]
+

I1

3

x2 = −2
√

Q cos

[
θ + 2π

3

]
+

I1

3

x3 = −2
√

Q cos

[
θ − 2π

3

]
+

I1

3

(iii) Compute the eigenprojections of X

– If xi �= x2 �= x3, then for i = 1, 2, 3,

Ei =
xi

2 x3
i − I1 x2

i + I3

[
X2 − (I1 − xi) X +

I3

xi
I

]

– Else, if xi �= xj = xk, then compute Ei using the expression above and

Ej = I − Ei

– Else (x1 = x2 = x3),
E1 = I

A.5.1. TWO DIMENSIONS

After closed-form evaluation of xi and Ei in Box A.2, the following expression is used to
compute Y (X) in two dimensions

Y (X) =




2∑
i=1

y(xi) Ei if x1 
= x2

y(x1) I if x1 = x2.

(A.49)
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Box A.6. Computation of the derivative of a general isotropic tensor function in
three dimensions.

(i) Given X , compute its eigenvalues, xi, and eigenprojections, Ei (i = 1, 2, 3) – GOTO
Box A.5

(ii) Compute the eigenvalues yi of Y and their derivatives ∂yi/∂xj for i, j = 1, 2, 3

(iii) Assemble the derivative

D(X) =




3∑
a=1

ya

(xa − xb)(xa − xc)

{
dX2

dX
− (xb + xc) IS

− [(xa − xb) + (xa − xc)]Ea ⊗ Ea

− (xb − xc)(Eb ⊗ Eb − Ec ⊗ Ec)

}

+
3∑

i=1

3∑
j=1

∂yi

∂xj
Ei ⊗ Ej

if x1 �= x2 �= x3

s1
dX2

dX
− s2 IS − s3 X ⊗ X + s4 X ⊗ I

+ s5 I ⊗ X − s6 I ⊗ I
if xa �= xb = xc(

∂y1

∂x1
− ∂y1

∂x2

)
IS +

∂y1

∂x2
I ⊗ I if x1 = x2 = x3

The derivative of Y (X) is computed by the expressions

D(X) =




y(x1) − y(x2)
x1 − x2

[IS − E1 ⊗ E1 − E2 ⊗ E2]

+
2∑

α=1

y′(xα) Eα ⊗ Eα if x1 
= x2

y′(x1) IS if x1 = x2.

(A.50)

A.5.2. THREE DIMENSIONS

In three dimensions, the eigenvalues and eigenprojection tensors of X are firstly evaluated
following the algorithm of Box A.5. With those at hand, the function Y (X) is computed as

Y (X) =




3∑
i=1

y(xi) Ei if x1 
= x2 
= x3

y(xa) Ea + y(xb) (I − Ea) if xa 
= xb = xc

y(x1) I if x1 = x2 = x3

(A.51)
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where the subscripts (a, b, c) are cyclic permutations of (1,2,3). The computation of the
derivative, D(X), follows the expressions

D(X) =




3∑
a=1

{
y(xa)

(xa − xb)(xa − xc)

[
dX2

dX
− (xb + xc) IS

− [(xa − xb) + (xa − xc)]Ea ⊗ Ea

− (xb − xc)(Eb ⊗ Eb − Ec ⊗ Ec)
]

+ y′(xa) Ea ⊗ Ea

}
if x1 
= x2 
= x3

s1
dX2

dX
− s2 IS − s3 X ⊗ X + s4 X ⊗ I + s5 I ⊗ X − s6 I ⊗ I

if xa 
= xb = xc

y′(x1) IS if x1 = x2 = x3

(A.52)

with the scalars s1, . . . , s6 now defined as

s1 =
y(xa) − y(xc)

(xa − xc)2
− y′(xc)

xa − xc

s2 = 2xc
y(xa) − y(xc)

(xa − xc)2
− xa + xc

xa − xc
y′(xc)

s3 = 2
y(xa) − y(xc)

(xa − xc)3
− y′(xa) + y′(xc)

(xa − xc)2

s4 = s5 = xc s3

s6 = x2c s3.

(A.53)

Remark A.4. The closed expressions (A.50) and (A.52) for the function derivative are equiv-
alent to those derived by Carlson and Hoger (1986). Their equivalence can be established
(after some algebra) by considering the standard identity for the directional derivative of the
square of a tensor in a generic direction T,

dX2

dX
[T ] = XT + TX,

together with the identity
(Ei ⊗ Ei) T = Ei T Ei,

demonstrated by Carlson and Hoger, and the general closed formulae (2.65) for Ei.

A.6. Alternative procedures

We remark that the methodology described in the preceding sections is by no means the
only possible way to compute isotropic tensor function/derivatives of the present type. The
formulae adopted here are an alternative to the eigenvector-based representation obtained
by Chadwick and Ogden (1971), which is widely used in the computational treatment of
solid mechanics problems (see Crisfield (1997), Chapter 13, for instance). Also relying on
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the eigenprojection-based representation, a methodology similar to that adopted here was
introduced by Miehe (1993, 1998a), where a particularly compact representation for the
function derivative is used. However, the compact representation allows only the computation
of the derivative at invertible arguments and cannot be used, for instance, to compute
tangent operators consistent with principal stress-based algorithms described in Chapter 8
for multisurface plasticity models. In that case, evaluation of the derivative at a generally
non-invertible argument (the elastic trial strain tensor) is necessary.





B THE TENSOR EXPONENTIAL

T his appendix describes the computational procedures for evaluation of the tensor expo-
nential function (or exponential map) and its derivative. It also describes the application

of the exponential map in the numerical solution of a class of initial value problems of
particular relevance in computational mechanics. Note that the exponential of a symmetric
tensor is a particular member of the class of isotropic tensor-valued functions described in
Section A.5 (page 740) and is obtained by setting y(xi) ≡ exp(xi) in expression (A.48). In
this case, the function as well as its derivatives can be computed by the procedures already
explained in that section. In the present appendix, however, we are concerned with the more
general tensor exponential function whose domain is the entire space of (symmetric and
unsymmetric) real tensors in ndim dimensions. The computational procedures described here
have been implemented in the following subroutines of the program HYPLAS:

• EXPMAP – EXPonential MAP computation.

• DEXPMP – Evaluation of the Derivative of the EXPonential MaP.

The corresponding pseudo-codes are provided, respectively, in Boxes B.1 and B.2.

B.1. The tensor exponential function

Consider the initial value problem defined by the tensor ordinary differential equation

Ẏ (t) = A Y (t), (B.1)

with initial condition
Y (t0) = Y 0, (B.2)

where the superimposed dot denotes differentiation with respect to t and A and Y 0 are given
(generally unsymmetric) constant tensors. The tensor exponential function (or exponential
map), exp[ · ], is the (unique) solution to the above problem

Y (t) = exp[(t − t0)A] Y 0. (B.3)

Explicitly, the tensor exponential function can be expressed by means of its series represen-
tation (Hirsch and Smale, 1974). For a generic tensor X , we have

exp[X ] =
∞∑

n=0

1
n!

X n. (B.4)

The above series is absolutely convergent for any argument X and, as its scalar counterpart,
can be used to evaluate the tensor exponential function to any prescribed degree of accuracy.

Computational Methods for Plasticity: Theory and Applications EA de Souza Neto, D Perić and DRJ Owen
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B.1.1. SOME PROPERTIES OF THE TENSOR EXPONENTIAL FUNCTION

The tensor exponential possesses some important properties (Gurtin, 1981; Hirsch and Smale,
1974) which are relevant in computational solid mechanics applications:

(a) The determinant of the exponential of a tensor satisfies

det[exp[X]] = exp[tr[X]]. (B.5)

Thus, the exponential tensor function maps traceless tensors onto unimodular ten-
sors, i.e.

tr[X ] = 0 ⇐⇒ det[exp[X]] = 1. (B.6)

This property is crucially important in the numerical treatment of finite plasticity
described in this book.

(b) By straightforward use of (B.4) we find that, for any invertible D,

exp[D X D−1] = D exp[X] D−1. (B.7)

In particular, for any orthogonal tensor Q, we have

exp[Q X QT ] = Q exp[X] QT , (B.8)

so that the tensor exponential is an isotropic function.

(c) For a generic tensor X , we have

exp[−X] = (exp[X])−1. (B.9)

(d) If C and D commute, i.e. if CD = DC, then

exp[C + D] = exp[C] exp[D] = exp[D] exp[C]. (B.10)

This property and (c) imply that for any X and integer n,

exp[n X] = (exp[X])n. (B.11)

(e) Let X be a skew-symmetric tensor (X = −XT ). Then,

Q = exp[X ], (B.12)

is a proper orthogonal tensor (a rotation) and the exponential map has the following
representation known as Rodrigues’ formula

exp[X] = I +
sin(‖x‖)
‖x‖ X +

1
2

[
sin(‖x‖/2)

‖x‖/2

]2
X2, (B.13)

where x is the axial vector of X . If ‖x‖ 
= n π for any odd n, then we have the
additional equivalent representation

exp[X] = I +
2

1 + ‖x̄‖2 [X̄ +X̄
2] (B.14)

whereX̄ is the skew-symmetric tensor with axial vector

x̄ =
tan(‖x‖/2)

‖x‖ x. (B.15)
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Box B.1. Computation of the exponential of a generally unsymmetric tensor.

HYPLAS procedure: EXPMAP

(i) Given X , initialise n = 0 and
exp[X] := I

(ii) Increment counter
n := n + 1

(iii) Compute n! and X n

(iv) Add new term to the series

exp[X] := exp[X] +
1

n!
X n

(v) Check convergence

IF ‖X n‖/n! < εtol THEN EXIT

ELSE GOTO (ii)

B.1.2. COMPUTATION OF THE TENSOR EXPONENTIAL FUNCTION

For a generic unsymmetric argument† the computation of the tensor exponential function is
carried out by simply truncating the infinite series with nmax terms, i.e. we compute

exp[X ] =
nmax∑
n=0

1
n!

X n, (B.16)

with nmax such that
1

nmax!
‖X nmax‖ < εtol, (B.17)

where εtol is a prescribed tolerance (typically of the order of the machine precision). Note
that the above principle is invariably adopted in the computation of computer intrinsic math-
ematical functions such as the exponential of a scalar. The above formula is implemented in
subroutine EXPMAP of HYPLAS. The corresponding pseudo-code is illustrated in Box B.1.

Remark B.1. It is important to emphasise that in the single-crystal plasticity application
described in Section 16.5, where the argument of the tensor exponential is a deformation
gradient (with components of order 1), only a few terms of the above series (about six or
seven) are normally required for convergence compatible with the usual tolerances involved
in nonlinear computational continuum mechanics. The practical use of the above formula in
finite element computations is, therefore, absolutely feasible.

†Note that for symmetric arguments, the computation of the tensor exponential can be performed more efficiently
by the procedure described in Section A.5. For skew-symmetric arguments, the closed formulae (B.13) or (B.14) can
be used for a more efficient computation of the tensor exponential.
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B.2. The tensor exponential derivative

A series representation of the derivative of the tensor exponential function, suitable for
computer implementation, is derived in this section. Crucial to the proposed representation is
the general expression for the derivative of positive integer powers of a tensor, derived in the
following.

Proposition B.1. Let n be a strictly positive integer and let F be the tensor-valued function
of a tensor argument defined as

F (X) = X n. (B.18)

The derivative DF (X) of the function F at X is the fourth-order tensor whose Cartesian
components are given by

[DF (X)]ijkl =
n∑

m=1

[X m−1]ik [X n−m]lj . (B.19)

Proof. The Cartesian components of the derivative of F (X) are given by

[DF (X)]ijkl =
d[X n]ij

dXkl
.

Let us consider the following general expression for the components of a positive integer
power of a tensor

[X n]a1an+1
=

n∏
m=1

Xamam+1 .

By straightforward differentiation of the above product, we obtain

d[X n]a1an+1

dXkl
= δa1k δa2l

n∏
m=2

Xamam+1 + Xa1a2 δa2k δa3l

n∏
m=3

Xamam+1

+ · · · +
(n−1∏

m=1

Xamam+1

)
δankδan+1l

= δa1k [X n−1]lan+1
+ Xa1k [X n−2]lan+1

+ · · · + [Xn−1]a1k δlan+1

= [X 0]a1k [X n−1]lan+1
+ [X1]a1k [X n−2]lan+1

+ · · · + [X n−1]a1k [X 0]lan+1

which corresponds exactly to the proposed general formula (B.19).

With the above result at hand, a general formula for the derivative of the tensor exponential
function is established in the following proposition.

Proposition B.2. The Cartesian components of the derivative of the tensor exponential
function at X have the following series representation

[D exp(X)]ijkl =
∞∑

n=1

1
n!

n∑
m=1

[X m−1]ik [X n−m]lj . (B.20)

Proof. Follows by direct differentiation of the series representation (B.4) of the tensor
exponential and subsequent use of the general formula (B.19) for the Cartesian components
of the derivative of a positive integer power of a tensor.
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Box B.2. Computation of the derivative of the exponential of a generally unsym-
metric tensor in ndim dimensions.

HYPLAS procedure: DEXPMAP

(i) Given X and the numerical tolerance εtol, compute nmax

(a) initialise n := 0

(b) increment counter n := n + 1

(c) compute n! and X n

(d) If ‖X n‖/n! < εtol then

set nmax := n and GOTO (ii)
Else

GOTO (i.b)

(ii) Compute exponential map derivative

(a) initialise [D exp(X)]ijkl := 0, i, j, k, l = 1, . . . , ndim

(b) initialise n := 0

(c) increment counter n := n + 1

(d) add new term to the series. For i, j, k, l = 1, . . . , ndim

compute

[D exp(X)]ijkl := [D exp(X)]ijkl +
1

n!

n∑
m=1

[X m−1]ik [X n−m]lj

(e) If n = nmax then EXIT

Else GOTO (ii.c)

B.2.1. COMPUTER IMPLEMENTATION

Exactly as in the computation of the tensor exponential itself, the actual evaluation of the
tensor exponential derivative is carried out by means of the truncated series

[D exp(X)]ijkl =
nmax∑
n=1

1
n!

n∑
m=1

[X m−1]ik [X n−m]lj (B.21)

where nmax satisfies the accuracy requirement (B.17). The computer implementation of
the above expression follows the pseudo-code shown in Box B.2. The procedure has been
implemented in HYPLAS subroutine DEXPMP.

B.3. Exponential map integrators

In this section we discuss the use of the exponential map in the numerical solution of the class
of initial value problems defined by a tensor differential equation with general format

Ẏ (t) = A(t) Y (t), (B.22)
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with given initial condition
Y (t0) = Y 0. (B.23)

The above class of initial value problems is of particular relevance to finite deformation
computational mechanics and generalises the class of problems defined by (B.1) and (B.2) by
letting the tensor A now be a function of t.

B.3.1. THE GENERALISED EXPONENTIAL MAP MIDPOINT RULE

The exact solution (B.3) to problem (B.1, B.2) can be used to generate approximate solutions
to problem (B.22, B.23). Analogously to the generalised midpoint algorithm based on the
standard Euler approximation, it is possible to approximate the solution of (B.22, B.23) by a
similar algorithm based on the exponential map – the generalised exponential map midpoint
rule. Let us consider a generic time interval [tn, tn+1]. Basically, the algorithm approximates
Y n+1 as the exact solution that would be obtained at tn+1 if A were constant over [tn, tn+1].
The corresponding update formula is the following

Y n+1 = exp[∆t A(tn+θ)] Y n, (B.24)

where
∆t ≡ tn+1 − tn, tn+θ ≡ tn + θ ∆t. (B.25)

The prescribed parameter θ satisfies
0 ≤ θ ≤ 1. (B.26)

The choice θ = 0 yields the explicit exponential map integrator. With choices θ = 1
2 and θ = 1

the above formula is called, respectively, the midpoint and the backward (or fully implicit)
exponential map integrators. The algorithm is second-order accurate for θ = 1

2 and only first-
order accurate otherwise.



C LINEARISATION OF THE
VIRTUAL WORK

IN this appendix we present the derivation of the linearised version of the virtual work
equations. Linearisation of the virtual work gives rise to the tangent moduli which take

part in the assemblage of the tangent stiffness matrix – a crucial component of the implicit
finite element solution procedure described in Chapter 4. Tangent moduli associated with
specific material models and constitutive integration procedures are discussed in Parts Two
and Three of this book.

C.1. Infinitesimal deformations

We start by considering the simplest case – the virtual work equation under infinitesimal
deformations and strains. Consider Problem 3.5 (page 81). Here, we add the assumption that
the stress tensor is a function of the current strain only:†

σ = σ(ε), (C.1)

so that the problem is reduced to finding a kinematically admissible field u that satisfies

G(u, η) = 0, ∀ η ∈ V, (C.2)

where G is the virtual work functional defined as

G(u, η) =
∫
Ω

(σ : ∇sη − b · η) dv −
∫

∂Ωt

t · η da. (C.3)

The dependence of G on the unknown function u follows from the constitutive dependence
of the stress tensor on the strain tensor which, in turn depends on the field u (not only its
pointwise value); that is, σ is a functional of the field u:

σ = σ(∇su). (C.4)

Here we want to linearise equation (C.2) with respect to the unknown u about an arbitrary
argument u∗ (refer to Section 2.6, from page 38, where the concept of linearisation is
discussed). In abstract notation, the linearised problem consists in finding the field δu such

†This assumption encompasses elastic constitutive models as well as incremental constitutive functions employed
in the numerical implementation of path-dependent (dissipative) material models. In the incremental case, σ is a
function of ε alone (analogous to an elastic constitutive function) within each time or load step.
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that

L(δu, η) ≡ G(u∗, η) + DG(u∗, η) [δu] = 0, ∀ η ∈ V, (C.5)

where L is the linearised virtual work functional and

DG(u∗, η) [δu] =
d
dε

∣∣∣∣
ε=0

G(u∗ + ε δu, η) (C.6)

is the directional derivative of G at u∗ in the direction of δu.
Explicitly, the directional derivative of G is given by

DG(u∗, η) [δu] =
d
dε

∣∣∣∣
ε=0

∫
Ω

[σ(ε(ε)) : ∇sη − b · η] dv −
∫

∂Ωt

t · η da

=
d
dε

∣∣∣∣
ε=0

∫
Ω

σ(ε(ε)) : ∇sη dv, (C.7)

where we have used the definition

ε(ε) = ∇s(u∗ + ε δu) = ε∗ + ε ∇sδu, (C.8)

with

ε∗ = ∇su∗ (C.9)

denoting the strain tensor field at u∗.

The infinitesimal tangent modulus

Straightforward application of the chain rule to the functional σ in (C.7) yields

DG(u∗, η) [δu] =
∫
Ω

D : ∇sδu : ∇sη dv. (C.10)

The fourth-order tensor D is the infinitesimal tangent modulus defined as

D ≡ ∂σ

∂ε

∣∣∣∣
ε∗

. (C.11)

The linearised virtual work equation

With the above at hand, we arrive at the following final expression for the linearised virtual
work equation at u∗:∫

Ω

D : ∇sδu : ∇sη dv = −
∫
Ω

(σ : ∇sη − b · η) dv +
∫

∂Ωt

t · η da, ∀ η ∈ V, (C.12)

where σ is the stress corresponding to the field u∗.
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C.2. Finite strains and deformations

C.2.1. MATERIAL DESCRIPTION

Now let us consider the finite strain case. We assume that the first Piola–Kirchhoff stress
tensor is a function of the deformation gradient:

P = P (F ). (C.13)

The material version of the virtual work functional under large deformations and strains is
given by

G(u, η) =
∫
Ω

[P : ∇pη − b̄ · η] dv −
∫

∂Ωt

t̄ · η da, (C.14)

where b̄ and t̄ denote, respectively, the reference body force and surface traction fields. In the
above, P is a functional of the displacement field due to its constitutive dependence on the
deformation gradient F = I + ∇pu. The material description of the virtual work equation
for the unknown displacement field u under finite deformations is given by (C.2) with the
functional G defined by (C.14).

The linearisation of equation (C.2, C.14) at a state defined by the field u∗ has the
representation (C.5), with the directional derivative (C.6) in the present case being given by‡

DG(u∗, η) [δu] =
d
dε

∣∣∣∣
ε=0

∫
Ω

[P (F (ε)) : ∇η − b̄ · η] dv −
∫

∂Ωt

t̄ · η da

=
d
dε

∣∣∣∣
ε=0

∫
Ω

P (F (ε)) : ∇η dv, (C.15)

where we have defined

F (ε) = I + ∇p(u∗ + ε δu) = F ∗ + ε ∇pδu, (C.16)

with
F ∗ = I + ∇pu

∗ (C.17)

denoting the deformation gradient for the displacement field u∗.

The material tangent modulus

With a straightforward application of the chain rule to the above expression for the directional
derivative, we obtain

DG(u∗, η) [δu] =
∫
Ω

A : ∇pδu : ∇pη dv (C.18)

where

A ≡ ∂P

∂F

∣∣∣∣
F ∗

(C.19)

is generally termed the material tangent modulus. For materials with an elastic constitutive
law, this is also referred to as the first elasticity tensor.

‡We have implicitly assumed here that the prescribed body force and surface traction fields are independent of
the displacement field. If the applied loads are configuration-dependent, i.e. functions of the displacement field, then
extra contributions associated to the linearisation of such terms have to be added to the directional derivative.
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The linearised virtual work equation in material description

Finally, expressions (C.5), (C.14) and (C.18) yield the material description of the linearised
virtual work equation for large-strain problems:∫

Ω

A : ∇pδu : ∇pη dv = −
∫
Ω

(P : ∇pη − b̄ · η) dv +
∫

∂Ωt

t̄ · η da, ∀ η ∈ V. (C.20)

C.2.2. SPATIAL DESCRIPTION

We consider now the spatial version of the virtual work equation. The spatial virtual work
functional is defined by

G(u, η) =
∫

ϕ(Ω)

[σ : ∇xη − b · η] dv −
∫

ϕ(∂Ωt)

t · η da, (C.21)

where b and t are, respectively, forces per unit volume and area of the deformed configuration
of the body in question and σ is the Cauchy stress tensor which, for an elastic constitutive
model, is a function of the deformation gradient:

σ = σ(F ) = σ(I + ∇pu). (C.22)

To derive the corresponding linearised equilibrium equation, it is worth recalling that
the material and spatial virtual work functionals are equivalent, with the transformation
between (C.14) and (C.21) requiring only straightforward use of the standard identities

∇xa = ∇pa F −1,
∫

ϕ(Ω)

a(x) dv =
∫
Ω

J(p)a(ϕ(p)) dv, (C.23)

valid for any vector field a and scalar field a. Likewise, the spatial version of the virtual
work directional derivative can be obtained from its material counterpart (C.18) simply by
replacing the material description with the corresponding spatial description of the relevant
fields.

The spatial tangent modulus

With use of the above identities in (C.18), we obtain

DG(u∗, η) [δu] =
∫

ϕ(Ω)

1
J

A : (∇xδu F ) : (∇xη F ) dv. (C.24)

By regrouping the terms of the above integrand, the directional derivative may be equivalently
written as

DG(u∗, η) [δu] =
∫

ϕ(Ω)

a : ∇xδu : ∇xη dv, (C.25)

where a is termed generally the spatial tangent modulus. Strictly under elasticity, it is often
called the spatial elasticity tensor. It is defined by the Cartesian components

aijkl =
1
J

Aimkn Fjm Fln. (C.26)
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In expression (C.26) we have

Aimkn =
∂Pim

∂Fkn
, (C.27)

or, in view of the definition P = Jσ F−T = τ F−T ,

Aimkn =
∂

∂Fkn
(τipF−1

mp)

=
∂τip

∂Fkn
F−1

mp + τip

∂F−1
mp

∂Fkn
. (C.28)

From relation (vii) of Section 2.5.4 (from page 35) for the derivative of the inverse of a tensor,
the derivative in the last term of the right-hand side of the above equation is given by

∂F−1
mp

∂Fkn
= −F−1

mk F−1
np , (C.29)

so that we obtain

Aimkn =
∂τip

∂Fkn
F−1

mp − τip F−1
mk F−1

np . (C.30)

Finally, by substituting (C.30) into (C.26) we obtain, after straightforward manipulations, the
following equivalent expression for the components of the spatial tangent modulus:

aijkl =
1
J

∂τij

∂Fkm
Flm − σil δjk. (C.31)

The linearised virtual work equation in spatial description

Finally, expressions (C.5), (C.21) and (C.25) lead to the spatial version of the linearised
virtual work equation:∫

ϕ(Ω)

a : ∇xδu : ∇xη dv = −
∫

ϕ(Ω)

[σ : ∇xη − b · η] dv +
∫

ϕ(∂Ωt)

t · η da, ∀ η ∈ V.

(C.32)





D ARRAY NOTATION FOR
COMPUTATIONS WITH
TENSORS

T his appendix describes the handling of second and fourth-order tensors in finite element
computer programs. It should be particularly helpful to those wishing to follow, in

program HYPLAS, the implementation of techniques discussed in this book that have been
presented almost exclusively in compact tensorial notation.

In finite element computer programs, the components of a symmetric second-order
tensor are usually stored as a single column array, whereas fourth-order tensor components
are stored in two-dimensional arrays. By arranging the relevant components consistently,
operations such as internal products between tensors and products between fourth and
second-order tensors can be conveniently carried out in the computer program as matrix
products.

The order in which components of a tensor can be stored in array format is not unique.
In the following, we show the convention adopted in many finite element programs and, in
particular, in the program HYPLAS.

D.1. Second-order tensors

Let us start with second-order tensors. Expression (2.27) (page 21) shows the matrix repre-
sentation of a generic tensor in terms of its Cartesian components. Here we shall be concerned
only with symmetric tensors (which are of relevance for finite element computations).
Second-order symmetric tensors will be converted into single column arrays and their actual
single array representation will depend on whether the tensor is a stress-like or strain-like
quantity. Let us start by considering the stress tensor, σ, in plane stress and plane strain
problems. In this case, the in-plane components of the matrix [σ] will be converted into a
single column array σ (the computer array representation will be denoted here by upright
bold-faced symbols) according to the rule

[σ] =


σ11 σ12

σ12 σ22


−→ σ =



σ11

σ22

σ12


. (D.1)
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Only the three relevant independent components are stored in σ. In axisymmetric problems
we store, in addition to the above, the component σ33; that is

[σ] =



σ11 σ12 0

σ12 σ22 0

0 0 σ33


−→ σ =




σ11

σ22

σ12

σ33


, (D.2)

where the index 3 is associated with the circumferential direction. It should be noted here that
the σ33 stress is generally non-zero also under plane strain conditions. In this case, the stress
may be stored as in the above (i.e. including σ33), but the last element of the stress array will
be ignored in product operations such as (D.5).

In three-dimensions (this case is not implemented in HYPLAS), we have the conversion rule

[σ] =



σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33


−→ σ =




σ11

σ22

σ33

σ12

σ23

σ13




. (D.3)

Let us now consider the strain tensor, ε. The rule for storage in this case is

[ε] =



ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33


−→ ε =




ε11

ε22

ε33

2ε12

2ε23

2ε13




. (D.4)

Note that the shear components have been multiplied by a factor of two; that is, ε is the array
of engineering strains. The reason for this is that, in this way, the internal product between a
stress- and a strain-like tensor can be computed as a matrix product

σ : ε = σT ε. (D.5)

If we denote by δε a virtual strain tensor, i.e. the symmetric gradient virtual displacement
field, by applying the above conversion rules the corresponding virtual work reads

σ : δε = σT δε. (D.6)

In plane problems, the general conversion rule for strains is

[ε] =


ε11 ε12

ε12 ε22


−→ ε =




ε11

ε22

2ε12


. (D.7)
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However, note that in elastoplasticity under plane strain, even though the total strain
component ε33 vanishes, the corresponding elastic and plastic components do not. Thus, we
adopt the following storage rule

[εe] =



εe
11 εe

12 0

εe
12 εe

22 0

0 0 εe
33


−→ εe =




εe
11

εe
22

2εe
12

εe
33


 (D.8)

for the elastic strain (and the plastic strain). Axisymmetric implementations follow the above
rule also for the array conversion of the total strain tensor, ε.

D.2. Fourth-order tensors

We now consider fourth-order tensors. Let D be a tangent modulus tensor with Cartesian
components Dijkl on the basis {ei}

D = Dijkl ei ⊗ ej ⊗ ek ⊗ el. (D.9)

In tensorial compact form, the tangent stress–strain relation reads

dσ = D : dε. (D.10)

Fourth-order tensors will be stored in two-dimensional arrays. In its array form, the compo-
nents of D in plane strain problems (i.e. with i, j = 1, 2) will be arranged as

D =



D1111 D1122 D1112

D2211 D2222 D2212

D1211 D1222 D1212


, (D.11)

so that the tangential relation between the in-plane stress array can be represented as the
matrix product

dσ = D dε. (D.12)

That the above is equivalent to (D.10) is left as an exercise for the interested reader. Note that
in elasticity and associative plasticity problems the tensor D has the symmetries

Dijkl = Djikl = Djilk = Dklij . (D.13)

In such cases, the conversion rule produces a symmetric two-dimensional matrix.
In axisymmetric problems we have

D =




D1111 D1122 D1112 D1133

D2211 D2222 D2212 D2233

D1211 D1222 D1212 D1233

D3311 D3322 D3312 D3333


, (D.14)
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and in three-dimensions,

D =




D1111 D1122 D1133 D1112 D1123 D1113

D2211 D2222 D2233 D2212 D2223 D2213

D3311 D3322 D3333 D3312 D3323 D3313

D1211 D1222 D1233 D1212 D1223 D1213

D2311 D2322 D2333 D2312 D2323 D2313

D1311 D1322 D1333 D1312 D1323 D1313



. (D.15)

Note that, according to the above rule, the fourth-order symmetric identity tensor defined
by (2.108) (page 31) is represented in plane problems as

IS =




1 0 0

1 0

sym 1
2


. (D.16)

In using the above representation in computations, account should be taken of the fact that

ISε =




ε11

ε22

ε12


 
= ε. (D.17)

For axisymmetric problems,

IS =




1 0 0 0

1 0 0

sym 1
2 0

0 1


. (D.18)

In three-dimensions, we have

IS =




1 0 0 0 0 0

1 0 0 0 0

1 0 0 0
1
2 0 0

sym 1
2 0

1
2



. (D.19)
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D.2.1. OPERATIONS WITH NON-SYMMETRIC TENSORS

Note (refer to expressions (C.18), page 755, and (C.25)) that the product between a fourth-
order tensor (the material or spatial modulus) and a generally non-symmetric second-order
tensor (the full material or spatial gradient of a vector field) arises naturally in the linearisation
of the virtual work equation under large deformations. In such cases, the above representation
cannot be used. Modifications in the array conversion rules are needed to allow such products
to be carried out in the computer program as matrix products. Let us use the spatial
version (C.32) of the linearised virtual work as an example. We start by defining the second-
order tensors

T ≡∇xδu, U ≡∇xη, (D.20)

respectively, as the (full) gradients of δu and the virtual displacement field η. In plane
problems, we will adopt the following computer array representation:

T =




T11

T21

T12

T22


, (D.21)

with the same rule applying for U , and

a =



a1111 a1121 a1112 a1122

a2111 a2121 a2112 a2122

a1211 a1221 a1212 a1222

a2211 a2221 a2212 a2222


. (D.22)

With the above notation, the integrand on the right-hand side of (C.25) has the representation

a : T : U = UT a T. (D.23)

Again, note that when the fourth-order tensor has the major symmetries

aijkl = aklij , (D.24)

which occurs in hyperelasticity and hyperelastic-based associative plasticity, the conversion
rule gives a symmetric two-dimensional matrix representation.

In axisymmetric problems, we adopt

T =




T11

T21

T12

T22

T33




(D.25)
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and

a =




a1111 a1121 a1112 a1122 a1133

a2111 a2121 a2112 a2122 a2133

a1211 a1221 a1212 a1222 a1233

a2211 a2221 a2212 a2222 a2233

a3311 a3321 a3312 a3322 a3333



. (D.26)

An analogous conversion rule can be defined for three-dimensional problems.
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Fuschi, P., Perić, D. and Owen, D.R.J. 1992. Studies on Generalized Midpoint Integration in Rate-
Independent Plasticity with Reference to Plane Stress J2-Flow Theory. Comput. Structs, 43, 1117–
1133.

Gear, C.W. 1971. Numerical Initial Value Problems in Ordinary Differential Equations. Englewood
Cliffs, New Jersey: Prentice-Hall.

Gelin, J.C. and Mrichcha, A. 1992. Computational Procedures for Finite Strain Elasto Plasticity with
Isotropic Damage. Pages 1401–1412 of: Owen, D.R.J., Oñate, E. and Hinton, E. (eds), Computational
Plasticity: Fundamentals and Applications – Proceedings of the Third International Conference held in
Barcelona, 6–10 April 1992. Swansea: Pineridge Press.

Gethin, D.T., Lewis, R.W. and Ransing, R.S. 1998. Compaction of Powder via a Deformable Discrete
Element Approach. Pages 45–50 of: Proceedings of the 1998 Powder Metallurgy World Congress and
Exhibition. Shrewsbury, UK: European Powder Metallurgy Association.

Glaser, S. and Armero, F. 1997. On the Formulation of Enhanced Strain Finite Element Methods in
Finite Deformations. Engng. Comp., 14(7), 759–791.

Govindjee, S. and Simo, J. 1991. A Micro-mechanically Based Continuum Damage Model for Carbon
Black-filled Rubbers Incorporating Mullins’ Effect. J. Mech. Phys. Solids, 39(1), 87–112.

Govindjee, S. and Simo, J.C. 1992. Mullins’ Effect and the Strain Amplitude Dependence of the Storage
Modulus. Int. J. Solids Structs, 20, 1737–1751.

Green, A.E. and Naghdi, P.M. 1965. A General Theory of an Elasto-plastic Continuum. Arch. Rat.
Mech. Anal., 18, 251–281.

Green, A.E. and Zerna, W. 1954. Theoretical Elasticity. Oxford University Press.

Green, A.P. 1953. The Plastic Yielding of Notched Bars Due to Bending. Quart. J. Mech. Appl. Math.,
6, 223–239.

Green, A.P. 1954. A Theory of the Plastic Yielding Due to Bending of Cantilevers and Fixed-ended
Beams. Part I. J. Mech. Phys. Solids, 3, 1–15.



REFERENCES 771

Gurson, A.L. 1977. Continuum Theory of Ductile Rupture by Void Nucleation and Growth – Part I:
Yield Criteria and Flow Rule for Porous Media. J. Engng. Mater. Tech., 99, 2–15.

Gurtin, M.E. 1972. The Linear Theory of Elasticity. Pages 1–295 of: Flügge, S. and Truesdell, C. (eds),
Handbuch der Physik, vol. VIa/2. Springer-Verlag.

Gurtin, M.E. 1981. An Introduction to Continuum Mechanics. New York: Academic Press.

Gurtin, M.E. and Francis, E.C. 1981. Simple Rate-Independent Model for Damage. J. Spacecraft, 18(3),
285–286.

Gurtin, M.E. and Martins, L.C. 1976. Cauchy’s Theorem in Classical Physics. Arch. Rat. Mech. Anal.,
60(4), 305–324.

Haftka, R.T., Gürdal, Z. and Kamat, M.P. 1990. Elements of Structural Optimization. 2nd edn. Kluwer
Academic Publishers.

Halphen, B. and Nguyen, Q.S. 1975. Sue les matériaux Standards généralisés. J. de Mécanique, 14,
39–63.

Han, W. and Reddy, B.D. 1999. Plasticity: Mathematical Theory and Numerical Analysis. Berlin:
Springer-Verlag.

Hancock, J.W. and Mackenzie, A.C. 1976. On the Mechanism of Ductile Fracture in High-strength
Steels Subjected to Multi-axial Stress-states. J. Mech. Phys. Solids, 24, 147–169.

Havner, K.S. 1992. Finite Plastic Deformation of Crystalline Solids. Cambridge: Cambridge University
Press.

Hencky, H. 1933. The Elastic Behavior of Vulcanized Rubber. J. Appl. Mech., 1, 45–53.

Hibbitt, H.D., Marcal, P.V. and Rice, J.R. 1970. A Finite Element Formulation for Problems of Large
Strain and Large Displacement. Int. J. Solids Structs, 6, 1069–1086.

Hill, R. 1948. A Theory of the Yielding and Plastic Flow in Anisotropic Metals. Proc. Roy. Soc. A, 193,
281–297.

Hill, R. 1950. The Mathematical Theory of Plasticity. London: Oxford University Press.

Hill, R. 1958. A General Theory of Uniqueness and Stability in Elastic-plastic Solids. J. Mech. Phys.
Solids, 6, 236–249.

Hill, R. 1978. Aspects of Invariance in Solid Mechanics. Adv. Appl. Mech., 18, 1–75.

Hinton, E. and Owen, D.R.J. 1977. Finite Element Programming. New York: Academic Press.

Hirsch, M.W. and Smale, S. 1974. Differential Equations, Dynamical Systems, and Linear Algebra.
New York: Academic Press.

Hoffman, O. 1967. The Brittle Strength of Orthotropic Materials. J. Composite Mater., 1, 200–206.

Holzapfel, G.A. 2000. Nonlinear Solid Mechanics. A Continuum Approach for Engineering. London:
John Wiley & Sons.

Horii, H. and Nemat-Nasser, S. 1983. Overall Moduli of Solids with Microcracks: Load Induced
Anisotropy. J. Mech. Phys. Solids, 31(2), 155–171.

Huerta, A., Pérez-Foguet, A. and Rodrígues-Ferran, A. 1999. Consistent Tangent Matrices for Complex
Problems: Substepping Schemes and Numerical Differentiation. In: Wunderlich, W. (ed), Proceedings
of the ECCM’99 – European Conference on Computational Mechanics, Munich 1999.

Hughes, T.J., Taylor, R.L. and Sackman, J.L. 1975. Finite Element Formulation and Solution of Contact-
impact Problems in Continuum Mechanics – III. Technical Report UC SESM 75-7. Department of Civil
Engineering, University of California, Berkeley.



772 REFERENCES

Hughes, T.J.R. 1980. Generalization of Selective Integration Procedures to Anisotropic and Nonlinear
Media. Int. J. Num. Meth. Engng, 15, 1413–1418.

Hughes, T.J.R. 1984. Numerical Implementation of Constitutive Models: Rate-independent Deviatoric
Plasticity. Pages 29–63 of: Nemat-Nasser et al. (Ed.), Theoretical Foundations for Large-scale Compu-
tations for Nonlinear Material Behavior. Dordrecht, The Netherlands: Martinus Nijhoff.

Hughes, T.J.R. 1987. The Finite Element Method. Linear Static and Dynamic Finite Element Analysis.
Englewood Cliffs, New Jersey: Prentice-Hall.

Hughes, T.J.R. and Pister, K. 1978. Consistent Linearization in Mechanics of Solids and Structures.
Comp. Structs, 8, 391–397.

Hughes, T.J.R. and Taylor, R.L. 1978. Unconditionally Stable Algorithms for Quasi-static Elasto/Visco-
plastic Finite Element Analysis. Comput. Structs, 8, 169–173.

Hughes, T.J.R. and Winget, J. 1980. Finite Rotation Effects in Numerical Integration of Rate Constitu-
tive Equations Arising in Large-deformation Analysis. Int. J. Numer. Meth. Engng, 15, 1862–1867.

Ibrahimbegović, A. 1994. Finite Elastoplastic Deformations of Space-Curved Membranes. Comp. Meth.
Appl. Mech. Engng, 119, 371–394.

Irons, B.M. 1970. A Frontal Solution Program for Finite Element Analysis. Int. J. Numer. Meth. Engng,
2, 5–32.

Janson, J. 1978. A Continuous Damage Approach to the Fatigue Process. Engng. Fract. Mech., 10,
651–657.

Jetteur, Ph. 1986. Implicit Integration Algorithm for Elastoplasticity in Plane Stress Analysis. Engng.
Comp., 3, 251–253.

Jirásek, M. and Bažant, Z.P. 2002. Inelastic Analysis of Structures. Chichester: Wiley.

Johnson, G. and Bammann, D.J. 1984. A Discussion of Stress Rates in Finite Deformation Problems.
Int. J. Solids Structs, 20, 725–737.

Kachanov, L.M. 1958. Time of the Rupture Process under Creep Condition. Izv. Akad. Nauk. SSSR, Otd.
Tekhn. Nauk., 8, 26–31.

Kachanov, L.M. 1977. Creep and Rupture under Complex Loading. Problemi Prochnosti, 6.

Kestin, J. and Bataille, J. 1977. Irreversible Thermodynamics of Continua and Internal Variables. Pages
39–67 of: Proceedings of the International Symposium on Continuum Models of Discrete Systems.
University of Waterloo Press.

Kocks, U.F. 1970. The Relation Between Polycrystal Deformation and Single-crystal Deformation.
Metall. Trans., 1, 1121–1143.
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Perić, D. and Owen, D.R.J. 1991. A Model for Large Deformation of Elasto-viscoplastic Solids at
Finite Strains: Computational Issues. Pages 299–312 of: Besdo, D. and Stein, E. (eds), Proceedings of
the IUTAM Symposium on Finite Inelastic Deformations – Theory and Applications. Berlin: Springer.
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Accumulated plastic slip, 698
Accumulated plastic strain, 145, 179, 183, 184
Accuracy order, 211
Almansi strain tensor, 54
Alternating tensor, 24
Angle of internal friction, see Frictional angle
Angular velocity, 44
Arc-length method, 107

computer implementation of, 120
Armstrong–Frederick kinematic hardening

law, 188, 190, 448, 480
at finite strains, 635, 644

Array notation, see Matrix notation in finite
elements

Array of engineering strains, 93, 760
Array of stress components, 88, 759
Arrhenius law, 450
Assembly operator, see Finite element

assembly operator
Associative hardening, 183, 184, 243, 267,

296
for multisurface models, 183

Axial vector of a tensor, 25

B-matrix, see Discrete gradient operator,
symmetric

Back-stress tensor, 185, 257, 480
Green–Naghdi rate of, 634
Oldroyd rate of, 645
spatial, 634

Bauschinger effect, 185, 257, 420
bcc crystal, 692
Bending locking, 669
BFGS scheme, see Quasi-Newton methods,

BFGS scheme
Bingham viscoplastic model, 447
Biot strain tensor, 54
Blatz–Ko material, 530
Bodner–Partom viscoplastic model, 450
Body force, 61

reference, 68
Boundary traction, 68

reference, 68

Brittle damage, 472
Bulk modulus, 93

Calorodynamic process, 69
Cartesian components

of a tensor, 21
of a vector, 18

Cartesian coordinate frame, 18
Cartesian coordinates of a point, 18
Cauchy elastic material, 520
Cauchy stress tensor, 62
Cauchy stress vector, 61
Cauchy’s axiom, 61
Cauchy’s equation of motion, 68
Cauchy’s theorem, 62, 67
Cauchy–Green strain tensors, 50, 53
Chain rule, 36
Characteristic equation, 27
Characteristic space, 25
Clausius–Duhem inequality, 69, 149
Closest point projection algorithm, 200
Cohesion, 164
Compaction pressure, 405
Complementarity condition, 144, 147

discrete, 195
Configuration-dependent load, 106
Conservation of mass, 67, 499
Consistency condition, 147, 152
Consistent tangent matrix, 98
Consistent tangent modulus, see Consistent

tangent operator
Consistent tangent operator, 192, 199

for a hyperelastic-damage model, 567
for a single crystal model

implementation, 713
for elastoplasticity, 229
for finite strain multiplicative plasticity,

597, 601
with kinematic hardening, 642

for implicit return mappings, 238
capped Drucker–Prager model, 413
Drucker–Prager model, 337
Gurson model, 502

Computational Methods for Plasticity: Theory and Applications EA de Souza Neto, D Perić and DRJ Owen
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Hoffman model, 433
Lemaitre damage model, 485
modified Cam-Clay model, 408
Mohr–Coulomb model, 316
simplified Lemaitre damage model,

490
Tresca model, 286
von Mises model, 232, 242, 262, 382,

383
for the damaged elasticity model, 510
for viscoplasticity, 458

at finite strains, 606
Perzyna type model, 466
single crystal model implementation,

725
von Mises-based model

implementation, 464
in plane stress, 366, 382
infinitesimal, 98, 754
material, 755
non-symmetry of, 409, 426
spatial, 104, 105, 756
symmetry property of, 243
Timoshenko elastoplastic beam, 401

Constitutive function, incremental, see
Incremental constitutive function

Constitutive functional, 70, 71
Constitutive initial value problem, 76

elastoplastic, 193
at finite strains, 590
plane stress, 359

incremental, see Incremental constitutive
problem

infinitesimal, 76
viscoplastic, 455

Continuum Damage Mechanics, 471, 473
Continuum elastoplastic tangent operator,

153, 235, 242, 243
for the Green–Naghdi rate-based model,

624
for the Jaumann rate-based model, 623
for the von Mises model, 234
symmetry of, 153, 244

Convected rate of stress, 621
Convergence criterion, finite element

equilibrium solution, 98
Crack closure effects, 504, 510
Creep, 436, 439

tertiary, 436, 474
Creep-damage, 474
Critical state line, 404
Cross product, see Vector product
Crystallographic slip, 579, 692, 695
Cutting plane method, 205, 208, 213

Damage, 436, 472
Damage effective stress, 474, 478
Damage energy release rate, 479
Damage mechanics problems, see Numerical

examples, damage mechanics
Damage models

anisotropic, 512
damaged elasticity law, 507
Gurson, 496
Gurtin–Francis, 560
hyperelasticity with damage, 557
Lemaitre, 478

simplified, 486
with crack closure, 511

Damage surface, 564
Damage tensor, 512
Damage threshold, 481, 490
Damage variable, 474–476
Deformation, 41
Deformation gradient, 46

determinant of, 48
elastoplastic multiplicative

decomposition of, 578
incremental, 127, 592
isochoric/volumetric split of, 49
polar decomposition of, 49

Determinant of a tensor, 23
Deviatoric plane (or π-plane), 160
Deviatoric projection tensor, 59
Deviatoric strain, see Strain deviator
Deviatoric stress, see Stress deviator
Differential-algebraic equations, 209
Differentiation, 32
Dilatancy, 175, 176
Dilatancy angle, 175–177, 185
Directional derivative, 32
Discrete gradient operator

spatial, 104
symmetric, 87

spatial, 103
Discretised virtual work equation, 88

linearised, 96
Dissipation function, 149, 452, 453
Dissipation potential, 74, 451, 453
Distortional elastic strain energy, 162
Divergence, 37

material, 46
spatial, 46

Divergence theorem, 37
Ductile damage, 472

Effective plastic strain, see Accumulated
plastic strain

Eigenprojection, 26
Eigenvalue, 25
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Eigenvector, 25
Elastic deformation gradient, 578
Elastic domain, 140, 143, 150

for multisurface models, 156
Elastic predictor/return mapping algorithm,

196, 199
for a Timoshenko beam model, 400
for finite strain Green–Naghdi

rate-based models, 632
for finite strain Jaumann rate-based

models, 631
for finite strain multiplicative plasticity,

590
in plane stress, 602
with kinematic hardening, 637

for finite strain single crystal plasticity,
699

planar double-slip model, 707
for the Barlat–Lian model, 431
for the capped Drucker–Prager model,

412
for the Drucker–Prager model, 324

plane stress, 363
for the Gurson model, 501
for the Hoffman model, 424
for the Lemaitre damage model, 482
for the modified Cam-Clay model, 406
for the Mohr–Coulomb model, 297
for the simplified Lemaitre damage

model, 486
for the Tresca model, 268
for the von Mises model, 215, 221

in plane stress, 364, 373
with mixed hardening, 258

for viscoplasticity, 456
at finite strains, 606
Perzyna-type model, 466
von Mises-based model, 460

Elastic rotation, 579
Elastic strain, 142, 148

logarithmic, 582
Elastic stretch, 579
Elastic trial hardening force, 196
Elastic trial state, 196, 424, 593
Elastic trial stress, 196
Elastic velocity gradient, 580
Elasticity

linear, see Linear elasticity
orthotropic, 423
plane stress, 358

Elasticity matrix, 93
Elasticity tensor

first, 755
infinitesimal, 93
spatial, 534, 756

Blatz–Ko model, 537
Hencky model, 537
Ogden model, 535

Elastoplastic tangent modulus, 147
Engineering strains, see Array of engineering

strains
Enhanced assumed strain finite elements, 669
Equilibrium path, 107
Equivalent plastic strain, see Accumulated

plastic strain
Error map, see Iso-error map
Essential boundary condition, 79
Euler method

backward, 194, 213, 455, 591
forward, 207

Eulerian strain, 54
Eulerian triad, 52
Exponential map integrator, 591, 700, 724,

751
Exponential of a tensor, see Tensor

exponential function
External force vector, 88

Fatigue damage, 472
F-bar finite elements, 648
F-bar-Patch finite elements, 665
fcc crystal, 692
Filled rubbers, 473, 557
Finite element assembly operator, 89
Finite element equilibrium equation, see

Discretised virtual work equation
Finite element mesh, 85
Finite step accuracy, 212, 213
First Piola–Kirchhoff stress, 65
First principle of thermodynamics, 68
Flow potential, 151

non-smooth, 155
Flow rule, 150

associative, 152
associative Barlat–Lian, 430
associative Hill, 420
associative Hoffman, 422
associative Tresca, 171, 267
based on Drucker–Prager function, 175
based on modified Cam-Clay function,

405
based on Mohr–Coulomb function, 173
derived from a flow potential, 151
finite strain multiplicative plasticity, 584
for associative multisurface models, 157
for single crystals, 695
for the capped Drucker–Prager model,

410
for the Gurson model, 498
Prandtl–Reuss, 171
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uniaxial, 144
viscoplastic, 450

one-dimensional, 438
Flow vector, 150

derived from a flow potential, 151
derived from a non-smooth flow

potential, 155
Fourth-order tensor, 29
Frame invariance, see Material objectivity
Free-energy, 69

for an elastoplastic material, 148
for finite strain hyperelasticity, 520
for the Lemaitre damage model, 478
isotropic, 521

Frictional angle, 164, 175, 185

G-matrix, see Discrete gradient operator,
spatial

Gaussian quadrature, 89
Geometric stiffness, see Stiffness matrix,

geometric
Gradient of a field, 32
Green–Lagrange strain tensor, 53
Green–Naghdi rate of stress, 621
Gurson porous plasticity model, see Damage

models, Gurson
Gurtin–Francis damage model, see Damage

models, Gurtin–Francis

Hardening, 140
Hardening curve, 145, 179, 181
Hardening modulus, 147

generalised, 150
linear isotropic, 182
linear kinematic, 186

Hardening slope, see hardening modulus
Hardening, derived from a flow potential, 151
Hardening, derived from a non-smooth flow

potential, 155
Hardening, general model, 150
Hardening, uniaxial model, 145
Heaviside step function, 221
Helmholtz free-energy, see Free-energy
Hencky material, 528

in plane stress, 532
Hencky strain tensor, see Logarithmic strain

tensor
Homogeneous deformation, 47
hpc crystal, 692
Hu–Washizu variational principle, 669
Hughes–Winget algorithm, 631
Hydrostatic stress, 64
Hyperelasticity, 520

compressible regularisation, 525

in plane stress, see Plane stress
hyperelasticity

incompressible, 524
isotropic, 521

Hyperelasticity problems, see Numerical
examples, finite hyperelasticity

Hyperelasticity with damage, see Damage
models, hyperelasticity with
damage

HYPLAS program
data input and initialisation, 117
elements, implementation and

management, 128–131
global database, 117
increment cutting, 123
load incrementation, 120
main program, 117
material models, implementation and

management, 131–135
HYPLAS subprograms:

ARCLEN, 109, 120, 122–124
CONVER, 100, 109
CSTEP2, 601
CSTOGD, 542, 545, 546
CSTPDS, 713
CTDAMA, 486, 491
CTDMEL, 510
CTDP, 324, 337, 340, 342, 343
CTDPPN, 366
CTMC, 295, 315, 318, 319, 324, 342
CTOGD, 134, 538
CTTR, 266, 283, 291, 294, 295, 324, 599
CTVM, 134, 235, 364–366, 383, 569, 599
CTVMMX, 257, 263
CTVMPS, 383, 384
DEXPMP, 702
DGISO2, 287, 289, 291, 295, 317, 731,

737, 738
DISO2, 537, 599, 731
DPLFUN, 228, 238
ELEIIF, 125, 126, 128, 129, 131
ELEIST, 100, 109, 129, 131
ERRPRT, 119, 227
FRONT, 100, 109, 120, 123, 124, 129
IFFB2, 538
IFFBA2, 129, 656
IFSTD2, 100, 128, 129, 538, 656
INCREM, 120
INDATA, 118, 119, 129
ININCR, 118
INITIA, 119, 120
INLOAD, 118, 119, 129
INTFOR, 100, 109, 124, 126
ISO2, 731
LENGTH, 121
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MATICT, 134, 135, 235, 237, 569, 601
MATIOR, 135
MATIRD, 132, 135
MATISU, 100, 128, 133, 135, 224, 227,

596
MATISW, 120, 134, 135
ORDAMA, 486
ORVM, 135
OUTPUT, 125
PLFUN, 228
RDDAMA, 486
RDDP, 337
RDMC, 315
RDOGD, 541
RDTR, 283
RDVM, 227
RSQ4, 129
RST3, 129
RSTART, 118, 125
SFQ4, 130
SFT3, 130
SHPFUN, 130
SPDEC2, 731, 735
STFBA2, 129, 656
STSTD2, 100, 128, 129, 656
SUDAMA, 486, 490
SUDMEL, 509
SUDP, 324, 329–334, 337, 340, 342
SUDPPN, 363
SUFAIL, 227
SUMC, 295, 303–310, 315, 316, 318, 319,

324, 334, 337
SUOGD, 528, 531, 536, 538, 541, 542,

567
SUPDSC, 708
SUPGD, 538
SUTR, 128, 273, 274, 276–279, 282, 283,

291, 294, 310, 315
SUVM, 133, 224, 235, 261, 310, 364, 567,

569, 596
SUVMMX, 257, 261
SUVMPS, 133, 376, 378, 379
SWDAMA, 486
SWITCH, 124, 125
SWOGD, 134
SWVM, 134
UPCONF, 100, 109

Identity tensor
of fourth-order, 31

symmetric, 31
of second order, 19

Incremental boundary value problem
at finite strains, 103
infinitesimal, 95

Incremental constitutive function, 95, 102,
127, 133, 192, 229, 598

for elastoplasticity, 230
for the viscoplastic von Mises-based

model, 464
for the von Mises model, 220, 223, 233,

260
Incremental constitutive problem

of finite strain multiplicative plasticity,
592

of infinitesimal elastoplasticity, 194
Incremental displacement vector, 98
Incremental finite element equilibrium

equations
at finite strains, 103
infinitesimal, 96

Incremental objectivity, 625
Incremental plastic multiplier, 195
Incremental potential, 243
Indicator function, 452
Infinitesimal deformation, 57
Infinitesimal strain tensor, 57
Initial boundary value problem, 79

infinitesimal, 81
material, 80
spatial, 79

Initial stiffness method, 99
Initial yield stress, 182
Inner product of tensors, 22
Inner product of vectors, 17
Intermediate configuration, see Plastic

intermediate configuration
Internal force vector, 88, 192
Internal variables, 72
Interpolation function, see Shape function
Interpolation matrix, 87
Invertible tensor, 23
Iso-error map, 214, 215

implicit Drucker–Prager model
implementation, 337

implicit Lemaitre model
implementation, 483

implicit Mohr–Coulomb model
implementation, 315

implicit Tresca model implementation,
283

viscoplastic von Mises-based model
implementation, 463

Isochoric deformation, 48
Isoparametric finite element, 90
Isotropic hardening, 178, 448
Isotropic scalar function, 731
Isotropic solid, 71
Isotropic tensor, 30
Isotropic tensor function, 287, 316, 733
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J-integral, 479
J2,J3-invariants, see Stress deviator,

invariants of
Jaumann rate of stress, 619

Kinematic hardening, 185, 257, 448
at finite strains, 633

Kinematically admissible displacements set,
79

discretised, 86
Kirchhoff stress, 67
Kuhn–Tucker optimality conditions, 170

Lagrangian strain, 53
Lagrangian triad, 52
LATIN Method, 101
LBB condition, 687
Left Cauchy–Green strain tensor, see

Cauchy–Green strain tensors
Left stretch tensor, see Stretch tensors
Lemaitre–Chaboche viscoplasticity model,

449
Lie derivative, 585
Limit load, see Plastic collapse problems
Line-search, 200, 431, 433, 489, 490, 501, 720
Linear elasticity, 93
Linear hardening, 182, 223, 244, 261
Linearisation, 38

in infinite-dimensional functional
spaces, 39

Linearised finite element equilibrium
equation, see Discretised virtual
work equation, linearised

Load factor, 96
Load-stiffness matrix, see Stiffness matrix,

load stiffness
Loading/unloading conditions, 145, 150

for multisurface models, 157
Lode angle, 161
Logarithmic strain tensor, 54, 528, 582

Macauley bracket, 505
Master damage curve, 560, 564
Material description, 44
Material field, 44
Material gradient, 46
Material objectivity, 70, 520, 619
Material stiffness, see Stiffness matrix,

material
Material symmetry, 71, 521
Material tangent modulus, see Consistent

tangent operator, material
Material time derivative, 46
Mathematical programming, 210
Matrix notation in finite elements, 87, 759

Matrix representation of a tensor, 21
Maximum plastic dissipation, principle of,

170, 453
at large strains, 589

Midpoint method, 203, 213, 458, 752
Mixed hardening, 189, 257
Modified Newton methods, 99
Mohr circle, 164
Momentum balance, 67
Mooney–Rivlin material, 525
Motion, 42
Mullins effect, 557
Multiplicative decomposition of the

deformation gradient, 578
Multivector return mapping, see Return

mapping, multivector

Natural boundary condition, 79
neo-Hookean material, 525
Newton–Raphson Method, 96, 97, 198

with combined line-search, see
Line-search

with improved initial guess, 200, 484
Nodal displacements vector, 87
Nominal stress, see Stress, first

Piola–Kirchhoff
Nonlinear hardening, 182
Norm of a tensor, 22
Norm of a vector, 17
Normal dissipativity, 74, 451
Norton creep law, 449, 474, 723
Numerical examples

damage mechanics
damageable rubber balloon, 569
fracturing of a cylindrical notched

specimen, 493
finite strain hyperelasticity

annular plate, 547
Cook’s membrane, 656
elastomeric bead compression, 556
flat membranes inflation, 552
perforated rubber sheet, 547
rubber cylinder compression, 555
rugby ball, 551
spherical rubber balloon, 550

finite strain plasticity
bending of a V-notched Tresca bar,

606
double-notched specimen, 658
necking of a cylindrical bar, 607
perforated plate, 613
plane strain localisation, 611
thin sheet forming, 614
unconstrained single element, 660
upsetting of a cylindrical billet, 661
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finite strain single crystal plasticity
crystal shearing, 710
symmetric rectangular strip, 717
unsymmetric rectangular strip, 720

infinitesimal plasticity
circular plate, 250
circular-footing, 350
concrete shear wall, 391
double-notched specimen, 255
end-loaded cantilever, 387
perforated plate, 390, 469
plate with circular hole, 387
pressurised cylinder, 244
pressurised spherical shell, 247
slope stability, 351
strip footing, 252, 346
tapered cantilever, 344
V-notched bar, 343

viscoplasticity
creep of a single crystal, 726
notched specimen, 467
perforated plate, 469

Objective rate, 74
Objective stress rates, 619
Observer change, 70
Ogden material, 527

in plane stress, 531
Oldroyd rate of stress, 620
Operator split method, 201
Orthogonal tensor, 23
Orthonormal basis, 18
Out-of-balance force vector, see Residual

vector

Perfect plasticity, see Plasticity models,
perfectly plastic

Perić viscoplastic model, 438, 724
Permanent strain, see Plastic strain
Perzyna viscoplastic model, 448, 724
Piola–Kirchhoff stress, see First

Piola–Kirchhoff stress
Plane stress assumption, 357
Plane stress elasticity, see Elasticity, plane

stress
Plane stress enforcement

in finite hyperelasticity, 530
in finite strain plasticity, 604
in linear elasticity, 359
in plasticity, 360, 361, 367

Plane stress hyperelasticity, 530
Plastic anisotropy, 414
Plastic collapse problems, 244, 247, 250, 252,

255, 343, 344, 346, 350, 351, 387,
390, 391

Plastic deformation gradient, 578
Plastic dilatancy, see Dilatancy
Plastic dissipation, 149, 451
Plastic flow, 140
Plastic flow rule, see Flow rule
Plastic intermediate configuration, 575
Plastic multiplier, 144

determination of, 146, 152, 577
Plastic rotation, 579
Plastic spin, 581
Plastic strain, 143, 148

volumetric, 175, 176, 405, 412, 422, 588
Plastic stretch, 575, 579
Plastic stretching, 581

spatial, 582
Plastic velocity gradient, 580
Plastic work, 181
Plastic yielding, see Plastic flow
Plastically admissible stresses, 143

set of, 150, 583
Plasticity models (general):

associative, 152
finite strains

general hyperelastic-based
multiplicative, 578

hypoelastic-based, 615
in plane stress, 601
Jaumann rate-based, 622
one-dimensional, 575
single crystal, 694

multisurface, 156
one-dimensional, 141–147
perfectly plastic, 177
plane stress-projected, 360, 370, 601
three-dimensional, 148–157
Timoshenko beam, 399

Polar decomposition, 28
Polycrystalline metal, 414, 472
Position vector, 18
Positive definite tensor, 23
Prager kinematic hardening law, 186, 448

at finite strains, 635, 645
Prandtl–Reuss flow rule, see Flow rule,

Prandtl–Reuss
Principal axis, 26
Principal direction, see Principal axis
Principal invariants, 27
Principal stresses, 63, 67
Principal stretches, 52
Principal value, see Eigenvalue
Product rule, 37
Proper orthogonal tensor, 23
Proportional loading, 96
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Quasi-Newton methods, 101
BFGS scheme, 101

Rate of deformation tensor, see Stretching
tensor

Rate-dependence, 435, 436, 441
Reference map, 43
Relative effective stress, 448
Relative strain, 560, 563
Relative stress tensor, 185, 257
Relative yield stress, 415, 421
Relaxation, see Stress relaxation
Relaxation test, 436
Residual vector, 97
Resultant forces, 397
Return mapping, 196

closed form, 223, 261, 300, 327
in principal stress space, 269, 298, 599
multivector, 270, 298, 700, 707
viscoplastic, 456

Right Cauchy–Green strain tensor, see
Cauchy–Green strain tensors

Right stretch tensor, see Stretch tensors
Rigid deformation, 42

infinitesimal, 58
Rigid motion, 44
Rigid velocity, 44
Rotated plastic stretching, see Plastic

stretching, spatial
Rotation tensor, 23

Schmid resolved shear stress, 693
Second Piola–Kirchhoff stress, 66
Second principle of thermodynamics, 68
Second-order tensor, 19
Shape function, 85

global, 85
Shear modulus, 93
Shear yield stress, 157
Skew symmetric tensor, 19
Slip system, 692
Slope stability, see Numerical examples,

infinitesimal plasticity, slope
stability

Snap-back, 107
Snap-through, 107
Spatial description, 44
Spatial elasticity tensor, see Elasticity tensor,

spatial
Spatial field, 44
Spatial gradient, 46
Spatial tangent modulus, see Consistent

tangent operator, spatial
Spatial time derivative, 46
Spectral decomposition, 25

Spectral theorem, 26
Spin tensor, 55
Stability, 212
State update interface, 127
State update procedure, 123–126, 128, 132,

133, 135, 192
State variables, 72
Static condensation, 676, 687
Stiffness matrix, 97, 192

for finite strains, 104
for infinitesimal strains, 98
for linear elasticity, 94
geometric, 106
load-stiffness, 106
material, 106

Strain deviator, 58, 529, 582
Strain equivalence, hypothesis of, 475, 478,

479
Strain hardening, 178
Strain-displacement matrix, see Discrete

gradient operator, symmetric
Strain-rate dependence, see Rate-dependence
Stress deviator, 64

invariants of, 160–161
Stress equivalence, hypothesis of, 476
Stress power, 68
Stress relaxation, 436, 444
Stretch tensors, 49
Stretching tensor, 55
Subdifferential, 154, 453
Subgradient, 154
Symmetric gradient, 57
Symmetric tensor, 19
Symmetry group, 71

Tangent modulus, see Consistent tangent
operator

Tangent stiffness, see Stiffness matrix
Tangential solution, 110
Taylor hardening law, 698
Tensile/compressive split of the stress, 505
Tensor exponential function, 747

derivative of, 750
Tensor inverse, 23
Tensor product, 20, 28, 29
Tensor square root, 28
Tensors of higher order, 28
Tertiary creep, see Creep, tertiary
Texturing, 414
Thermodynamic determinism, 70
Thermodynamical force, 73, 149
Thermodynamics with internal variables, 71
Thermokinetic process, 69
Timoshenko beam, 396
Trace of a tensor, 22
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Transpose, 19
Trapezoidal method, 202, 458
Triaxial shear test, 141
Truesdell rate of stress, 620

Uniaxial tension test, 140, 436
Uniaxial yield stress, 140, 143
Unit vector, 17
Unstable equilibrium, 107
u/p finite elements, 683

Vector product, 24
Velocity, 43
Velocity gradient, 55
Virtual displacements space, 77, 78, 80, 81

discretised, 86
Virtual work linearisation

under finite deformations, 755
under infinitesimal deformations, 753

Virtual work principle, 77
discretised, see Discretised virtual work

equation
infinitesimal, 78
material, 78
spatial, 77

Viscoplastic flow rule, see Flow rule,
viscoplastic

Viscoplastic integration algorithm
general implicit, 454
midpoint, 458
models with a yield surface, see Elastic

predictor/return mapping
algorithm, for viscoplasticity

trapezoidal, 458
Viscoplastic return mapping, see Return

mapping, viscoplastic
Viscoplasticity models (general):

at finite strains, 605
multidimensional general, 450
multidimensional von Mises-based, 445
one-dimensional, 437
single crystal, 721
without a yield surface, 448

Viscoplasticity problems, see Numerical
examples, viscoplasticity

Void volume fraction, 496
Volume change ratio, 48
Volumetric deformation, 49
Volumetric elastic strain energy, 162
Volumetric locking, 647
Volumetric plastic strain, see Plastic strain,

volumetric
Volumetric strain, 59, 529, 582
von Mises effective (or equivalent) stress, 163

Work hardening, 180

Yield criterion, 143
Drucker–Prager, 166
isotropic, 158
Mohr–Coulomb, 164

multisurface representation, 165
pressure-insensitive, 158
Tresca, 157

multisurface representation, 160
under finite strains, 583
von Mises, 162

Yield function, 143
Barlat–Lian, 427, 428
capped Drucker–Prager model, 410
Drucker–Prager, 167, 324
Gurson, 498
Hill orthotropic, 414
Hoffman orthotropic, 420
isotropic, 158
Lemaitre damage model, 480
modified Cam-Clay, 404
Mohr–Coulomb, 164

invariant representation, 166
Tresca, 158

invariant representation, 160
von Mises, 163

Yield pressure, see Compaction pressure
Yield surface, 150

graphical representation of, 159, 416,
697

Zero tensor, 19
Zero vector, 17


